Advances in Manufacturing Engineering and Materials

Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), 18-22 June, 2018, Nový Smokovec, Slovakia
 
 
Springer (Verlag)
  • erschienen am 14. September 2018
  • |
  • XIV, 577 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-99353-9 (ISBN)
 

This book reports on cutting-edge research and technologies in the field of advanced manufacturing and materials, with a special emphasis on unconventional machining process, rapid prototyping and biomaterials. Based on the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), held in Nový Smokovec, Slovakia on 18-22 June 2018, it covers advances in various disciplines, which are expected to increase the industry's competitiveness with regard to sustainable development and preservation of the environment and natural resources. Condition monitoring, industrial automation, and diverse fabrication processes such as welding, casting and molding, as well as tribology and bioengineering, are just a few of the topics discussed in the book's wealth of authoritative contributions.


1st ed. 2019
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
370 s/w Abbildungen
  • 158,02 MB
978-3-319-99353-9 (9783319993539)
10.1007/978-3-319-99353-9
weitere Ausgaben werden ermittelt
1 - Preface [Seite 6]
2 - Contents [Seite 9]
3 - Invited Papers [Seite 15]
4 - Study Programs in STEM Field in Eastern European Countries vs. Brain Drain [Seite 16]
4.1 - Abstract [Seite 16]
4.2 - 1 Introduction [Seite 16]
4.2.1 - 1.1 Why Is STEM Important? [Seite 16]
4.3 - 2 The Role and Responsibility of the Government and the Academic Community [Seite 18]
4.3.1 - 2.1 Investment to R&D [Seite 18]
4.3.2 - 2.2 Correlation Between Scientific Potential and GDP on the Example of Croatia [Seite 20]
4.4 - 3 Conclusions [Seite 22]
4.5 - References [Seite 23]
5 - Manufacturing in Times of Digital Business and Industry 4.0 - The Industrial Internet of Things Not Only Changes the Worldof Manufacturing [Seite 24]
5.1 - Abstract [Seite 24]
5.2 - 1 Introduction [Seite 24]
5.3 - 2 IoT Impact on Manufacturing Ecosystem [Seite 25]
5.3.1 - 2.1 Production Logistics [Seite 25]
5.3.2 - 2.2 Manufacturing [Seite 26]
5.3.3 - 2.3 Distributed Manufacturing [Seite 26]
5.3.4 - 2.4 Quality Management and Predictive Maintenance [Seite 26]
5.4 - 3 Product Related Aspects [Seite 28]
5.5 - 4 Requirements [Seite 28]
5.6 - 5 Conclusion and Future Scope [Seite 29]
5.7 - References [Seite 30]
6 - A New Method for Gear Chamfering [Seite 31]
6.1 - Abstract [Seite 31]
6.2 - 1 Initial Situation and Formation of Burr [Seite 31]
6.3 - 2 Known Processes for Deburring and Gear Chamfering [Seite 32]
6.4 - 3 The New Method for Gear Chamfering [Seite 35]
6.5 - 4 Conclusions [Seite 38]
6.6 - Acknowledgments [Seite 39]
6.7 - References [Seite 39]
7 - Water Jet Technology Session [Seite 40]
8 - New Approach of Recycling of Abrasives for Water Jet Cutting [Seite 41]
8.1 - Abstract [Seite 41]
8.2 - 1 Introduction [Seite 41]
8.3 - 2 Abrasive Waste Standards [Seite 43]
8.4 - 3 Recycling System [Seite 44]
8.5 - 4 Conclusion [Seite 46]
8.6 - References [Seite 47]
9 - The Use of Areal Parameters for the Analysis of the Surface Machined Using the Abrasive Waterjet Technology [Seite 48]
9.1 - Abstract [Seite 48]
9.2 - 1 Introduction [Seite 48]
9.3 - 2 Standardised Parameters [Seite 49]
9.3.1 - 2.1 Amplitude Parameters of Profile [Seite 49]
9.3.2 - 2.2 Amplitude Parameters of Area [Seite 50]
9.4 - 3 Experimental Setting [Seite 50]
9.5 - 4 Methodology of Measurement [Seite 50]
9.6 - 5 Results and Discussion [Seite 52]
9.7 - 6 Conclusion [Seite 55]
9.8 - Acknowledgments [Seite 55]
9.9 - References [Seite 55]
10 - Research on Water Jet Cutting of Polymer Composites Based on Epoxy/Waste Fibres from Coconut Processing [Seite 57]
10.1 - Abstract [Seite 57]
10.2 - 1 Introduction [Seite 57]
10.3 - 2 Methodology [Seite 58]
10.4 - 3 Results and Discussion [Seite 60]
10.5 - 4 Conclusions [Seite 64]
10.6 - Acknowledgement [Seite 64]
10.7 - References [Seite 64]
11 - Recent Developments in Pulsating Water Jets [Seite 66]
11.1 - Abstract [Seite 66]
11.2 - 1 Introduction [Seite 66]
11.3 - 2 Background [Seite 67]
11.4 - 3 Experimental Procedure [Seite 70]
11.5 - 4 Results and Discussion [Seite 71]
11.6 - 5 Conclusion [Seite 73]
11.7 - Acknowledgement [Seite 74]
11.8 - References [Seite 74]
12 - Investigation on Pulsating Liquid Jet with Physiological Saline on Aluminium Surface [Seite 75]
12.1 - Abstract [Seite 75]
12.2 - 1 Introduction [Seite 75]
12.3 - 2 Material and Method [Seite 77]
12.4 - 3 Result and Discussion [Seite 79]
12.5 - 4 Conclusion [Seite 81]
12.6 - References [Seite 82]
13 - Parametric Study During Abrasive Water Jet Turning of Hybrid Metal Matrix Composite [Seite 84]
13.1 - Abstract [Seite 84]
13.2 - 1 Introduction [Seite 84]
13.3 - 2 Experimental Procedure [Seite 86]
13.4 - 3 Result and Discussion [Seite 88]
13.5 - 4 Conclusion [Seite 94]
13.6 - References [Seite 94]
14 - Effect of Frequency Change During Pulsed Waterjet Interaction with Stainless Steel [Seite 97]
14.1 - Abstract [Seite 97]
14.2 - 1 Introduction [Seite 98]
14.3 - 2 Materials and Methods [Seite 99]
14.4 - 3 Results and Discussion [Seite 101]
14.4.1 - 3.1 Surface Erosion [Seite 101]
14.4.2 - 3.2 Microstructural Topography [Seite 103]
14.4.3 - 3.3 Micro Hardness Measurements [Seite 104]
14.5 - 4 Conclusion [Seite 106]
14.6 - Acknowledgements [Seite 107]
14.7 - 0 [Seite 107]
14.8 - References [Seite 107]
15 - Microstructure, Properties and Damage Mechanisms by Water Jet Cutting of TiB2-Ti Cermets Prepared by SPS [Seite 109]
15.1 - Abstract [Seite 109]
15.2 - 1 Introduction [Seite 109]
15.3 - 2 Experimental Material and Methodology [Seite 110]
15.4 - 3 Results and Discussion [Seite 111]
15.5 - 4 Conclusions [Seite 115]
15.6 - Acknowledgement [Seite 116]
15.7 - References [Seite 116]
16 - Investigation on Feed Rate Influence on Surface Quality in Abrasive Water Jet Cutting of Composite Materials, Monitoring Acoustic Emissions [Seite 117]
16.1 - Abstract [Seite 117]
16.2 - 1 Introduction [Seite 117]
16.3 - 2 Experimental Procedure [Seite 118]
16.4 - 3 Results and Discussions [Seite 120]
16.4.1 - 3.1 Analysis of the Signal [Seite 120]
16.4.2 - 3.2 Analysis of the Surface Roughness Using AE Signal [Seite 121]
16.5 - 4 Conclusions [Seite 123]
16.6 - Acknowledgments [Seite 124]
16.7 - References [Seite 124]
17 - Comparison of Non-destructive Sensing Methods on Surface Created by Waterjet Technology [Seite 126]
17.1 - Abstract [Seite 126]
17.2 - 1 Introduction [Seite 126]
17.3 - 2 Experimental Setting [Seite 127]
17.4 - 3 Methodology of Measurement [Seite 128]
17.4.1 - 3.1 Optical Profilometer MicroProf FRT [Seite 128]
17.4.2 - 3.2 Digital Microscope VHX-5100 [Seite 128]
17.4.3 - 3.3 X-Ray CT [Seite 129]
17.4.4 - 3.4 Results and Discussion [Seite 131]
17.5 - 4 Conclusion [Seite 133]
17.6 - Acknowledgments [Seite 134]
17.7 - References [Seite 134]
18 - Investigation of Limestone Cutting Efficiency by the Abrasive Water Suspension Jet [Seite 136]
18.1 - Abstract [Seite 136]
18.2 - 1 Introduction [Seite 136]
18.3 - 2 Materials and Method [Seite 137]
18.3.1 - 2.1 Abrasive Material [Seite 137]
18.3.2 - 2.2 Treatment Material [Seite 137]
18.3.3 - 2.3 Test Rig [Seite 138]
18.3.4 - 2.4 Test Method [Seite 139]
18.4 - 3 Results and Discussion [Seite 141]
18.5 - 4 Conclusions [Seite 145]
18.6 - References [Seite 145]
19 - Erosion Test with High-speed Water Jet Applied on Surface of Concrete Treated with Solution of Modified Lithium Silicates [Seite 147]
19.1 - Abstract [Seite 147]
19.2 - 1 Introduction [Seite 147]
19.3 - 2 Experimental Set-up and Procedure [Seite 148]
19.3.1 - 2.1 Materials [Seite 148]
19.3.2 - 2.2 Erosion Test Method [Seite 149]
19.3.3 - 2.3 Evaluation of Erosion [Seite 149]
19.4 - 3 Experimental Results and Discussion [Seite 151]
19.4.1 - 3.1 Average Maximum Depth of Erosion [Seite 151]
19.4.2 - 3.2 Volumetric Erosion Rate [Seite 153]
19.5 - 4 Conclusion [Seite 154]
19.6 - Acknowledgement [Seite 154]
19.7 - References [Seite 154]
20 - Analysis of Micro Continuous Water Jet Based on Numerical Modelling and Flow Monitoring [Seite 156]
20.1 - Abstract [Seite 156]
20.2 - 1 Introduction [Seite 156]
20.3 - 2 Methods [Seite 157]
20.3.1 - 2.1 Scanning of Nozzle Geometry Using Micro X-Ray Computed Tomography [Seite 157]
20.3.2 - 2.2 CFD Modelling of Water Flow Inside Nozzle [Seite 159]
20.3.3 - 2.3 Optical Diagnostic Techniques for Micro Continuous Water Jet Visualization [Seite 160]
20.4 - 3 Experiment [Seite 160]
20.5 - 4 Results and Discussion [Seite 163]
20.6 - 5 Conclusion [Seite 165]
20.7 - Acknowledgements [Seite 166]
20.8 - References [Seite 166]
21 - An Acoustic Emission Study of Rock Disintegration by Pulsating Water-Jet [Seite 168]
21.1 - Abstract [Seite 168]
21.2 - 1 Introduction [Seite 168]
21.3 - 2 Materials and Method [Seite 170]
21.4 - 3 Result and Discussion [Seite 170]
21.5 - 4 Conclusion [Seite 173]
21.6 - Acknowledgements [Seite 173]
21.7 - References [Seite 174]
22 - Evaluation of Possibility of AISI 304 Stainless Steel Mechanical Surface Treatment with Ultrasonically Enhanced Pulsating Water Jet [Seite 175]
22.1 - Abstract [Seite 175]
22.2 - 1 Introduction [Seite 175]
22.2.1 - 1.1 Water Jet Technology [Seite 175]
22.2.2 - 1.2 Mechanical Surface Treatment [Seite 176]
22.2.3 - 1.3 Ultrasonically Enhanced Pulsating Water Jet [Seite 176]
22.3 - 2 Experimental Procedure [Seite 178]
22.4 - 3 Results [Seite 179]
22.4.1 - 3.1 Surface Topography Evaluation [Seite 179]
22.4.2 - 3.2 Evaluation of Microstructure in Transverse Cut [Seite 179]
22.4.3 - 3.3 Evaluation of Microhardness in Transverse Cut [Seite 181]
22.5 - 4 Conclusions [Seite 181]
22.6 - Acknowledgement [Seite 182]
22.7 - References [Seite 182]
23 - Non-traditional Machining of Inconel 600 Material [Seite 185]
23.1 - Abstract [Seite 185]
23.2 - 1 Introduction [Seite 185]
23.3 - 2 Materials and Methods [Seite 186]
23.4 - 3 Results and Discussions [Seite 188]
23.5 - 4 Conclusions [Seite 190]
23.6 - Acknowledgment [Seite 190]
23.7 - References [Seite 190]
24 - (Un)conventional Technology Session [Seite 192]
25 - Mapping Requirements and Roadmap Definition for Introducing I 4.0in SME Environment [Seite 193]
25.1 - Abstract [Seite 193]
25.2 - 1 Introduction [Seite 193]
25.3 - 2 Related Works [Seite 194]
25.4 - 3 Methodological Framework [Seite 196]
25.4.1 - 3.1 Creation of the Questionnaire [Seite 196]
25.4.2 - 3.2 Mapping of the Requirements [Seite 196]
25.4.3 - 3.3 Results Processing [Seite 196]
25.5 - 4 Description of Obtained Results [Seite 200]
25.6 - 5 Conclusions [Seite 202]
25.7 - Acknowledgement [Seite 202]
25.8 - References [Seite 203]
26 - Dimensional Characterization of Prosthesis Bearings for Tribological Modelling [Seite 205]
26.1 - Abstract [Seite 205]
26.2 - 1 Introduction [Seite 205]
26.3 - 2 Materials and Methods [Seite 207]
26.3.1 - 2.1 Shape Analysis [Seite 207]
26.3.2 - 2.2 Topographical Analysis [Seite 208]
26.4 - 3 Results [Seite 208]
26.5 - 4 Discussion [Seite 211]
26.6 - 5 Conclusions [Seite 212]
26.7 - Acknowledgements [Seite 212]
26.8 - References [Seite 213]
27 - Accelerated Method of Cutting Tool Quality Estimation During Milling Process of Inconel 718 Alloy [Seite 215]
27.1 - Abstract [Seite 215]
27.2 - 1 Introduction [Seite 215]
27.3 - 2 Materials and Methods [Seite 217]
27.3.1 - 2.1 Description of the Proposed Method [Seite 217]
27.3.2 - 2.2 Test Stand and Experimental Conditions [Seite 218]
27.4 - 3 Results and Discussion [Seite 219]
27.4.1 - 3.1 Development of Tool Wear Model [Seite 219]
27.4.2 - 3.2 Results of Optimization Process and Comparison of Tool Quality Between the Three Different Cutting Tools [Seite 220]
27.5 - 4 Conclusions [Seite 222]
27.6 - Acknowledgements [Seite 222]
27.7 - References [Seite 222]
28 - An Investigation on Tool Flank Wear Using Alumina/MoS2 Hybrid Nanofluid in Turning Operation [Seite 223]
28.1 - Abstract [Seite 223]
28.2 - 1 Introduction [Seite 223]
28.3 - 2 Materials and Method [Seite 224]
28.4 - 3 Result and Discussion [Seite 225]
28.4.1 - 3.1 Tribological Testing of Nanofluids [Seite 225]
28.4.2 - 3.2 Machining with Nanofluids [Seite 226]
28.5 - 4 Conclusion [Seite 228]
28.6 - References [Seite 229]
29 - Additive Printing of Gold Nanoparticles on Paper Substrate Through Office Ink-Jet Printer [Seite 230]
29.1 - Abstract [Seite 230]
29.2 - 1 Introduction [Seite 231]
29.3 - 2 Materials and Methods [Seite 231]
29.3.1 - 2.1 USP Synthesis of AuNPs [Seite 232]
29.3.2 - 2.2 Characterization of AuNPs [Seite 232]
29.4 - 3 Results and Discussion [Seite 234]
29.5 - 4 Conclusions [Seite 236]
29.6 - Acknowledgement [Seite 237]
29.7 - References [Seite 237]
30 - Preliminary Study on Staggered Herringbone Micromixer Design Suitable for Micro EDM Milling [Seite 239]
30.1 - Abstract [Seite 239]
30.2 - 1 Introduction [Seite 239]
30.3 - 2 Materials and Methods [Seite 241]
30.3.1 - 2.1 SHM Geometry [Seite 241]
30.3.2 - 2.2 Micro EDM Milling [Seite 241]
30.3.3 - 2.3 Technological Model of Micro EDM Milling [Seite 242]
30.3.4 - 2.4 Simulation of SHM Mixing Performance [Seite 243]
30.3.5 - 2.5 SHM Design Optimization Methodology [Seite 244]
30.4 - 3 Results and Discussion [Seite 244]
30.5 - 4 Conclusions [Seite 245]
30.6 - Acknowledgments [Seite 246]
30.7 - References [Seite 246]
31 - Experimental Analysis of the Cutting Force Components in Laser-Assisted Turning of Ti6Al4V [Seite 247]
31.1 - Abstract [Seite 247]
31.2 - 1 Introduction [Seite 247]
31.3 - 2 Experiment Details [Seite 249]
31.3.1 - 2.1 The Test Stand [Seite 249]
31.3.2 - 2.2 Research Condition [Seite 249]
31.4 - 3 Results and Discussion [Seite 250]
31.5 - 4 Conclusions [Seite 254]
31.6 - Acknowledgements [Seite 255]
31.7 - References [Seite 255]
32 - Critical Failure Analysis of Lower Grinding Ring of Ball and Race Mill [Seite 256]
32.1 - Abstract [Seite 256]
32.2 - 1 Introduction [Seite 256]
32.3 - 2 Description of Lower Crushing Ring [Seite 258]
32.4 - 3 Summary of Failures and Methodology [Seite 259]
32.5 - 4 Results and Discussion [Seite 260]
32.5.1 - 4.1 Chemical Composition [Seite 261]
32.5.2 - 4.2 Microstructure Examination [Seite 262]
32.5.3 - 4.3 Evaluation of Hardness [Seite 262]
32.5.4 - 4.4 Analysis of Erection Process [Seite 262]
32.5.5 - 4.5 Analysis of Operational Parameters [Seite 262]
32.6 - 5 Conclusions [Seite 262]
32.7 - References [Seite 263]
33 - The Influence of the Application of EP Additive in the Minimum Quantity Cooling Lubrication Method on the Tool Wear and Surface Roughness in the Process of Turning316L Steel [Seite 264]
33.1 - Abstract [Seite 264]
33.2 - 1 Introduction [Seite 265]
33.3 - 2 Experimental Procedure [Seite 266]
33.4 - 3 Experimental Results and Discussion [Seite 267]
33.5 - 4 Conclusion [Seite 271]
33.6 - References [Seite 271]
34 - Time-Dependent Feed Force Modelling to Apply Feed Rate Strategies in the Drilling of Unsupported CFRP-Structures [Seite 274]
34.1 - Abstract [Seite 274]
34.2 - 1 Introduction [Seite 274]
34.2.1 - 1.1 Customized Feed Rate Strategies with Regard to the Clamping Situation [Seite 274]
34.2.2 - 1.2 State of the Art in the Drilling of Flexible Composite Structures [Seite 275]
34.2.3 - 1.3 Research Concept for the Application of Customized Feed Rate Strategies [Seite 277]
34.3 - 2 Materials and Methods [Seite 277]
34.3.1 - 2.1 Summary of Materials, Tools and Measurement Equipment [Seite 277]
34.3.2 - 2.2 Description of the Mechanistic Modelling Approach [Seite 279]
34.3.3 - 2.3 Determination of the Specific Feed Forces [Seite 281]
34.4 - 3 Results and Discussion [Seite 283]
34.4.1 - 3.1 Representation of the Threshold Area for Unsupported Drilling with M21/T800S [Seite 283]
34.4.2 - 3.2 Evaluation of the Simulated Feed Forces and the Processing Time [Seite 284]
34.4.3 - 3.3 Application of Feed Rate Strategies for Unsupported CFRP-Structures [Seite 286]
34.5 - 4 Conclusions and Future Scope [Seite 288]
34.6 - References [Seite 289]
35 - Recognition of Assembly Parts by Convolutional Neural Networks [Seite 291]
35.1 - Abstract [Seite 291]
35.2 - 1 Introduction to Augmented Reality and Deep Learning in Industrial Tasks [Seite 291]
35.3 - 2 Assembly Used for Experiments and Teaching Data [Seite 292]
35.4 - 3 Comparison of Standard Image Processing to CNN [Seite 293]
35.4.1 - 3.1 Standard Image Processing Algorithm [Seite 293]
35.4.2 - 3.2 Features and Part Detection by Deep Neural Networks [Seite 294]
35.4.3 - 3.3 Comparison of Deep Neural Networks and Standard Image Processing [Seite 295]
35.5 - 4 Implementation to Experimental Device (SW/HW) [Seite 296]
35.6 - 5 Experimental Results for Transfer Learning of Selected Models [Seite 297]
35.7 - 6 Conclusion [Seite 298]
35.8 - Acknowledgement [Seite 298]
35.9 - References [Seite 298]
36 - The Use of Technology Local Heating by Laser for Turning of Difficult to Machine Materials [Seite 300]
36.1 - Abstract [Seite 300]
36.2 - 1 Introduction [Seite 300]
36.3 - 2 Machining with Preheating [Seite 300]
36.3.1 - 2.1 Laser-Assisted Turning [Seite 301]
36.3.2 - 2.2 Laser-Assisted Turning of Chromium Alloy [Seite 303]
36.4 - 3 Proposal to Technology of Local Lase Heating for Machining [Seite 303]
36.4.1 - 3.1 Describe of Existing Technological Process [Seite 303]
36.4.2 - 3.2 Produced Part [Seite 304]
36.4.3 - 3.3 Machines [Seite 304]
36.4.4 - 3.4 Cutting Conditions [Seite 305]
36.5 - 4 Technical and Economical Evaluation [Seite 306]
36.6 - 5 Conclusion [Seite 307]
36.7 - Acknowledgement [Seite 308]
36.8 - References [Seite 308]
37 - Contributions to the Development of an Ontology in Logistics of Manufacturing [Seite 309]
37.1 - Abstract [Seite 309]
37.2 - 1 Introduction [Seite 309]
37.3 - 2 On the Ontology Aspects on Logistics Activities [Seite 311]
37.4 - 3 Approach [Seite 312]
37.5 - 4 Conclusions [Seite 315]
37.6 - References [Seite 315]
38 - Advanced Output Characteristics of Welding Power Source for Pulsed GMAW [Seite 317]
38.1 - Abstract [Seite 317]
38.2 - 1 Introduction [Seite 317]
38.3 - 2 Experimental Procedures [Seite 318]
38.4 - 3 Results and Discussion [Seite 318]
38.4.1 - 3.1 Standard Procedure to Determine Output Characteristic [Seite 318]
38.4.2 - 3.2 Output Characteristics Obtained in Second Test [Seite 320]
38.5 - 4 Conclusion [Seite 323]
38.6 - References [Seite 324]
39 - Investigation of the Effect of Johnson-Cook Constitutive Model Parameters on Results of the FEM Turning Simulation [Seite 325]
39.1 - Abstract [Seite 325]
39.2 - 1 Introduction [Seite 325]
39.3 - 2 Johnson-Cook Constitutive Model [Seite 326]
39.4 - 3 Input Data [Seite 326]
39.5 - 4 Simulation Results [Seite 327]
39.6 - 5 Summary and Conclusions [Seite 331]
39.7 - References [Seite 332]
40 - Comparative Analysis of Surface Finishing for Different Cutting Strategies of Parts Made from POM C [Seite 334]
40.1 - Abstract [Seite 334]
40.2 - 1 Introduction [Seite 334]
40.3 - 2 Experimental Procedure [Seite 335]
40.3.1 - 2.1 Experimental Design [Seite 335]
40.3.2 - 2.2 Equipment and Measurements [Seite 336]
40.4 - 3 Results and Discussions [Seite 337]
40.4.1 - 3.1 Dimensional Accuracy [Seite 337]
40.4.2 - 3.2 Shape Deviation [Seite 338]
40.4.3 - 3.3 Surface Roughness [Seite 338]
40.4.4 - 3.4 Surface Texture [Seite 340]
40.5 - 4 Conclusions [Seite 341]
40.6 - Acknowledgment [Seite 341]
40.7 - References [Seite 342]
41 - Investigation of the Effect of Process Parameters on Surface Roughness in EDM Machining of ORVAR® Supreme Die Steel [Seite 343]
41.1 - Abstract [Seite 343]
41.2 - 1 Introduction [Seite 343]
41.3 - 2 Experimental Setup [Seite 344]
41.4 - 3 Results and Discussion [Seite 345]
41.5 - 4 Conclusions [Seite 348]
41.6 - References [Seite 349]
42 - The Influence of EP/AW Addition in the MQL Method on the Parameters of Surface Geometrical Structure in the Process of Turning 316L Steel [Seite 351]
42.1 - Abstract [Seite 351]
42.2 - 1 Introduction [Seite 352]
42.3 - 2 Experimental Procedure [Seite 353]
42.4 - 3 Experimental Procedure [Seite 355]
42.5 - 4 Conclusion [Seite 358]
42.6 - References [Seite 359]
43 - Change of the Substrate Surface After Removal Multiple Plasma Spraying Layers [Seite 361]
43.1 - Abstract [Seite 361]
43.2 - 1 Introduction [Seite 361]
43.3 - 2 Materials and Methods [Seite 363]
43.3.1 - 2.1 Tested Materials [Seite 363]
43.3.2 - 2.2 Experimental Conditions [Seite 363]
43.4 - 3 Results and Discussion [Seite 366]
43.4.1 - 3.1 Duralumin [Seite 366]
43.4.2 - 3.2 Nickel [Seite 367]
43.4.3 - 3.3 Chromium Steel [Seite 368]
43.4.4 - 3.4 Hard Chrome [Seite 369]
43.5 - 4 Conclusions [Seite 370]
43.6 - Acknowledgments [Seite 370]
43.7 - References [Seite 371]
44 - Tool Wear Measurement in Single Point Incremental Forming [Seite 372]
44.1 - Abstract [Seite 372]
44.2 - 1 Introduction [Seite 372]
44.3 - 2 Experimental Instigation [Seite 374]
44.3.1 - 2.1 Forming Tool [Seite 374]
44.3.2 - 2.2 Experiment [Seite 375]
44.3.3 - 2.3 Tool Wear Measurement [Seite 375]
44.4 - 3 Statistical Analysis [Seite 378]
44.5 - 4 Result and Discussion [Seite 379]
44.6 - 5 Conclusion [Seite 379]
44.7 - References [Seite 380]
45 - Materials [Seite 382]
46 - Increasing Compressor Wheel Fatigue Life Through Residual Stress Generation [Seite 383]
46.1 - Abstract [Seite 383]
46.2 - 1 Introduction [Seite 383]
46.3 - 2 Rotating Cylinder: Generating Residual Stress [Seite 384]
46.3.1 - 2.1 Wheel 'Autofrettage' Process [Seite 384]
46.3.2 - 2.2 Theoretical Model [Seite 384]
46.3.3 - 2.3 Finite Element Analysis [Seite 386]
46.3.4 - 2.4 Material Model Approximation [Seite 387]
46.4 - 3 Wheel Analysis [Seite 388]
46.4.1 - 3.1 Example Compressor Wheel [Seite 388]
46.4.2 - 3.2 Finite Element Model [Seite 389]
46.4.3 - 3.3 Residual Stress Generated [Seite 389]
46.4.4 - 3.4 Impact of Residual Stress [Seite 391]
46.5 - 4 Designing with Residual Stress [Seite 391]
46.5.1 - 4.1 Approximate Theoretical Model [Seite 391]
46.5.2 - 4.2 Theoretical Model as a Design Tool [Seite 392]
46.6 - 5 Conclusions [Seite 393]
46.7 - References [Seite 393]
47 - Preliminary Study of Residual Stress Measurement Using Eddy Currents Phasor Angle [Seite 394]
47.1 - Abstract [Seite 394]
47.2 - 1 Introduction [Seite 394]
47.3 - 2 Experimental Methods [Seite 396]
47.3.1 - 2.1 Experimental Technique [Seite 396]
47.3.2 - 2.2 Experimental Procedure [Seite 397]
47.4 - 3 Results [Seite 401]
47.5 - 4 Conclusions [Seite 403]
47.6 - Acknowledgement [Seite 403]
47.7 - References [Seite 403]
48 - Forces and Process Dynamics in Profiling of AlCu4MgSi Aluminium Alloy [Seite 406]
48.1 - Abstract [Seite 406]
48.2 - 1 Introduction [Seite 406]
48.3 - 2 Experimental Procedure [Seite 407]
48.4 - 3 Research Results [Seite 408]
48.5 - 4 Conclusion [Seite 412]
48.6 - References [Seite 413]
49 - A Polyurethane/Carbon Black Composite Absorber for Low Frequency Waves [Seite 415]
49.1 - Abstract [Seite 415]
49.2 - 1 Introduction [Seite 415]
49.3 - 2 Material Characteristics and Experimental Setup [Seite 416]
49.3.1 - 2.1 Pu/CB Pigment Coating [Seite 416]
49.3.2 - 2.2 Contact Angle Measurements [Seite 416]
49.3.3 - 2.3 Experimental Set-up [Seite 417]
49.4 - 3 Results [Seite 419]
49.5 - 4 Conclusion [Seite 419]
49.6 - References [Seite 420]
50 - The Effect of Additional Shielding Gas on Properties and Erosion Resistance of High Chromium Hardfacing [Seite 421]
50.1 - Abstract [Seite 421]
50.2 - 1 Introduction [Seite 421]
50.3 - 2 Experimental Procedure [Seite 422]
50.4 - 3 Results and Discussion [Seite 423]
50.5 - 4 Conclusions [Seite 427]
50.6 - References [Seite 428]
51 - Analysis of the Legal Risk in the Scientific Experiment of the Machining of Magnesium Alloys [Seite 429]
51.1 - Abstract [Seite 429]
51.2 - 1 Introduction [Seite 429]
51.3 - 2 Risk of Legal Liability in the Experiment [Seite 430]
51.4 - 3 Challenges in Machining of Magnesium Alloys [Seite 432]
51.5 - 4 Analysis of Legal Risk [Seite 433]
51.6 - 5 Conclusions [Seite 437]
51.7 - References [Seite 437]
52 - Prediction of Tensile Failure Load for Maraging Steel Weldment by Acoustic Emission Technique [Seite 439]
52.1 - Abstract [Seite 439]
52.2 - 1 Introduction [Seite 440]
52.3 - 2 Experimental Test Set-Up [Seite 441]
52.3.1 - 2.1 AE Testing and Data Acquisition [Seite 442]
52.3.2 - 2.2 AE Amplitude Distribution [Seite 443]
52.4 - 3 Results and Discussion [Seite 445]
52.5 - 4 Conclusions [Seite 448]
52.6 - Acknowledgements [Seite 449]
52.7 - References [Seite 449]
53 - Measurements of the Friction Coefficient: Discussion on the Results in the Framework of the Time Series Analysis [Seite 451]
53.1 - Abstract [Seite 451]
53.2 - 1 Introduction [Seite 451]
53.3 - 2 Experimental Setup [Seite 452]
53.4 - 3 Methods [Seite 453]
53.5 - 4 Data Analysis and Results [Seite 456]
53.6 - 5 Conclusion [Seite 461]
53.7 - References [Seite 462]
54 - Experimental Description of the Aging of the Coconut Shell Powder/Epoxy Composite [Seite 464]
54.1 - Abstract [Seite 464]
54.2 - 1 Introduction [Seite 464]
54.3 - 2 Materials and Methods [Seite 465]
54.3.1 - 2.1 Filler and Matrix [Seite 465]
54.3.2 - 2.2 Tensile Strength of Composite Systems [Seite 466]
54.3.3 - 2.3 Tensile Shear Strength [Seite 466]
54.3.4 - 2.4 Degradation [Seite 466]
54.4 - 3 Results and Discussion [Seite 467]
54.5 - 4 Conclusions [Seite 471]
54.6 - Acknowledgements [Seite 471]
54.7 - References [Seite 471]
55 - Fluid Film Pressure Description in Finite Turbulent Lubricated Journal Bearings by Using the Warner's Theory [Seite 473]
55.1 - Abstract [Seite 473]
55.2 - 1 Introduction [Seite 473]
55.3 - 2 Theoretical Analysis [Seite 475]
55.4 - 3 Results [Seite 479]
55.5 - 4 Conclusions [Seite 481]
55.6 - References [Seite 482]
56 - Influence of Processing Parameters on Residual Stress in Injection Molded Parts [Seite 484]
56.1 - Abstract [Seite 484]
56.2 - 1 Introduction [Seite 484]
56.3 - 2 Simulation Research [Seite 485]
56.4 - 3 Results and Discussion [Seite 488]
56.5 - 4 Conclusions [Seite 491]
56.6 - References [Seite 491]
57 - Shape Memory Alloy (SMA) as a Potential Damper in Structural Vibration Control [Seite 493]
57.1 - Abstract [Seite 493]
57.2 - 1 Introduction [Seite 493]
57.3 - 2 Material and Method [Seite 494]
57.4 - 3 Results and Discussion [Seite 497]
57.5 - 4 Conclusions [Seite 498]
57.6 - Acknowledgement [Seite 499]
57.7 - References [Seite 499]
58 - Study of Cutting Tool Durability at a Short-Term Discontinuous Turning Test [Seite 501]
58.1 - Abstract [Seite 501]
58.2 - 1 Introduction [Seite 501]
58.3 - 2 Conditions of Experiments [Seite 503]
58.4 - 3 Results and Discussion [Seite 505]
58.5 - 4 Conclusion [Seite 508]
58.6 - Acknowledgement [Seite 508]
58.7 - References [Seite 508]
59 - Behavior of the Beam with a Lightweight Porous Structure in Its Core [Seite 510]
59.1 - Abstract [Seite 510]
59.2 - 1 Introduction [Seite 510]
59.3 - 2 State of the Art [Seite 511]
59.4 - 3 Research Conditions [Seite 512]
59.5 - 4 Results and Discussion [Seite 514]
59.6 - 5 Conclusion [Seite 517]
59.7 - Acknowledgment [Seite 517]
59.8 - References [Seite 517]
60 - Advanced Preparation of the NC Programs with Usage of Strategy Manager [Seite 519]
60.1 - Abstract [Seite 519]
60.2 - 1 Introduction [Seite 519]
60.3 - 2 Optimization of the Machining Processes [Seite 520]
60.4 - 3 Features and NC Strategies [Seite 520]
60.5 - 4 Application [Seite 523]
60.6 - 5 Conclusion [Seite 525]
60.7 - References [Seite 525]
61 - Modeling and Validation of Spindle Shaft Followed by Goal Driven Optimization [Seite 526]
61.1 - Abstract [Seite 526]
61.2 - 1 Introduction [Seite 526]
61.3 - 2 Spindle Bearing System [Seite 528]
61.4 - 3 Mathematical Modeling for Spindle Shaft [Seite 530]
61.4.1 - 3.1 Deflection of Spindle Axis Due to Bending [Seite 530]
61.4.2 - 3.2 Deflection of Spindle Axis Due to Compliance of Spindle Supports [Seite 532]
61.5 - 4 FEA Modeling and Validation of Mathematical Model [Seite 533]
61.6 - 5 Goal Driven Optimization (GDO) of Spindle Shaft Design [Seite 534]
61.7 - 6 Conclusions [Seite 537]
61.8 - References [Seite 538]
62 - Modeling and Simulation of Technological Factors in Bakery Industry [Seite 539]
62.1 - Abstract [Seite 539]
62.2 - 1 Introduction [Seite 539]
62.2.1 - 1.1 Bakery Industry [Seite 539]
62.2.2 - 1.2 Distribution Channels Used in the Bakery Industry [Seite 541]
62.3 - 2 Factors That Influence the Bakery Products Distribution [Seite 542]
62.4 - 3 Conclusions [Seite 544]
62.5 - 4 Research Directions [Seite 545]
62.6 - References [Seite 545]
63 - Numerical Study of Rapid Cooling of Injection Molds [Seite 547]
63.1 - Abstract [Seite 547]
63.2 - 1 Introduction [Seite 547]
63.3 - 2 Simulation Research [Seite 548]
63.3.1 - 2.1 Physical Model [Seite 548]
63.3.2 - 2.2 Governing Equations [Seite 549]
63.3.3 - 2.3 Parameter Definitions [Seite 550]
63.3.4 - 2.4 Boundary and Initial Conditions [Seite 550]
63.4 - 3 Results and Discussion [Seite 551]
63.5 - 4 Conclusions [Seite 553]
63.6 - References [Seite 554]
64 - Influence of Fill Imbalance on Pressure Drop in Injection Molding [Seite 556]
64.1 - Abstract [Seite 556]
64.2 - 1 Introduction [Seite 556]
64.3 - 2 Simulation Research [Seite 558]
64.4 - 3 Results and Discussion [Seite 559]
64.5 - 4 Conclusions [Seite 563]
64.6 - References [Seite 563]
65 - Assessment of the Production Reducer for Clamping the Drilling Tools [Seite 565]
65.1 - Abstract [Seite 565]
65.2 - 1 Introduction [Seite 565]
65.3 - 2 Select the Method of Production [Seite 566]
65.3.1 - 2.1 Material of Thin-Walled Reducer for Clamping Mandrel [Seite 566]
65.3.2 - 2.2 Technology of the Production of Thin-Walled Clamping Mandrel [Seite 567]
65.3.3 - 2.3 Measurement of Co-axial Alignment of Cylindrical Surfaces [Seite 571]
65.4 - 3 Discussion [Seite 573]
65.5 - 4 Conclusion [Seite 573]
65.6 - Acknowledgements [Seite 573]
65.7 - References [Seite 573]
66 - Evaluation of Damage of Almandine Garnet Grains by N2 Adsorption Method [Seite 575]
66.1 - Abstract [Seite 575]
66.2 - 1 Introduction [Seite 575]
66.3 - 2 Experimental Method [Seite 576]
66.4 - 3 Results and Discussion [Seite 576]
66.4.1 - 3.1 Properties of Natural Garnets for AWJ Technology [Seite 576]
66.4.2 - 3.2 N2 Adsorption and Desorption Isotherms [Seite 577]
66.4.3 - 3.3 Pore Structure Calculated from BJH Model [Seite 579]
66.5 - 4 Summary [Seite 581]
66.6 - Acknowledgement [Seite 581]
66.7 - References [Seite 582]
67 - Author Index [Seite 583]
Dewey Decimal Classfication (DDC)

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

213,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen