Advances in Imaging and Electron Physics

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. August 2020
  • |
  • 282 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-821002-4 (ISBN)
 

Advances in Imaging and Electron Physics, Volume 215, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.

  • Contains contributions from leading authorities on the subject matter
  • Informs and updates on the latest developments in the field of imaging and electron physics
  • Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electrons and ion emission with a valuable resource
  • Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing
  • Englisch
  • San Diego
  • |
  • USA
  • 9,88 MB
978-0-12-821002-4 (9780128210024)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Imaging and Electron Physics
  • Copyright
  • Contents
  • Contributors
  • Preface
  • 1 Intensity interferometry experiment: photon bunching in cathodoluminescence
  • 1 The Hanbury Brown and Twiss experiment applied to cathodoluminescence
  • 1.1 The autocorrelation function measured with the Hanbury Brown and Twiss experiment
  • 1.2 HBT setup for electron microscopy
  • 2 Observation of the bunching effect
  • 2.1 Observation on nanodiamond and h-BN
  • 2.2 Heuristic model
  • 3 Monte Carlo model
  • 3.1 Description
  • 3.2 Discussion
  • 3.3 Comparison with experiments
  • 4 Analytical model
  • 4.1 Description
  • 4.2 Discussion
  • 4.3 Consequences on the background subtraction for g(2)(t) of single-photon emitters
  • 5 Photon bunching in a scanning electron microscope
  • 5.1 The g(2)(t) of a thick sample
  • 5.2 Photon bunching with a pulsed electron beam
  • 5.3 The probability of excitation
  • 6 Conclusion
  • Acknowledgments
  • References
  • 2 Applications of photon bunching in cathodoluminescence
  • 1 Introduction
  • 2 Lifetime measurement at the nanometer scale
  • 2.1 Measurement with CL of multiple AlN/GaN quantum wells
  • 2.2 Monte Carlo simulation with two lifetimes
  • 2.3 Evaluation of the time of integration required
  • 2.4 Comparison with time-resolved cathodoluminescence
  • 3 Comparison with time-resolved µ-photoluminescence
  • 3.1 Principle of time-resolved µ-PL
  • 3.2 Comparison between PL and CL
  • 4 Lifetime measurement on AlN defect
  • 5 Measurement of the probability of excitation
  • 5.1 In uence of the penetration depth on the bunching
  • 5.2 Application to InGaN/GaN nanowires
  • 6 Conclusion
  • Acknowledgments
  • References
  • 3 A quantum propagator for electrons in a round magnetic lens
  • 1 Introduction
  • 2 Theory
  • 2.1 Wave packet
  • 2.2 Time dependent Hamilton operator
  • 2.3 Electron propagator
  • 3 Results
  • 4 Conclusion
  • Acknowledgments
  • References
  • 4 Progress in determining of compound composition by BSE imaging in a SEM and the relevant detector disadvantages
  • 1 Introduction
  • 2 Composition analysis of the elongated at specimens using Z-contrast of BSE imaging in a SEM
  • 3 Stoichiometric analysis of individual microparticles
  • 3.1 Selection of single-element specimens of high Z and exact ? values for obtaining the calibration curve ?= f (Z )
  • 3.2 Experimental testing of the more accurate composition determination for microparticles of high Z
  • 3.3 Disadvantages of the conventional BSE detectors
  • 4 Special BSE detectors with improved ef ciency for SEM
  • 4.1 BSE detectors with increased collection angle and pre-acceleration
  • 4.2 BSE-to-SE conversion detectors
  • 5 The detectors special features for accurate BSE output measurements in a SEM
  • 5.1 BSE yield measurement using SC detector
  • 5.2 Estimation of input signal levels of SC/BSE detectors for typical specimens
  • 5.3 The concept of wireless SC/BSE detectors and their potential application
  • 5.3.1 Modi cations of wireless SC/BSE detectors
  • 5.3.2 Potential applications of wireless SC/BSE detectors
  • 6 Conclusions and outlook
  • Acknowledgments
  • References
  • 5 A new paradigm for FDM: cylindrically symmetric electrostatics
  • Preface
  • 1 The two methods of creating algorithms for FDM
  • 1.1 Introduction
  • 1.2 Algorithms and their series expansions
  • 1.3 The two methods
  • 1.3.1 The Taylor method
  • 1.3.2 The power series method brie y described
  • 1.3.3 Points used in algorithms
  • 1.3.4 The number of points in the c0 algorithm for any order
  • 1.3.5 Single point precisions of the various algorithms
  • 1.4 Discussion
  • 1.4.1 Taylor series method
  • 1.4.2 Power series method
  • 1.4.3 Comparisons
  • 1.5 Summary
  • 2 New paradigm for FDM
  • 2.1 De nitions
  • 2.1.1 Prior work
  • 2.1.2 The simulated geometry
  • 2.1.3 The boundary value problem of FDM
  • 2.2 Algorithm creation by the power series method
  • 2.2.1 The "Laplace equations
  • 2.2.2 The "mesh point" equations
  • 2.2.3 The solution
  • 2.2.3.1 Generalization to algorithm orders greater than 4
  • 2.2.4 The structure of the order 4 solution
  • 2.2.5 Two sum rules
  • 2.2.6 A blueprint for 3D FDM
  • 2.3 Internal and external points
  • 2.3.1 Setting external points using double interpolation
  • 2.4 Relaxing the structure of Fig. 3
  • 2.4.1 A blueprint for curved boundaries in 3D
  • 2.5 Multi regions
  • 2.5.1 Setting the values of the shadow points
  • 2.5.2 Is there an equivalence of a multi-region solution to single region solution?
  • 2.6 Old vs new code
  • 2.7 The geometries for testing rays
  • 2.7.1 Hemisphere de ector analyzer (HDA)
  • 2.7.2 The spherical de ector analyzer (SDA)
  • 2.8 Results
  • 2.8.1 SDA
  • 2.8.2 HDA
  • 2.9 A paradigm shift in the formulation of FDM electrostatics
  • 2.9.1 The key to the new model
  • 2.9.2 Characteristics of the new paradigm
  • 2.10 Conclusion
  • Acknowledgments
  • A Algorithms order 2 and 4
  • References
  • 6 Solutions of the Laplace equation in cylindrical coordinates, driven to 2D harmonic potentials
  • 1 Introduction
  • 2 Quadrupole on the cylinder
  • 3 Various analytical approaches
  • 4 Calculation of the eld of a multi-electrode cylindrical lens
  • 5 Calculation of the transaxial lens eld
  • 6 Conclusion
  • Acknowledgments
  • References
  • 7 Characteristics of triode electron guns
  • 1 Introduction
  • 2 Electron trajectories
  • 2.1 Pencils of rays and crossovers
  • 2.2 The size and position of the crossover
  • 2.3 Aberrations
  • 3 Determination of the geometrical properties
  • 3.1 Experimental techniques
  • 3.2 Evaluation of the shadow curves
  • 3.2.1 The shape of the shadow curves
  • 3.2.2 Breadth of the shadow curves
  • 3.2.3 Emittance diagrams
  • 3.3 Results
  • 3.4 Comparison of calculated and measured emittance diagrams
  • 3.5 Discussion
  • 3.5.1 Evaluation of emittance diagrams
  • 3.5.2 Example: eld-emission guns
  • 4 Brightness
  • 4.1 Theory
  • 4.1.1 The brightness for thermionic cathode emission
  • 4.1.2 Systematic errors in measurements of the brightness
  • 4.1.3 Extension of the calculations
  • 4.1.4 Implications for brightness measurements
  • 4.2 Measurement techniques
  • 4.2.1 The two-aperture method
  • 4.2.2 The lens method
  • 4.3 Experimental procedure
  • 4.4 Results
  • 4.4.1 The two-aperture method
  • 4.4.2 The lens method
  • 4.4.3 In uence of the orientation of single-crystal cathode tips
  • 5 The energy distribution
  • 5.1 Theory
  • 5.1.1 The effect of an aperture on the energy distribution
  • 5.1.2 Consequences
  • 5.2 The Boersch effect
  • 5.3 Experimental procedure
  • 5.4 Results
  • 5.4.1 The energy distribution in the axial beamlet
  • 5.4.2 Consequences of the results for the axial beam
  • 5.4.3 The energy distribution of off-axis beamlets
  • 5.4.4 Interpretation of the measurements for off-axis rays
  • 5.4.5 The energy distribution in the total beam
  • 5.4.6 Consequences
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

208,25 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen