Nanoarchitectonics for Smart Delivery and Drug Targeting

 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 12. Juli 2016
  • |
  • 970 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-47722-2 (ISBN)
 

Nanoarchitectonics for Smart Delivery and Drug Targeting is one of the first books on the market to exclusively focus on the topic of nanoarchitectonics, a rapidly developing area of nanotechnology which allows scientists to arrange nanoscale structural units, typically a group of atoms or molecules, in an intended configuration.

This book assesses novel applications of nanomaterials in the areas of smart delivery and drug targeting using nanoarchitectonics and discusses the advantages and disadvantages of each application.


  • Provides a scholarly introduction to the uses of nanoarchitectonics in drug delivery and targeting
  • Explores novel opportunities and ideas for developing and improving nanoscale drug delivery systems through the use of nanoarchitectonics, allowing scientists to see how this exciting new technology is used in practice
  • Assesses the pros and cons of each application, allowing readers to assess when it is most appropriate to use nanoarchitectonics in drug delivery


Affiliation: Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest; Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest
Contact details: alina_m_h@yahoo.com, http://alina.amgtranscend.org/
Qualifications and Experience: Assistant Professor - General Microbiology, Medical microbiology, Immunology, Immunopathology
Book Editor: Nanoarchitectonics for Smart Delivery and Drug Targeting (Elsevier) - in press - 2016
Assistant Editor - Letters in Applied NanoBioScience (http://nanobioletters.com/)
Guest Editor - Current Pharmaceutical Biotechnology (Bentham Science - Impact Factor 2014 = 2.511)
The contribution of Dr Holban on her research field is supported by the publication of 48 papers in peer-reviewed journals (35 in ? Web of Science / ISI indexed journals indexed journals), 34 conference/symposia proceedings (posters and oral presentations, from which 24 were presented in International scientific meetings), 1 book, 5 book chapters in international books and 2 GenBank original sequences (patents). More than 30 of the published papers are investigating the applications of nanomaterials on biomedical fields, focusing on their antimicrobial effect.
  • Englisch
  • Norwich
  • |
  • USA
Elsevier Science
  • 36,18 MB
978-0-323-47722-2 (9780323477222)
0323477224 (0323477224)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface
  • Part 1 - Smart Delivery
  • 1 - Therapeutic Nanostructures: Application of Mechanical Engineering in Drug Delivery
  • 1 - Introduction
  • 1.1 - Drug Delivery Definition
  • 1.2 - Nanotechnology
  • 1.3 - Applying Nanotechnology to Drug Delivery Systems
  • 1.3.1 - Nanocarrier and Application
  • 1.3.2 - Nanocarrier With Various Shape and Size
  • 1.3.3 - Targeting Strategies
  • 1.3.4 - Passive Targeting
  • 1.3.5 - Active Targeting
  • 2 - Application of Electromagnetism in Drug Delivery
  • 2.1 - Properties of Magnetic Nanoparticles
  • 2.2 - Biological Application
  • 2.2.1 - Magnetic Separation
  • 2.2.2 - Drug and Gene Delivery
  • 2.2.3 - Hyperthermia
  • 2.2.4 - MRI Imaging
  • 2.3 - Governing Equations
  • 2.3.1 - Biofluid Equations
  • 2.3.2 - Source Terms
  • 2.3.3 - Solid Phase Equations
  • 2.3.4 - Magnetic Field Equations
  • 2.4 - Boundary Conditions
  • 2.5 - Solution of Governing Equations
  • 2.5.1 - Eulerian Method
  • 2.5.2 - Lagrangian Method
  • 2.6 - Experimental Results
  • 3 - Application of Ultrasonic Waves in Drug Delivery
  • 3.1 - Acoustic Radiation Force
  • 3.2 - Heat Generation
  • 3.3 - Acoustic Cavitation
  • 3.4 - Future of Ultrasonic-Activated Drug Delivery
  • 4 - Simulation Methods for Dispersion of Nanoparticles in Drug Delivery Systems
  • 4.1 - Governing Equations
  • 5 - Conclusions
  • References
  • 2 - Nanoarchitectured Biomaterials: Present Status and Future Prospects in Drug Delivery
  • 1 - Introduction
  • 2 - Liposomes
  • 2.1 - Properties of Liposomes
  • 2.2 - Application of Liposomes in Drug Delivery
  • 3 - Dendrimers
  • 3.1 - Synthesis of Dendrimers
  • 3.2 - Advantages of Dendrimers
  • 3.3 - Applications of Dendrimers in Drug Delivery
  • 4 - Aquasomes
  • 4.1 - Properties of Aquasomes
  • 4.2 - Application of Aquasomes in Drug Delivery
  • 5 - Nanoparticles
  • 5.1 - Nanoparticles in Drug Delivery
  • 6 - Nanogels
  • 6.1 - Properties of Nanogels
  • 6.2 - Nanogels in Drug Delivery
  • 7 - Nanoemulsions
  • 7.1 - Advantages and Disadvantages of Nanoemulsions
  • 7.2 - Application in Drug Delivery
  • 8 - Carbon Nanotubes
  • 8.1 - Characteristics of Carbon Nanotubes
  • 8.2 - Carbon Nanotubes in Drug Delivery
  • 9 - Quantum Dots
  • 9.1 - Applications of Quantum Dots in Drug Delivery
  • 10 - Conclusions
  • References
  • 3 - Smart Nanopolysaccharides for the Delivery of Bioactives
  • 1 - Introduction
  • 2 - Structural Basis for Smartness of Nanopolysaccharides
  • 2.1 - Chitosan
  • 2.2 - Alginates
  • 2.3 - Carrageenan
  • 2.4 - Dextran
  • 2.5 - Hyaluronic Acid
  • 3 - Fabrication of Polysaccharide Nanostructures
  • 3.1 - Covalent Crosslinking Method
  • 3.2 - Ionic Crosslinking Method
  • 3.3 - Gelation of Emulsion Droplets
  • 3.4 - Self-Aggregation Process
  • 3.5 - Nanoprecipitation Method
  • 4 - Polysaccharide Nanostructures in the Delivery of Therapeutics
  • 4.1 - Chitosan-Based Nanocarriers
  • 4.2 - Alginate-Based Nanosystems
  • 4.3 - Carrageenan Nanoparticles
  • 4.4 - Dextran NPs
  • 4.5 - Hyaluronic Acid-Based Conjugates
  • 5 - Conclusions
  • References
  • 4 - Drug-Delivery Applications of Cellulose Nanofibrils
  • 1 - Background
  • 1.1 - General Introduction
  • 1.2 - Why Use Nanocellulose?
  • 1.3 - Nanocellulose-Based Hydrogel for Drug-Release Study
  • 2 - Preparation and Methods
  • 2.1 - Cellulose Fibril Preparation by TEMPO-Mediated Oxidation
  • 2.2 - Hydrogelation of CMF and CNF
  • 2.3 - Characterization
  • 3 - Drug Delivery and Other Pharmaceutical Applications of CNFs
  • 3.1 - CNF as Excipient for Tableting
  • 3.2 - Microparticles
  • 3.3 - CNF Films
  • 3.4 - Aerogels/Hydrogels
  • 3.5 - Immobilization of Enzymes and Proteins
  • 4 - Toxicology of CNFs
  • 5 - Conclusions
  • References
  • 5 - Nanoarchitectured Polysaccharide-Based Drug Carrier for Ocular Therapeutics
  • 1 - Introduction
  • 2 - Barriers in Ophthalmic Therapeutics
  • 3 - Nanotechnology in Ocular Drug Delivery
  • 4 - Polysaccharide Nanocarrier in Ocular Drug Delivery
  • 4.1 - Chitosan Nanocarrier in Ocular Drug Delivery
  • 4.2 - Dextran Nanocarrier in Ocular Drug Delivery
  • 4.3 - Hyaluronic Acid Nanocarrier in Ocular Drug Delivery
  • 4.4 - Sodium Alginate Nanocarrier in Ocular Drug Delivery
  • 4.5 - Cyclodextrin Nanocarrier in Ocular Drug Delivery
  • 4.6 - Pectin Nanocarrier in Ocular Drug Delivery
  • 5 - Physicochemical Properties of Polysaccharide Nanocarrier
  • 6 - Preparation of Polysaccharide Nanocarrier
  • 6.1 - Precipitation/Coacervation
  • 6.2 - Modified Coacervation
  • 6.3 - Ionotropic Gelation
  • 6.4 - Emulsification-Solvent Diffusion
  • 6.5 - Polyelectrolyte Complexation
  • 6.6 - Self-Assembly of Hydrophobically Modified Polysaccharides
  • 7 - Polysaccharide Nanoparticles and the Anterior Section of the Eye
  • 8 - Polysaccharide Nanoparticles and the Posterior Segment of the Eye
  • 9 - Polysaccharide Nanoparticles for Gene Therapies
  • 10 - Future Prospects
  • 11 - Conclusions
  • References
  • 6 - Current Polyesteric Systems for Advanced Drug Delivery
  • 1 - Introduction
  • 2 - Chemistry of Biodegradable Polyesters
  • 2.1 - Polylactic Acid
  • 2.2 - Polyglycolic Acid
  • 2.3 - Poly(Lactide-co-Glycolide)
  • 2.4 - Polycaprolactone
  • 3 - Biocompatibility and Regulatory Status
  • 4 - Applications
  • 4.1 - Use in Parenterals
  • 4.2 - Use in Implants
  • 4.2.1 - Application of Biodegradable Controlled Drug-Delivery Implants
  • 4.2.1.1 - Implants of Anticancer Drugs
  • 4.2.1.2 - In Situ Implants in Anticancer Therapy
  • 4.2.1.3 - Intraocular Implants
  • 4.2.1.4 - Antibacterial Implants
  • 4.2.1.5 - Antirestenotic Systems
  • 4.2.1.6 - Contraceptive Implants
  • 5 - Limitations of Polyesters in Pharmaceutical Drug Delivery
  • 6 - Future Prospects
  • References
  • 7 - Nanobiomaterials Architectured for Improved Delivery of Antimalaria Drugs
  • 1 - Introduction
  • 1.1 - The History of Malaria
  • 1.2 - Currently Used Antimalarial Drugs and Pharmacological Shortcomings
  • 1.2.1 - Quinine and Its Analogs
  • 1.2.2 - Artemisinin Compounds
  • 1.2.3 - Antibiotics
  • 1.2.4 - Other Antimalarial Drugs
  • 1.3 - Resistance to Antimalarial Drugs
  • 1.4 - Mechanism of Drug Resistance
  • 1.5 - Combination Therapy
  • 1.6 - Malaria Cycle
  • 1.7 - Pharmacokinetics of Antimalarial Drugs
  • 2 - Nanobiomaterials in Drug Delivery
  • 2.1 - Types of Nanobiomaterials Used for Drug Delivery of Antimalarial Drugs
  • 2.1.1 - Biological Nanobiomaterial
  • 2.1.2 - Carbon-Based Nanobiomaterials
  • 2.1.3 - Semiconductor-Based Nanobiomaterials
  • 2.1.4 - Metallic-Based Nanobiomaterials
  • 2.1.5 - Polymer-Based Nanobiomaterials
  • 2.1.6 - Polymeric Nanobiomaterial-based Implants
  • 3 - Conclusions
  • Acknowledgment
  • References
  • 8 - Formulation of Innovative Hybrid Chitosan/TiO2- and Chitosan/SiO2-Based Drug-Delivery Systems
  • 1 - Introduction
  • 2 - Innovative Hybrid Chitosan/TiO2-and Chitosan/SiO2
  • 2.1 - Synthesis
  • 2.1.1 - Synthesis of TiO2/Chitosan Hybrid
  • 2.1.2 - Synthesis of a 100% Chitosan Matrix
  • 2.1.3 - Ibuprofen Addition
  • 2.1.4 - Synthesis of SiO2/Chitosan Hybrid
  • 2.1.5 - Delivery Release (In Vitro Study)
  • 2.1.6 - Characterization
  • 3 - Drug-Delivery Systems
  • 3.1 - Chitosan-TiO2 Hybrid
  • 3.2 - Chitosan-SiO2 Hybrid
  • 4 - Conclusions
  • Acknowledgments
  • References
  • 9 - Lanthanide Ions Doped Upconversion Nanomaterials: Synthesis, Surface Engineering, and Application in Drug Delivery
  • 1 - Mechanism for Upconversion Emission
  • 1.1 - Excited State Absorption
  • 1.2 - Energy Transfer Upconversion
  • 1.3 - Photon Avalanche
  • 1.4 - Energy Migration-Mediated Upconversion
  • 2 - Upconversion Nanoparticles: Dopants and Hosts
  • 2.1 - Lanthanide Dopants
  • 2.2 - Host Matrix
  • 3 - Enhancement for UC Luminescence
  • 3.1 - Selection of Novel Host Materials
  • 3.2 - Tailoring Local Crystal Field
  • 3.3 - Core-Shell Structure
  • 3.4 - Plasmonic Enhancement
  • 4 - Controllable Synthesis of UCNPs
  • 4.1 - Hydro/Solvothermal Method
  • 4.2 - Thermal Decomposition Method
  • 4.3 - Impurity Doping
  • 5 - Surface Engineering
  • 5.1 - Surface Modification
  • 5.2 - Surface Silanization (Silica Coating)
  • 5.3 - Surface Functionalization
  • 6 - UCNPs-Based Systems for Drug Delivery
  • 6.1 - Three Types of Drug-Delivery System
  • 6.1.1 - NIR Light-Triggered Drug-Delivery System
  • 6.1.2 - pH-Responsive Drug-Delivery System
  • 6.1.3 - Magnetic-Targeted Drug-Delivery System
  • 7 - Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 10 - Nanocomposite Drug Carriers
  • 1 - Introduction
  • 2 - Porous/Hollow Nanovehicles for Anticancer Drug Delivery
  • 2.1 - Mesoporous Silica Nanoparticles
  • 2.2 - Porous Magnetic Nanoparticles
  • 2.3 - Hollow Polymer Capsules
  • 3 - Hydrogel Contact Lens for the Delivery of Ophthalmic Drugs
  • 3.1 - Copolymerization
  • 3.2 - Nanoparticle Composite
  • 3.3 - Ligand Modification
  • 3.4 - Surface Modification
  • 4 - Hydrogel Film as Wound Dressings in Drug-Delivery Systems
  • 4.1 - Physically Crosslinked Hydrogel Film Dressings
  • 4.2 - Chemically Crosslinked Hydrogel Film Dressings
  • 4.3 - Irradiation Crosslinked Hydrogel Film Dressings
  • 5 - Conclusions and Future Outlook
  • References
  • 11 - Lipid Nanoparticle Formulations for Enhanced Antituberculosis Therapy
  • Abbreviations
  • 1 - Introduction
  • 2 - Limitations of Conventional Antitubercular Therapy
  • 3 - Limitations of Oral Delivery of First-Line Antitubercular Drugs
  • 4 - Need and Novel Strategies for Antitubercular Drug Delivery
  • 5 - Lipid Nanoparticle Formulations
  • 6 - Solid Lipid Nanoparticles
  • 7 - Nanostructured Lipid Carriers
  • 8 - Production Procedure of LNFs at Laboratory Scale
  • 8.1 - Basic Ingredients for LNFs
  • 8.2 - Formulation Methodologies of LNFs at Laboratory Scale
  • 8.2.1 - Homogenization Techniques
  • 8.2.2 - Microemulsion Techniques
  • 8.2.3 - Emulsion Solvent Diffusion Techniques
  • 8.2.4 - Double Emulsion Technique
  • 8.3 - Characterization of LNFs
  • 8.3.1 - Estimation of Particle Size, Polydispersity Index, and Zeta Potential
  • 8.3.2 - Determination of Particle Shape and Surface Morphology
  • 8.3.3 - Characterization of Crystallinity and Polymorphism
  • 8.3.4 - Fourier Transform Infrared Spectroscopy
  • 8.3.5 - Determination of Drug Content
  • 8.3.6 - In Vitro Drug Release
  • 8.3.7 - Characterization of Degradation Profiles
  • 9 - Role of LNFs in Antitubercular Drug Delivery
  • 9.1 - Encapsulation of Both Hydrophilic and Lipophilic Antitubercular Drugs
  • 9.2 - Drug Release Behavior of LNFs
  • 10 - Rationale for Using LNFs in Antitubercular Therapy
  • 10.1 - Mitigating Resistance in Mycobacterium Tuberculosis
  • 10.2 - Improving Chemical Stability via Oral Delivery
  • 10.3 - Improving Bioavailability
  • 11 - Future Translational Approach
  • 12 - Conclusions and Future Perspectives
  • Acknowledgments
  • Disclosures/Conflict of Interest
  • References
  • 12 - Relevant Aspects on Peptide Delivery from Nanostructured Therapeutic Systems
  • 1 - Introduction
  • 2 - Therapeutic Significance of Peptides in the Treatment of Diseases
  • 2.1 - Cancer
  • 2.2 - Infection
  • 2.3 - Cardiovascular System
  • 2.4 - Endocrine System
  • 2.5 - Immune System
  • 3 - Limitations of Peptides and Routes of Administration to Succeed the Therapeutics
  • 4 - Aspects of Preformulation
  • 5 - Drug-Delivery Systems for Peptides
  • 5.1 - Polymeric Nanoparticles
  • 5.2 - Gold Nanoparticles
  • 5.3 - Solid Lipid Nanoparticles
  • 5.4 - Liposomes
  • 5.5 - Semisolids
  • 5.6 - Pharmaceutical Films
  • 6 - Future Perspectives
  • References
  • 13 - Nanoarchitectured Mesoporous Silica-Based Drug-Delivery Systems: Toward Perfect Nanomedicine
  • 1 - Introduction
  • 2 - Synthesis and Functionalization
  • 2.1 - Traditional MSNs
  • 2.2 - Hollow Mesoporous Silica Nanoparticles
  • 2.3 - Controlling Physical or Chemical Features of MSNs
  • 2.3.1 - Particle and Pore Size Control
  • 2.3.2 - Shape Control
  • 2.3.3 - Surface Functionalization
  • 3 - Pharmacokinetics of MSNs
  • 3.1 - Biodegradation
  • 3.2 - Biocompatibility
  • 3.2.1 - Interaction With Cells and Cytotoxicity
  • 3.2.2 - Blood Compatibility
  • 3.2.3 - Biodistribution, Retention, and Excretion
  • 4 - Multifunctionality of Mesoporous Silica Particles
  • 4.1 - Stealth Properties
  • 4.2 - Targeting
  • 4.3 - Controlled-Release Systems
  • 4.4 - Imaging
  • 4.4.1 - Magnetic Resonance Imaging
  • 4.4.2 - Optical Imaging
  • 5 - Conclusions and Outlook
  • Acknowledgments
  • References
  • 14 - Recent Advances in Self-Emulsifying Drug-Delivery Systems for Oral Delivery of Cancer Chemotherapeutics
  • 1 - Introduction
  • 2 - Self-Emulsifying Drug-Delivery Systems: Compositions and Ingredient Selection
  • 3 - Mechanisms for Enhancing Oral Bioavailability Using SEDDS Formulations
  • 4 - Advances in SEDDS Formulations
  • 4.1 - Solid SEDDS
  • 4.2 - Supersaturable SEDDS
  • 5 - SEDDS for Oral Delivery of Chemotherapeutic Agents
  • 6 - Combinatorial Chemotherapy Using Self-Emulsifying Drug-Delivery Systems
  • 7 - Conclusions
  • References
  • 15 - Scientometric Overview in Nanobiodrugs
  • 1 - Overview
  • 1.1 - Issues
  • 1.2 - Methodology
  • 1.3 - Pharmaceutical Research-Overview
  • 1.4 - Nanomaterial Research-Overview
  • 1.5 - Research on the Nanobiodrugs-Overview
  • 2 - Anticancer Nanobiodrugs
  • 2.1 - Overview
  • 2.2 - Most-Cited Papers in Anticancer Nanobiodrugs
  • 3 - Other Nanobiodrugs
  • 3.1 - Overview
  • 3.2 - Most-Cited Papers in Other Nanobiodrugs
  • 4 - Conclusions
  • References
  • Part 2 - Drug Targeting
  • 16 - Polymer: Lipid Hybrid Nanostructures in Cancer Drug Delivery: Successes and Limitations
  • 1 - Introduction
  • 2 - Polymer-Lipid Hybrid Nanostructures
  • 2.1 - Core-Shell Polymer-Type Lipid Nanoparticles
  • 2.1.1 - Stimuli Responsive Core or Shell-Type Polymer-Lipid Nanoparticles
  • 2.2 - Core-Shell Lipid-Polymer Hybrid Nanoparticles
  • 2.3 - Nanoparticle-Stabilized Liposomes
  • 2.4 - Core-Shell-Type Hollow Lipid-Polymer Hybrid Nanoparticles
  • 2.5 - Cellular Membrane-Functionalized Nanoparticles
  • 2.6 - Monolithic PLH
  • 3 - Preparation Methods of PLH
  • 3.1 - Single-Step Protocol (One-Pot Synthesis)
  • 3.2 - Two-Step Synthesis
  • 3.3 - Layer-by-Layer Coating
  • 3.4 - Advanced Techniques for PLH Nanoparticles Fabrication
  • 3.4.1 - Microfluidics
  • 3.4.2 - Multiinlet Vortex Reactor
  • 3.4.3 - Particle Replication in Nonwetting Templates
  • 4 - Factors Affecting Formation of PLH Nanoparticles
  • 4.1 - Lipid/Polymer Ratio (L/P)
  • 4.2 - PEGylation
  • 4.3 - AV/NP ratio
  • 4.4 - Concentration and Molecular Weight of Polymer
  • 4.5 - Topography Features of Core Nanoparticles
  • 4.6 - Thermodynamics and Solid State Properties
  • 5 - Applications of PLH in Cancer Therapy
  • 5.1 - Passive Targeting
  • 5.2 - Active Targeting
  • 5.2.1 - Genetic Delivery in Cancer
  • 5.2.2 - Theranostics
  • 6 - Conclusions and Future Scope
  • Abbreviations
  • References
  • 17 - Carbon Nanotubes: A Promising Carrier for Drug Delivery and Targeting
  • 1 - Introduction
  • 2 - Types of CNTs
  • 2.1 - Single-Wall Carbon Nanotubes
  • 2.2 - Double-Wall Carbon Nanotubes
  • 2.3 - Multiwall Carbon Nanotubes
  • 3 - Synthesis of CNTs
  • 3.1 - Arc Discharge Method
  • 3.1.1 - Synthesis of SWNTs
  • 3.1.2 - Synthesis of MWNTs
  • 3.2 - Laser Ablation Method
  • 3.3 - Chemical Vapor Deposition
  • 3.3.1 - Plasma-Enhanced CVD Method
  • 3.3.2 - Thermal CVD Method
  • 3.3.3 - Liquid Pyrolysis
  • 3.3.4 - Solid State Pyrolysis
  • 3.4 - Other Methods
  • 3.4.1 - Ball Milling
  • 3.4.2 - Bottom-Up Organic Approach
  • 3.4.3 - Flame Synthesis Method
  • 3.4.4 - Silane Solution Method
  • 4 - Purification
  • 4.1 - Air Oxidation
  • 4.2 - Acid Refluxing
  • 4.3 - Surfactant-Aided Sonication, Filtration, and Annealing
  • 4.4 - Cutting of the SWNTs
  • 4.4.1 - Chemical Cutting
  • 4.4.2 - Mechanical Cutting
  • 4.4.3 - Combination of Chemical and Mechanical Cutting
  • 4.5 - Magnetic Purification
  • 4.6 - Chromatography
  • 5 - Properties
  • 5.1 - Electrical Conductivity
  • 5.2 - Strength and Elasticity
  • 5.3 - Thermal Conductivity and Expansion
  • 5.4 - Field Emission
  • 5.5 - High Aspect Ratio
  • 5.6 - High Absorbency
  • 6 - Functionalization
  • 6.1 - Covalent Functionalization
  • 6.1.1 - Sidewall Functionalization
  • 6.2 - Noncovalent Functionalization
  • 6.2.1 - Surfactants
  • 6.2.2 - Aromatic Organic Molecules
  • 6.2.3 - Fluorophores
  • 6.2.4 - Polymers
  • 6.2.5 - Proteins
  • 6.2.6 - Endohedral Functionalization
  • 7 - Drug-Loading Mechanisms and Cellular Uptake of CNTs
  • 7.1 - Endocytosis-Dependent Pathway
  • 7.1.1 - Receptor-Mediated Endocytosis
  • 7.1.2 - Nonreceptor-Mediated Endocytosis
  • 7.2 - Endocytosis-Independent Pathway
  • 8 - Breakdown Mechanism of CNTs in the Body
  • 9 - Targeted Drug Delivery by CNTs
  • 9.1 - CNTs as Carriers of Anticancer Molecules
  • 9.1.1 - Blood Cancer
  • 9.1.2 - Brain Cancer
  • 9.1.3 - Breast Cancer
  • 9.1.4 - Cervical Cancer
  • 9.1.5 - Colon Cancer
  • 9.1.6 - Kidney Cancer
  • 9.1.7 - Liver Cancer
  • 9.1.8 - Lymph Node Cancer
  • 9.1.9 - Prostate Cancer
  • 9.1.10 - Oral Cancer
  • 9.1.11 - Photothermal Therapy of Cancer
  • 9.1.12 - Photodynamic Therapy
  • 9.2 - CNTs as Carriers for Antimicrobial Molecules
  • 9.3 - CNTs as Carriers of Genetic Materials, Proteins, and Immunoactive Compounds
  • 10 - Conclusions
  • References
  • 18 - Polymeric Nanoparticles as siRNA Drug Delivery System for Cancer Therapy: The Long Road to Therapeutic Efficiency
  • 1 - Introduction
  • 2 - Structure and Characteristics of Polymers
  • 3 - Formulation of Polyplexes
  • 4 - Physicochemical Characterization
  • 4.1 - Incorporation of the siRNA
  • 4.2 - Nanoparticle Size
  • 4.3 - Zeta Potential
  • 5 - Stability of Polyplexes
  • 6 - Blood Stability After Systemic Injection
  • 6.1 - Degradation by the Immune System
  • 6.2 - Degradation by the Nucleases
  • 7 - Targeting
  • 7.1 - Passive Targeting
  • 7.2 - Active Targeting
  • 8 - Endocytosis
  • 8.1 - Phagocytosis
  • 8.2 - Clathrin-Mediated Endocytosis
  • 8.3 - Caveolae-Mediated Endocytosis
  • 8.4 - Clathrin- and Caveolae-Independent Endocytosis
  • 8.5 - Fluorescent-Activated Cell Sorting
  • 8.6 - Exclusion Studies
  • 8.7 - Colocalization Studies
  • 9 - Endosomal Escape
  • 10 - Release of the siRNA From the Polyplexes
  • 11 - mRNA Degradation and Protein Shutdown
  • 12 - Nanotoxicity
  • 13 - Conclusions
  • Acknowledgment
  • Abbreviations
  • References
  • 19 - Polymeric Nanobiomaterials for Tumor Targeting
  • 1 - Introduction
  • 1.1 - Polymeric Nanobiomaterials
  • 1.2 - Principal Mechanisms for Tumor Targeting
  • 2 - Natural Polymeric Nanobiomaterials Used for Tumor Targeting
  • 2.1 - Gelatin for Tumor Targeting
  • 2.2 - Hyaluronic Acid for Tumor Targeting
  • 2.3 - Chitosan for Tumor Targeting
  • 2.4 - Alginate for Tumor Targeting
  • 2.5 - Pullulan for Tumor Targeting
  • 3 - Synthetic Polymeric Nanobiomaterials Used for Tumor Targeting
  • 3.1 - Poly(Lactic-co-Glycolic Acid) for Tumor Targeting
  • 3.2 - Poly(e-Caprolactone) for Tumor Targeting
  • 3.3 - Poly Lactic Acid for Tumor Targeting
  • 3.4 - Poloxamers for Tumor Targeting
  • 3.5 - Poly(N-Isopropylacrylamide) (NIPA) Nanobiomaterials for Tumor Targeting
  • 4 - Patents of Polymeric Nanobiomaterials for Tumor Targeting
  • 5 - Current Status and Commercial Aspects
  • 6 - Conclusions
  • References
  • 20 - Alginate Containing Nanoarchitectonics for Improved Cancer Therapy
  • 1 - Introduction
  • 2 - Advantages of the Use of Alginate Nanocarriers for the Treatment of Cancer
  • 3 - Disadvantages of the Use of Alginate Nanocarriers for the Treatment of Cancer
  • 4 - Physical and Chemical Properties of Alginate
  • 5 - Nanotechnology for Cancer Treatment
  • 6 - Alginate Nanocarriers
  • 7 - Preparation of Alginate Nanoparticles
  • 7.1 - Desolvation Technique
  • 7.2 - Ionic Gelation Method
  • 7.3 - Polyelectrolyte Complexation
  • 7.4 - Water-in-Oil Emulsions Method
  • 8 - Alginate Nanocarriers for Controlled Drug Delivery
  • 8.1 - Oral Delivery
  • 8.2 - Nasal Delivery
  • 8.3 - Colon-Specific Delivery
  • 8.4 - Transdermal Delivery
  • 9 - Alginate Nanocarriers for the Treatment of Various Cancers
  • 9.1 - Liver Cancer
  • 9.2 - Stomach Cancer
  • 9.3 - Lung Cancer
  • 9.4 - Colon Cancer
  • 9.5 - Pancreatic Cancer
  • 9.6 - Breast Cancer
  • 9.7 - Bone Cancer
  • 9.8 - Brain Cancer
  • 10 - Future Prospects
  • 11 - Conclusions
  • References
  • 21 - Multifunctional Magnetic Nanostructures for Cancer Hyperthermia Therapy
  • 1 - Introduction
  • 2 - An Overview of Cancer Treatments
  • 2.1 - Surgery
  • 2.2 - Chemotherapy
  • 2.3 - Radiation Therapy
  • 3 - Hyperthermia Treatment for Cancer
  • 3.1 - Types of Hyperthermia Treatments
  • 3.1.1 - Hyperthermia and Chemotherapy
  • 3.1.2 - Hyperthermia and Radiotherapy
  • 3.1.3 - Hyperthermia and Radiochemotherapy
  • 3.1.4 - Hyperthermia and Gene Therapy
  • 3.2 - Hyperthermia Using Magnetic Nanoparticles
  • 3.3 - Requirements of Magnetic Fluid Hyperthermia
  • 3.4 - Superparamagnetism in Nanoparticles for Hyperthermia
  • 4 - Theory of Magnetic Fluid Hyperthermia
  • 4.1 - Introduction
  • 4.2 - Generation of Heat by MNPs for Hyperthermia Applications
  • 4.3 - Heat Dissipation Mechanism by MNPs
  • 4.3.1 - Hysteresis Loss
  • 4.3.2 - Eddy Current Loss
  • 4.4 - Heat Dissipation Mechanism by Superparamagnetic Nanoparticles
  • 4.4.1 - Brownian Relaxation Loss
  • 4.4.2 - Néel's Spin Relaxation Loss
  • 5 - Literature Survey on MNPs Used for Hyperthermia
  • 5.1 - Ferrites
  • 5.2 - Ferromagnetic Spinels and Derived Phages
  • 5.3 - Ferrimagnetic SrFe12O19/?-Fe2O3 Composites
  • 5.4 - Ferromagnetic Perovskite LSMO Compounds
  • 6 - Surface Coating on Magnetic Nanoparticles for Hyperthermia
  • 7 - Biocompatibility Issue of Magnetic Nanoparticles for Hyperthermia
  • 8 - In Vitro and In Vivo Hyperthermia
  • 9 - In Vivo Hyperthermia by Using Magnetic Nanoparticles: Challenges, Possibilities, and Outcomes
  • 10 - Conclusions and Future Perspectives
  • Acknowledgment
  • References
  • 22 - Advances in Lasers and Nanoparticles in Treatment and Targeting of Epithelial Originated Cancers
  • 1 - Introduction
  • 2 - Cancer
  • 2.1 - History, Introduction, Cancer Classifications, Methods of Cancer Treatment
  • 3 - Principles of Nanotechnology
  • 3.1 - History, Introduction, Nanoparticle Structure, Nanoparticle Classifications, and Applications of Nanoparticles in Med...
  • 3.2 - Fundamental Concepts in Nanotechnology
  • 3.3 - Nanomedicine
  • 3.3.1 - Imaging and Diagnostics
  • 3.3.2 - Targeted Drug Delivery
  • 3.3.3 - Tissue Engineering
  • 3.4 - Review of Nanostructures for Dental Applications
  • 3.4.1 - Nanoparticles
  • 3.4.2 - Nanorods
  • 3.4.3 - Nanospheres
  • 3.4.4 - Nanotubes
  • 3.4.5 - Nanofibers
  • 3.4.6 - Dendrimers and Dendritic Copolymers
  • 4 - Principles of Lasers
  • 4.1 - History, Introduction, Laser Structure, Physical Parameters, Laser Classifications, Laser and Tissue Interactions, Ge...
  • 5 - Combination of Lasers and Nanoparticles for Treatment of Cancers With Epithelial Origin
  • 5.2 - Studies on Gold (Au) Nanoparticles Combined With Laser
  • 5.3 - In Vitro Studies
  • 5.4 - Animal Studies
  • 5.5 - Studies on Silver (Ag) Nanoparticles Combined With Laser
  • 5.6 - In Vitro Studies
  • 5.7 - Combination of Gold (Au)/Silver (Ag) Nanoparticles With Lasers
  • 6 - Discussion
  • 7 - Conclusions
  • References
  • 23 - Gold Nanoparticles: Their Properties and Role as Therapeutic Anticancer Agents
  • 1 - Introduction
  • 2 - Cancer and Its Types
  • 3 - Properties of AuNPs
  • 3.1 - Stability of AuNPs
  • 3.2 - Optical Scattering Properties of AuNPs
  • 3.3 - Photothermal Property of AuNPs
  • 3.4 - Antimicrobial Property of AuNPs
  • 3.5 - Antioxidant Activity of AuNPs
  • 4 - Synthesis of AuNPs
  • 5 - Bioapplications
  • 5.1 - Targeted Drug Delivery
  • 5.2 - Hyperthermal Therapy
  • 5.3 - Biosensing
  • 5.4 - Toxicity of AuNPs
  • 5.5 - Targeted Surgery
  • 6 - Drawbacks of AuNPs
  • 7 - Future Aspects
  • 8 - Conclusions
  • References
  • 24 - Iron Oxide Nanoparticles for Cancer Diagnosis and Therapy
  • 1 - Introduction
  • 2 - Basic Requirements for Biomedical Applications
  • 3 - Synthesis of Iron Oxide Nanoparticles
  • 3.1 - Physical Methods
  • 3.1.1 - Gas-Phase Deposition
  • 3.1.2 - Electron Beam Lithography
  • 3.2 - Wet Chemical Methods
  • 3.2.1 - Coprecipitation
  • 3.2.2 - Precipitation
  • 3.2.3 - Thermal Decomposition
  • 3.2.4 - Sol-Gel
  • 3.2.5 - Hydrothermal Synthesis
  • 3.2.6 - Microemulsion
  • 3.2.7 - Electrochemical Method
  • 3.2.8 - Aerosol/Vapor-Phase
  • 3.2.9 - Sonochemical Decomposition
  • 3.2.10 - Supercritical Fluid
  • 3.3 - Microbial Methods
  • 4 - MNP Surface Modification
  • 4.1 - Coating Strategies
  • 4.1.1 - Ligand Exchange
  • 4.1.2 - Chemical Modification
  • 4.1.3 - Encapsulation
  • 5 - Application of Therapeutic Iron Oxide Nanoparticles in Cancer Diagnosis and Treatment
  • 5.1 - Magnetic Resonance Imaging
  • 5.2 - Hyperthermia
  • 5.3 - Drug Delivery
  • 5.4 - Gene Therapy (Magnetofection)
  • 6 - Future Prospects for Nanotechnology in Cancer Medicine
  • References
  • 25 - Nanoparticle and Targeted Systems for Colon Cancer Therapy
  • 1 - Overview
  • 2 - Cancer Nanotechnology
  • 3 - Classes of Nanomaterials
  • 4 - Nanoparticle-Based Colon-Specific Drug Delivery
  • 5 - Nanotherapies for Colon Cancer
  • Abbreviations
  • References
  • 26 - Nanohybrid Stimuli-Responsive Microgels: A New Approach in Cancer Therapy
  • 1 - Introduction
  • 2 - Microgels and Nanogels
  • 2.1 - Classifications of Microgels
  • 2.1.1 - Structure-Based Classification
  • 2.1.1.1 - Physically crosslinked microgels
  • 2.1.1.2 - Chemically crosslinked microgels
  • 2.1.2 - Response-Based Classification
  • 3 - Stimuli-Responsive Polymers
  • 3.1 - Thermoresponsive Polymers
  • 3.2 - pH/Ionic-Responsive Polymers
  • 3.3 - Multiresponsive Polymers
  • 4 - Synthesis of Microgels and Nanogels
  • 4.1 - Microgels Formed by Homogeneous Nucleation and Polymerization
  • 4.1.1 - Emulsion Polymerization
  • 4.1.2 - Core-Shell Microgels
  • 4.2 - Microgels Formed by Emulsification
  • 4.2.1 - Water-in-Oil (W/O) Heterogeneous Emulsion Methods
  • 4.2.1.1 Precipitation polymerization
  • 4.2.1.2 - Inverse (mini) emulsion polymerization
  • 4.2.1.3 - Inverse microemulsion polymerization
  • 4.2.1.4 - Dispersion polymerization
  • 4.2.1.5 - Membrane emulsification
  • 4.2.1.6 - Heterogeneous controlled/living radical polymerization
  • 4.3 - Microgels From Polymer Complexation
  • 4.4 - Preparation of Nanogels From Macroscale Gels
  • 4.5 - Nanohybrid Microgels (Nanoparticle-Filled Microgels)
  • 4.6 - Physical-Based Methods for Micro/Nanogel Fabrication
  • 4.6.1 Photolithographic Techniques
  • 4.6.2 Micromolding Method
  • 4.6.3 Microfluidic and Droplet Formation
  • 5 - Applications in Cancer Therapy
  • 5.1 - Micro/Nanogel for Cancer Applications
  • 5.2 - Implementation of Micro/Nanogels for Cancer Therapy
  • 5.3 - Chemotherapy
  • 5.4 - Radiation Therapy
  • 5.5 - Immunotherapy
  • 5.6 - Hyperthermia Cancer Therapy
  • 5.7 - Photodynamic Therapy
  • 6 - Conclusions
  • References
  • 27 - Multifunctional Magnetic Liposomes for Cancer Imaging and Therapeutic Applications
  • 1 - Introduction
  • 2 - Chronological Developmental Stages of Cancer Therapeutics
  • 3 - Cancer Imaging-A Crucial Diagnosis Method
  • 4 - Overview of the Different Magnetic Nanostructures Used in Cancer Theragnostic Applications
  • 5 - Cancer Targeting
  • 5.1 - Passive Targeting: Enhanced Permeability and Retention Effect
  • 5.2 - Active Targeting
  • 6 - Magnetic Liposomes and Their Applications in Nanomedicines
  • 6.1 - MRI-Based Tumor Imaging
  • 6.2 - Cancer Hyperthermia
  • 6.3 - Magnetic Drug/Gene Targeting for Cancer Therapy
  • 6.4 - Combined Hyperthermia and Drug Delivery
  • 6.5 - Combined Cancer Imaging and Therapy
  • 7 - Stimuli-Responsive Release of Anticancer Agents From Magnetic Liposomes
  • 7.1 - Exogenous Stimuli-Responsive Systems
  • 7.1.1 - Temperature-Responsive Systems
  • 7.1.2 - Ultrasound-Responsive Systems
  • 7.1.3 - Light-Responsive Systems
  • 7.2 - Endogenous Stimuli-Responsive Systems
  • 7.2.1 - pH-Sensitive Systems
  • 7.2.2 - Enzyme-Sensitive Systems
  • 7.2.3 - Redox Potential-Sensitive Systems
  • 8 - Magnetic Liposomes for Overcoming Multidrug Resistance in Tumors
  • 8.1 - Multidrug Resistant Tumors
  • 8.2 - The Mechanism of Multiple Drug-Resistant Tumors
  • 8.2.1 - Membrane Transporter Protein-Based MDR
  • 8.2.2 - Nonmembrane Transporter Protein-Based MDR
  • 8.3 - Various Available Methods to Treat MDR
  • 8.4 - Prospective Strategies to Overcome Multidrug Resistance
  • 8.4.1 - Modification of Chemotherapy Regimens
  • 8.4.2 - Use of RNAi for Silencing MDR-Associated Genes
  • 8.4.3 - Use of Immunotherapeutics Against P-gp
  • 8.4.4 - Use of Nanotechnology-Based Formulations and Nanomedicine Approaches to Overcome MDR
  • 8.5 - Why Magnetic Liposomes for MDR?
  • 9 - Biocompatibility and Toxicity Issues
  • 10 - Current Status and Future Prospects
  • 11 - Challenges Encountered
  • 12 - Conclusions
  • Acknowledgments
  • References
  • 28 - The Chemotherapeutic Potential of Gold Nanoparticles Against Human Carcinomas: A Review
  • 1 - Introduction
  • 1.1 - Cancer
  • 1.2 - Chemotherapy
  • 1.3 - Current Limitations of Chemotherapy
  • 2 - Nanoparticles
  • 3 - Green Synthesis
  • 3.1 - One-Pot Green Synthesis Technique
  • 3.2 - Nanoparticles' Characterization
  • 4 - M. oleifera Leaves and Flowers
  • 5 - Gold Nanoparticles
  • 6 - Gold Nanoparticles in Chemotherapy
  • 7 - Potential Targets for Chemotherapy
  • 7.1 - Oncogenes
  • 7.2 - Tumor-Suppressor Genes
  • 7.3 - Cell Cycle
  • 7.4 - Apoptosis
  • 7.5 - Alternate Splicing
  • 7.6 - Cancer Stem Cells
  • 8 - Conclusions and Future Prospects
  • Acknowledgments
  • References
  • 29 - Nanotherapeutic Platforms for Cancer Treatment: From Preclinical Development to Clinical Application
  • 1 - Cancer
  • 2 - Nanocarriers
  • 3 - Mechanisms of Targeted Delivery of Nanocarriers
  • 3.1 - Passive Targeting
  • 3.1.1 - Enhanced Permeation and Retention Effect
  • 3.1.2 - Tumor Microenvironment
  • 3.2 - Active Targeting
  • 3.3 - Triggered Targeting (Stimuli-Sensitive Nanocarriers for Combination Cancer Therapy)
  • 4 - Nanocarriers for Cancer Therapy in Clinical Development
  • 4.1 - Polymer or Lipid Therapeutics
  • 4.1.1 - Polymeric-Drug Conjugates
  • 4.1.2 - Lipid-Drug Conjugates
  • 4.2 - Particulate Drug Nanocarriers
  • 4.2.1 - Lipid-Based Nanocarriers: Liposomes
  • 4.2.2 - Polymeric Nanoparticles
  • 4.2.3 - Polymeric Micelles
  • 4.2.4 - Inorganic Nanoparticles for Cancer Therapy (Theranostic Applications)
  • 5 - Ligand-Based Active Targeting in Preclinical Development
  • 5.1 - Antibody-Based Targeting
  • 5.1.1 - Epidermal Growth Factor Receptor
  • 5.1.2 - Human Epidermal Growth Factor Receptor 2
  • 5.1.3 - Vascular Endothelial Growth Factor Receptor
  • 5.1.4 - Prostate-Specific Membrane Antigen
  • 5.2 - Transferrin-Based Targeting
  • 5.3 - Folate-Based Targeting
  • 5.4 - Hyaluronic Acid-Based Targeting
  • 5.5 - Biotin-Based Targeting
  • 5.6 - RGD Peptide-Based Targeting
  • 5.7 - Aptamers
  • 5.8 - Other Peptide Sequences for Active Targeting in Cancer Therapy
  • 6 - Concluding Remarks and Future Perspectives
  • References
  • 30 - The Scientometric Overview in Cancer Targeting
  • 1 - Overview
  • 1.1 - Issues
  • 1.2 - Methodology
  • 1.3 - Cancer Research-Overview
  • 1.4 - Nanomaterials Research-Overview
  • 1.5 - Research on the Anticancer Nanobiomaterials-Overview
  • 2 - The Nanoparticle Anticancer Nanobiomaterials
  • 2.1 - Overview
  • 2.2 - The Most-Cited Papers in Nanoparticle Anticancer Nanobiomaterials
  • 3 - The Other Anticancer Nanobiomaterials
  • 3.1 - Overview
  • 3.2 - The Most-Cited Papers in Other Anticancer Nanobiomaterials
  • 3.2.1 - Nanostructures
  • 3.2.2 - Quantum Dots (Nanocrystals)
  • 3.2.3 - Graphene
  • 3.2.4 - Carbon Nanotubes
  • 4 - Conclusions
  • References
  • Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok