Microwave Polarizers, Power Dividers, Phase Shifters, Circulators, and Switches

 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 13. November 2018
  • |
  • 352 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-119-49008-1 (ISBN)
 

Discusses the fundamental principles of the design and development of microwave satellite switches utilized in military, commercial, space, and terrestrial communication

This book deals with important RF/microwave components such as switches and phase shifters, which are relevant to many RF/microwave applications. It provides the reader with fundamental principles of the operation of some basic ferrite control devices and explains their system uses. This in-depth exploration begins by reviewing traditional nonreciprocal components, such as circulators, and then proceeds to discuss the most recent advances.

This sequential approach connects theoretical and scientific characteristics of the devices listed in the title with practical understanding and implementation in the real world. Microwave Polarizers, Power Dividers, Phase Shifters, Circulators and Switches covers the full scope of the subject matter and serves as both an educational text and resource for practitioners. Among the many topics discussed are microwave switching, circular polarization, planar wye and equilateral triangle resonators, and many others.

  • Translates concepts and ideas fundamental to scientific knowledge into a more visual description
  • Describes a wide array of devices including waveguides, shifters, and circulators
  • Covers the use of finite element algorithms in design

Microwave Polarizers, Power Dividers, Phase Shifters, Circulators and Switches is an ideal reference for all practitioners and graduate students involved in this niche field.



JOSEPH HELSZAJN, PHD, is an international authority on non-reciprocal microwave circuits and devices. He has made a significant contribution to the characterization of the complex gyrator circuits and gain-bandwidth products of planar gyromagnetic resonators and other gyromagnetic devices. Professor Helszajn is a Fellow of the Institute of Electrical and Electronic Engineers (FIEEE), the City and Guilds Institute (FGCI), the Royal Society of Edinburgh (FRSE), and the Royal Academy of Engineering (FREng). He previously authored thirteen books, nine of which were published by Wiley.

weitere Ausgaben werden ermittelt
JOSEPH HELSZAJN, PHD, is an international authority on non-reciprocal microwave circuits and devices. He has made a significant contribution to the characterization of the complex gyrator circuits and gain-bandwidth products of planar gyromagnetic resonators and other gyromagnetic devices. Professor Helszajn is a Fellow of the Institute of Electrical and Electronic Engineers (FIEEE), the City and Guilds Institute (FGCI), the Royal Society of Edinburgh (FRSE), and the Royal Academy of Engineering (FREng). He previously authored thirteen books, nine of which were published by Wiley.
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgments
  • List of Contributors
  • Chapter 1 Microwave Switching Using Junction Circulators
  • 1.1 Microwave Switching Using Circulators
  • 1.2 The Operation of the Switched Junction Circulator
  • 1.3 The Turnstile Circulator
  • 1.4 Externally and Internally Latched Junction Circulators
  • 1.5 Standing Wave Solution of Resonators with Threefold Symmetry
  • 1.6 Magnetic Circuit Using Major Hysteresis Loop
  • 1.7 Display of Hysteresis Loop
  • 1.8 Switching Coefficient of Magnetization
  • 1.9 Magnetostatic Problem
  • 1.10 Multiwire Magnetostatic Problem
  • 1.11 Shape Factor of Cylindrical Resonator
  • Bibliography
  • Chapter 2 The Operation of Nonreciprocal Microwave Faraday Rotation Devices and Circulators
  • 2.1 Introduction
  • 2.2 Faraday Rotation
  • 2.3 Magnetic Variables of Faraday Rotation Devices
  • 2.4 The Gyrator Network
  • 2.5 Faraday Rotation Isolator
  • 2.6 Four-port Faraday Rotation Circulator
  • 2.7 Nonreciprocal Faraday Rotation-type Phase Shifter
  • 2.8 Coupled Wave Theory of Faraday Rotation Section
  • 2.9 The Partially Ferrite-filled Circular Waveguide
  • Bibliography
  • Chapter 3 Circular Polarization in Parallel Plate Waveguides
  • 3.1 Circular Polarization in Rectangular Waveguide
  • 3.2 Circular Polarization in Dielectric Loaded Parallel Plate Waveguide with Open Sidewalls
  • Bibliography
  • Chapter 4 Reciprocal Quarter-wave Plates in Circular Waveguides
  • 4.1 Quarter-wave Plate
  • 4.2 Coupled Mode Theory of Quarter-wave Plate
  • 4.3 Effective Waveguide Model of Quarter-wave Plate
  • 4.4 Phase Constants of Quarter-wave Plate Using the Cavity Method
  • 4.5 Variable Rotor Power Divider
  • Bibliography
  • Chapter 5 Nonreciprocal Ferrite Quarter-wave Plates
  • 5.1 Introduction
  • 5.2 Birefringence
  • 5.3 Nonreciprocal Quarter-wave Plate Using the Birefringence Effect
  • 5.4 Circulator Representation of Nonreciprocal Quarter-wave Plates
  • 5.5 Coupled and Normal Modes in Magnetized Ferrite Medium
  • 5.6 Variable Phase-shifters Employing Birefringent, Faraday Rotation, and Dielectric Half-wave Plates
  • 5.7 Circulators and Switches Using Nonreciprocal Quarter-wave Plates
  • 5.8 Nonreciprocal Circular Polarizer Using Elliptical Gyromagnetic Waveguide
  • Bibliography
  • Chapter 6 Ridge, Coaxial, and Stripline Phase-shifters
  • 6.1 Differential Phase-shift, Phase Deviation, and Figure of Merit of Ferrite Phase-shifter
  • 6.2 Coaxial Differential Phase-shifter
  • 6.3 Ridge Waveguide Differential Phase-shifter
  • 6.4 The Stripline Edge Mode Phase-shifter
  • 6.5 Latched Quasi-TEM Phase-shifters
  • Bibliography
  • Chapter 7 Finite Element Adjustment of the Rectangular Waveguide-latched Differential Phase-shifter
  • 7.1 Introduction
  • 7.2 FE Discretization of Rectangular Waveguide Phase-shifters
  • 7.3 LS Modes Limit Waveguide Bandwidths
  • 7.4 Cutoff Numbers and Split Phase Constants of a Twin Slab Ferrite Phase-shifter
  • 7.5 The Waveguide Toroidal Phase-shifter
  • 7.6 Industrial Practice
  • 7.7 Magnetic Circuits Using Major and Minor Hysteresis Loops
  • 7.8 Construction of Latching Circuits
  • 7.9 Temperature Compensation Using Composite Circuits
  • Bibliography
  • Chapter 8 Edge Mode Phase-shifter
  • 8.1 Edge Mode Effect
  • 8.2 Edge Mode Characteristic Equation
  • 8.3 Fields and Power in Edge Mode Devices
  • 8.4 Circular Polarization and the Edge Mode Effect
  • 8.5 Edge Mode Phase-shifter
  • 8.6 Edge Mode Isolators, Phase-shifters, and Circulators
  • Bibliography
  • Chapter 9 The Two-port On/Off H-plane Waveguide Turnstile Gyromagnetic Switch
  • 9.1 Introduction
  • 9.2 Two-port H-plane Turnstile On/Off Switch
  • 9.3 Even and Odd Eigenvectors of E-plane Waveguide Tee Junction
  • 9.4 Eigenvalue Adjustment of Turnstile Plane Switch
  • 9.5 Eigen-networks
  • 9.6 Numerical Adjustments of Passbands
  • 9.7 An Off/On H-plane Switch
  • Bibliography
  • Chapter 10 Off/On and On/Off Two-port E-plane Waveguide Switches Using Turnstile Resonators
  • 10.1 Introduction
  • 10.2 The Shunt E-plane Tee Junction
  • 10.3 Operation of Off/On and On/Off E-plane Switches
  • 10.4 Even and Odd Eigenvector of H-plane Waveguide Tee Junction
  • 10.5 Phenomenological Description of Two-port Off/On and On/Off Switches
  • 10.6 Eigenvalue Diagrams of Small- and Large-gap E-plane Waveguide Tee Junction
  • 10.7 Eigenvalue Diagrams of E-plane Waveguide Tee Junction
  • 10.8 Eigen-networks of E-plane Tee Junction
  • 10.9 Eigenvalue Algorithm
  • 10.10 Pass and Stop Bands in Demagnetized E-plane Waveguide Tee Junction
  • Bibliography
  • Chapter 11 Operation of Two-port On/Off and Off/On Planar Switches Using the Mutual Energy-Finite Element Method
  • 11.1 Introduction
  • 11.2 Impedance and Admittance Matrices from Mutual Energy Consideration
  • 11.3 Impedance and Admittance Matrices for Reciprocal Planar Circuits
  • 11.4 Immittance Matrices of n-Port Planar Circuits Using Finite Elements
  • 11.5 Frequency Response of Two-port Planar Circuits Using the Mutual Energy-Finite Element Method
  • 11.6 Stripline Switch Using Puck/Plug Half-spaces
  • Bibliography
  • Chapter 12 Standing Wave Solutions and Cutoff Numbers of Planar WYE and Equilateral Triangle Resonators
  • 12.1 Introduction
  • 12.2 Cutoff Space of WYE Resonator
  • 12.3 Standing Wave Circulation Solution of WYE Resonator
  • 12.4 Resonant Frequencies of Quasi-wye Magnetized Resonators
  • 12.5 The Gyromagnetic Cutoff Space
  • 12.6 TM Field Patterns of Triangular Planar Resonator
  • 12.7 TM1,0,-1 Field Components of Triangular Planar Resonator
  • 12.8 Circulation Solutions
  • Bibliography
  • Chapter 13 The Turnstile Junction Circulator: First Circulation Condition
  • 13.1 Introduction
  • 13.2 The Four-port Turnstile Junction Circulator
  • 13.3 The Turnstile Junction Circulator
  • 13.4 Scattering Matrix
  • 13.5 Frequencies of Cavity Resonators
  • 13.6 Effective Dielectric Constant of Open Dielectric Waveguide
  • 13.7 The Open Dielectric Cavity Resonator
  • 13.8 The In-phase Mode
  • 13.9 First Circulation Condition
  • Bibliography
  • Chapter 14 The Turnstile Junction Circulator: Second Circulation Condition
  • 14.1 Introduction
  • 14.2 Complex Gyrator of Turnstile Circulator
  • 14.3 Susceptance Slope Parameter, Gyrator Conductance, and Quality Factor
  • 14.4 Propagation in Gyromagnetic Waveguides
  • 14.5 Eigen-network of Turnstile Circulator
  • 14.6 The Quality Factor of the Turnstile Circulator
  • 14.7 Susceptance Slope Parameter of Turnstile Junction
  • Bibliography
  • Chapter 15 A Finite-Element Algorithm for the Adjustment of the First Circulation Condition of the H-plane Turnstile Waveguide Circ...
  • 15.1 Introduction
  • 15.2 Bandpass Frequency of a Turnstile Junction
  • 15.3 In-phase and Counterrotating Modes of Turnstile Junction
  • 15.4 Reference Plane
  • 15.5 FE Algorithm
  • 15.6 FE Adjustment
  • 15.7 The Reentrant Turnstile Junction in Standard WR75 Waveguide
  • 15.8 Susceptance Slope Parameter of Degree-1 Junction
  • 15.9 Split Frequencies of Gyromagnetic Resonators
  • References
  • Chapter 16 The E-plane Waveguide Wye Junction: First Circulation Conditions
  • 16.1 Introduction
  • 16.2 Scattering Matrix of Reciprocal E-plane Three-port Y-junction
  • 16.3 Reflection Eigenvalue Diagrams of Three-port Junction Circulator
  • 16.4 Eigen-networks
  • 16.5 Pass Band and Stop Band Characteristic Planes
  • 16.6 The Dicke Eigenvalue Solution
  • 16.7 Stop Band Characteristic Plane
  • 16.8 The E-plane Geometry
  • 16.9 First Circulation Condition
  • 16.10 Calculations of Eigenvalues
  • Bibliography
  • Chapter 17 Adjustment of Prism Turnstile Resonators Latched by Wire Loops
  • 17.1 Introduction
  • 17.2 The Prism Resonator
  • 17.3 Split Frequency of Cavity Resonator with Up or Down Magnetization
  • 17.4 Quality Factor of Gyromagnetic Resonator with Up and Down Magnetization
  • 17.5 Shape Factor of Tri-toroidal Resonator
  • 17.6 Squareness Ratio
  • 17.7 The Complex Gyrator Circuit of the Three-port Junction Circulator
  • 17.8 The Alternate Line Transformer
  • 17.9 Effective Complex Gyrator Circuit
  • Bibliography
  • Chapter 18 Numerical Adjustment of Waveguide Ferrite Switches Using Tri-toroidal Resonators
  • 18.1 Introduction
  • 18.2 The Tri-toroidal Resonator
  • 18.3 The Wire Carrying Slot Geometry
  • 18.4 The Magnetostatic Problem
  • 18.5 Quality Factor of Junction Circulators with Up and Down Magnetization
  • 18.6 Split Frequencies of Planar and Cavity Gyromagnetic Resonators
  • 18.7 The Split Frequencies of Prism Resonator with Up and Down Magnetization
  • 18.8 Exact Calculation of Split Frequencies in Tri-toroidal Cavity
  • 18.9 Calculation and Experiment
  • 18.10 Tri-toroidal Composite Prism Resonator
  • 18.11 Tri-toroidal Wye Resonator with Up and Down Magnetization
  • Bibliography
  • Chapter 19 The Waveguide H-plane Tee Junction Circulator Using a Composite Gyromagnetic Resonator
  • 19.1 Introduction
  • 19.2 Eigenvalue Problem of the H-plane Reciprocal Tee Junction
  • 19.3 Electrically Symmetric H-plane Junction at the Altman Planes
  • 19.4 Characteristic Planes
  • 19.5 The Septum-loaded H-plane Waveguide
  • 19.6 The Waveguide Tee Junction Using a Dielectric Post Resonator: First Circulation Condition
  • 19.7 The Waveguide Tee Junction Circulator Using a Gyromagnetic Post Resonator: Second Circulation Condition
  • 19.8 Composite Dielectric Resonator
  • Bibliography
  • Chapter 20 0, 90, and 180 Passive Power Dividers
  • 20.1 Introduction
  • 20.2 Wilkinson Power Divider
  • 20.3 Even and Odd Mode Adjustment of the Wilkinson Power Divider
  • 20.4 Scattering Matrix of 90 Directional Coupler
  • 20.5 Even and Odd Mode Theory of Directional Couplers
  • 20.6 Power Divider Using 90 Hybrids
  • 20.7 Variable Power Dividers
  • 20.8 180 Waveguide Hybrid Network
  • Bibliography
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

107,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen