Compact Heat Exchangers

Selection, Design and Operation
 
 
Butterworth-Heinemann (Verlag)
  • 2. Auflage
  • |
  • erschienen am 26. September 2016
  • |
  • 502 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100306-0 (ISBN)
 

Compact Heat Exchangers: Selection, Design, and Operation, Second Edition, is fully revised to present the most recent and fundamental ideas and industrial concepts in compact heat exchanger technology. This complete reference compiles all aspects of theory, design rules, operational issues, and the most recent developments and technological advancements in compact heat exchangers.

New to this edition is the inclusion of micro, sintered, and porous passage description and data, electronic cooling, and an introduction to convective heat transfer fundamentals. New revised content provides up-to-date coverage of industrially available exchangers, recent fouling theories, and reactor types, with summaries of off-design performance and system effects and installations issues in, for example, automobiles and aircraft.

Hesselgreaves covers previously neglected approaches, such as the Second Law (of Thermodynamics), pioneered by Bejan and co-workers. The justification for this is that there is increasing interest in life-cycle and sustainable approaches to industrial activity as a whole, often involving exergy (Second Law) analysis. Heat exchangers, being fundamental components of energy and process systems, are both savers and spenders of energy, according to interpretation.

  • Contains revised content, covering industrially available exchangers, recent fouling theories, and reactor types
  • Includes useful comparisons throughout with conventional heat exchangers to emphasize the benefits of CPHE applications
  • Provides a thorough system view from commissioning, operation, maintenance, and design approaches to reduce fouling and fouling factors
  • Compiles all aspects of theory, design rules, operational issues, and the most recent developments and technological advancements in compact heat exchangers


John Hesselgreaves is an independent consultant in advanced heat exchanger products, and has 2 patents in the field. He has held positions as Lecturer and Honourary Research Fellow at Heriot- Watt University, UK
  • Englisch
  • Oxford
Elsevier Science
  • 30,18 MB
978-0-08-100306-0 (9780081003060)
0081003064 (0081003064)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Compact Heat Exchangers: Selection, Design and Operation
  • Copyright
  • Dedication
  • Contents
  • Foreword
  • Preface
  • References
  • Chapter 1: Introduction
  • 1.1. Historical and Recent Developments inCompact Heat Exchanger Technology
  • 1.2. Summary of Flow and Heat Transfer Fundamentals for Compact Surfaces
  • 1.2.1. Basics of Conduction
  • 1.2.2. Basics of Convection in a Fluid. Derivation and Significance of Nusselt number and Fanning Friction Factor
  • 1.2.2.1. External Flows
  • 1.2.2.2. Internal Flows
  • 1.2.3. Basic Aspects of Compactness
  • 1.2.3.1. Geometrical Aspects
  • 1.2.3.2. Heat Transfer Aspects of Compactness
  • 1.3. Scaling Laws for Heat Exchangers
  • 1.4. Size and Compactness
  • 1.5. The Relationship of Compactness and Enhancement
  • 1.6. The Function of Secondary and Tertiary Surfaces (Fins)
  • 1.6.1. Tertiary Surfaces
  • 1.7. Compactness and its Relationship to Enhanced Boiling Surfaces, Rib Roughnesses, Etc.
  • 1.8. Surface Optimisation
  • 1.9. Heat Exchanger Reactors
  • References
  • Chapter 2: Industrial Compact Exchangers
  • 2.1. Introduction
  • 2.2. The Plate-Fin Heat Exchanger (PFHE)
  • 2.2.1. The Brazed Aluminium PFHE
  • 2.2.1.1. Vacuum-Brazed Exchangers
  • 2.2.1.2. Dip Brazed and Solder-Bonded Exchangers
  • 2.2.1.3. The Brazed Stainless Steel/Titanium Heat Exchanger
  • 2.3. Tube-Fin Heat Exchangers
  • 2.4. Diffusion-Bonded Heat Exchangers
  • 2.4.1. The Printed Circuit Heat Exchanger (PCHE)
  • 2.4.2. The Marbond Heat Exchanger
  • 2.5. Welded Plate Heat Exchangers
  • 2.5.1. The Platular Heat Exchanger
  • 2.5.2. The Compabloc and Compaplate Heat Exchangers
  • 2.5.2.1. The Compabloc Heat Exchanger
  • 2.5.2.2. The Compaplate Wide Gap Welded Heat Exchanger
  • 2.5.3. The Packinox Welded Plate Heat Exchanger
  • 2.5.4. The Hybrid Heat Exchanger
  • 2.6. Plate and Frame Heat Exchangers (PHE) and Derivatives
  • 2.6.1. Plate and Frame Heat Exchangers (PHE)
  • 2.6.2. Brazed Plate Heat Exchangers
  • 2.6.3. Welded Plate Heat Exchanger (PHE Types)
  • 2.6.4. Welded Plate Pair Heat Exchanger
  • 2.6.5. Other Specialised PHE Types
  • 2.7. The Plate and Shell Heat Exchanger (PSHE)
  • 2.8. Spiral Heat Exchangers (SHEs)
  • 2.9. Compact Shell and Tube Heat Exchangers
  • 2.10. Polymer Exchangers
  • 2.10.1. Polymer Exchanger Developments
  • 2.11. Gas Turbine Recuperator Design Layouts
  • 2.12. Heat Exchanger Reactors
  • 2.12.1. The Marbond Heat Exchanger Reactor
  • 2.12.2. The Chart-Pak Heat Exchanger Reactor
  • 2.13. Surface Selection
  • 2.13.1. Process Exchangers
  • 2.14. Refrigeration Exchangers
  • 2.15. Automotive and Prime Mover Sector
  • 2.16. Aerospace Sector
  • References
  • Chapter 3: The Heat Exchanger as Part of a System: Exergetic (Second Law) Analysis
  • 3.1. Introduction
  • 3.2. Basic Principles of Exergy Analysis
  • 3.2.1. First and Second Law (Open Systems)
  • 3.2.2. Availability, Exergy, Lost Work
  • 3.2.3. Exergy
  • 3.2.4. Steady Flow Exergy Processes
  • 3.3. Application of Exergy Analysis to Heat Exchangers
  • 3.3.1. Basics of Entropy Generation
  • 3.4. Zero Pressure Drop
  • 3.4.1. Balanced Counterflow
  • 3.4.2. The Entropy Generation Paradox
  • 3.4.3. New Approach
  • 3.4.4. General Analysis for Exchangers With Flow Imbalance
  • 3.4.5. Unbalanced Counterflow
  • 3.4.6. Cocurrent (Parallel) Flow
  • 3.4.7. Condensing on One Side
  • 3.4.8. Evaporation on One Side
  • 3.5. Finite Pressure Drop
  • 3.5.1. Optimisation Based on Local Rate Equation
  • 3.5.2. Application of the Rate Equation to Balanced Counterflow
  • 3.6. Implications of the Entropy Minimisation
  • 3.6.1. Analysis for Selection and Design
  • 3.7. Application to Heat Exchanger Networks
  • References
  • Chapter 4: Surface Comparisons, Size, Shape and Weight Relationships
  • 4.1. Introduction
  • 4.2. Conventional Theory (the Core Mass Velocity Equation, and Geometrical Consequences)
  • 4.2.1. Heat Transfer
  • 4.2.2. Pressure Drop
  • 4.2.3. Combined Thermal and Pressure Drop Comparison
  • 4.2.4. Operating Parameter
  • 4.2.5. Size and Shape Relationships
  • 4.2.5.1. Face Area
  • 4.2.5.2. Volume
  • 4.2.5.3. Exchanger (Side) Weight
  • 4.2.5.4. Pumping Power
  • 4.3. Laminar Flow Analysis
  • 4.3.1. Heat Transfer
  • 4.3.2. Pressure Drop
  • 4.3.3. Combined Heat Transfer and Pressure Drop
  • 4.3.4. Size and Shape Relationships
  • 4.3.5. Pumping Power
  • 4.4. Comparison of Compact Surfaces
  • 4.5. Comparison of Conventional and Laminar Approaches
  • References
  • Chapter 5: Aspects of Flow and Convective Heat Transfer Fundamentals for Compact Surfaces
  • 5.1. Introductory Remarks
  • 5.2. Developing Steady Incompressible Flow Over a Flat Plate With Finite Pressure Drop: Boundary Layer Thicknesses and Th ...
  • 5.2.1. The Momentum Integral Equation and Its Relation to Friction Loss
  • 5.2.2. Developing Flow With Zero Pressure Drop: The Blasius Solution
  • 5.2.2.1. Skin Friction
  • 5.3. Heat Transfer Along a Flat Plate in Laminar Flow With Constant Plate Temperature: The Reynolds Analogy
  • 5.3.1. Prandtl Number Equal to Unity
  • 5.3.2. Flat Plate With Nonunity Prandtl Number
  • 5.3.3. Practical Applications of Flat Plate Flow, and Observations on Kays and London (1984) Data
  • 5.3.3.1. Offset Strip Fins (OSF)
  • 5.3.3.2. Louvred Fins
  • 5.4. Flow and Heat Transfer Over a Wedge
  • 5.4.1. Solution for the Velocity Boundary Layer
  • 5.4.2. Solution for the Thermal Boundary Layer in Wedge Flow
  • 5.4.3. Special Case of Transverse Laminar Flow Over Cylinders
  • 5.5. Transverse Flow Over an Elliptical Cylinder
  • 5.6. Other Tube/Fin Shapes
  • 5.7. Overview of Two-Dimensional Results, and Remarks on the Colburn Analogy for Turbulent Flows
  • 5.8. Observations on Three-Dimensional Flows
  • 5.8.1. Oblique Flow Over Tubular Elements
  • 5.8.2. Plate Heat Exchanger and Printed Circuit Heat Exchanger Surfaces
  • 5.8.3. The Use of Vortex Generators (vgs)
  • 5.8.4. Structured Surfaces Employing Three-Dimensional Flow
  • 5.9. Transition to Turbulence
  • 5.10. Internal Flows
  • References
  • Chapter 6: Surface Types and Correlations
  • 6.1. Introduction
  • 6.2. Ducts
  • 6.2.1. Laminar Flow
  • 6.2.2. Fully-Developed Laminar Flow
  • 6.2.3. Developing Laminar Flow (Entrance Region Effects)
  • 6.2.4. Triangular Ducts
  • 6.2.5. Semicircular Ducts
  • 6.3. Turbulent and Transitional Flow in Ducts
  • 6.3.1. Circular Duct: Fully-Developed and Developing Flow in Smooth Duct
  • 6.3.1.1. Friction Factor
  • Smooth Duct
  • Rough Duct
  • 6.3.1.2. Nusselt Number
  • Smooth Duct
  • Fully-developed, rough
  • 6.3.2. Transitional Reynolds Number Flow Regimes (Ducts of All Cross Sections)
  • 6.4. Plate Fin Surfaces
  • 6.4.1. Plain Fin (Rectangular, Triangular and Sine Section Shapes)
  • Laminar flow, fully-developed and developing.
  • Transitional and turbulent flow
  • Triangular Plain Fin
  • 6.4.2. Offset Strip Fin, OSF (Also Called Serrated Fin or Interrupted Fin)
  • 6.4.3. Wavy (Corrugated or Herringbone) Fin
  • 6.4.4. Perforated Fin
  • 6.4.5. Louvred Fin Surfaces
  • 6.4.6. Offset Convex Louvre Fin
  • 6.5. Air-Side Surfaces for Air Conditioning and Heat Pump Applications
  • 6.6. Pressed Plate Type Surfaces
  • 6.7. Plate and Shell Surfaces
  • 6.8. Other Plate-Type Surfaces (Welded Plates, Etc.)
  • 6.9. Printed Circuit Heat Exchanger (PCHE) Surfaces
  • 6.9.1. Straight Channels
  • 6.10. Micro Passages
  • 6.11. Sintered and Porous Surfaces
  • References
  • Chapter 7: Thermal Design
  • 7.1. Introduction
  • 7.2. Thermal Design: Form of Specification
  • 7.3. Basic Concepts and Initial Size Assessment
  • 7.3.1. The Effectiveness Method
  • 7.3.2. Inverse Relationships
  • 7.3.3. The LMTD Method
  • 7.3.3.1. The LMTD Design Method
  • 7.3.4. Overall Conductance
  • 7.3.5. Wall Temperature
  • 7.3.6. The Core Mass Velocity Equations
  • 7.3.7. Face Area, Volume and Aspect Ratio
  • 7.4. Details of the Design Process
  • 7.4.1. The Effect of Temperature-Dependent Fluid Properties
  • 7.4.2. Fin Efficiency and Surface Effectiveness
  • 7.4.3. Layer Stacking and Banking Factor
  • 7.4.4. Surface Optimisation of Plate-Fin Surfaces: Size and Weight Minimisation
  • 7.4.5. Entry and Exit Losses
  • 7.4.6. Thermal-Hydraulic Design of Headers and Distributors
  • 7.4.6.1. Principles of Selection
  • 7.4.6.2. Pressure Drop in Headers
  • 7.4.6.3. Other Forms of Distributor
  • 7.4.6.4. Friction Loss in Distributors
  • 7.4.6.5. Momentum Losses
  • 7.4.6.6. Heat Transfer in Distributors
  • 7.4.7. The Effect of Longitudinal Conduction
  • 7.4.7.1. Infinite Wall Conductivity
  • Analysis
  • 7.4.7.2. Finite Wall Conductivity
  • 7.4.7.3. Parallel Flow
  • 7.4.7.4. Crossflow
  • 7.4.7.5. Multipass Heat Exchangers
  • 7.4.8. Lateral Conduction
  • 7.4.9. The Effect of Nonuniformity of Manufacture of Heat Exchanger Passages
  • 7.5. Design for Two-Phase Flows
  • 7.5.1. Boiling
  • 7.5.2. Condensation
  • 7.5.3. Two-Phase Pressure Drop
  • 7.6. The Design Process
  • Stage 1: Scoping Size
  • Stage 2
  • 7.6.1. Final Block Sizes (All Configurations)
  • 7.7. Thermal Design for Heat Exchanger Reactors
  • 7.8. The Use of Computational Fluid Dynamics (CFD) in the Design and Development of Compact Heat Exchangers
  • 7.8.1. CFD Methods and Software Packages
  • 7.8.2. Examples of CFD in CHE Design, Development and Optimisation
  • 7.8.2.1. Flow Maldistribution
  • 7.8.2.2. Surface Thermal and Pressure Drop Analysis
  • 7.9. Mechanical Aspects of Design
  • 7.9.1. Pressure Containment
  • 7.9.2. Strength of Bonds
  • References
  • Chapter 8: Compact Heat Exchangers in Practice
  • 8.1. Introduction
  • 8.2. Selection and Installation
  • 8.3. Commissioning
  • 8.4. Operation
  • 8.5. Maintenance
  • 8.5.1. Maintenance-General Factors
  • 8.5.2. Maintenance-Fouling and Corrosion
  • 8.5.3. Crystallisation or Precipitation Fouling
  • 8.5.4. Particulate Fouling (Silting)
  • 8.5.5. Biological Fouling
  • 8.5.6. Corrosion Fouling
  • 8.5.7. Chemical Reaction Fouling
  • 8.5.8. Freezing or Solidification Fouling
  • 8.5.9. Heat Exchangers Designed to Handle Fouling
  • 8.5.10. Applications of Compact Heat Exchangers and Fouling Possibilities
  • 8.6. Fouling in Design
  • 8.6.1. Principles of Exchanger-Pumping System Interaction
  • 8.6.2. The Effect of Fouling and the Heat Exchanger Surface onThermal Performance
  • 8.6.3. An Approach to the Assessment of Fouling Factors
  • 8.7. The Future?
  • 8.7.1. The Worlds First Holistic Devices-And-Processes Design Platform for Process Intensification
  • References
  • Appendices
  • Appendix 1. Nomenclature
  • Appendix 2. Conversion Factors
  • Appendix 3. Dimensionless Groups
  • Appendix 4. Physical Properties
  • Sources and Acknowledgements of Property Data
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

136,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok