Principles of Electron Optics, Volume 2

Applied Geometrical Optics
 
 
Academic Press
  • 2. Auflage
  • |
  • erschienen am 13. Dezember 2017
  • |
  • 766 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-813405-4 (ISBN)
 

Principles of Electron Optics: Applied Geometrical Optics, Second Edition gives detailed information about the many optical elements that use the theory presented in Volume 1: electrostatic and magnetic lenses, quadrupoles, cathode-lens-based instruments including the new ultrafast microscopes, low-energy-electron microscopes and photoemission electron microscopes and the mirrors found in their systems, Wien filters and deflectors. The chapter on aberration correction is largely new. The long section on electron guns describes recent theories and covers multi-column systems and carbon nanotube emitters. Monochromators are included in the section on curved-axis systems.

The lists of references include many articles that will enable the reader to go deeper into the subjects discussed in the text.

The book is intended for postgraduate students and teachers in physics and electron optics, as well as researchers and scientists in academia and industry working in the field of electron optics, electron and ion microscopy and nanolithography.

  • Offers a fully revised and expanded new edition based on the latest research developments in electron optics
  • Written by the top experts in the field
  • Covers every significant advance in electron optics since the subject originated
  • Contains exceptionally complete and carefully selected references and notes
  • Serves both as a reference and text


Peter Hawkes graduated from the University of Cambridge and subsequently obtained his PhD in the Electron Microscopy Section of the Cavendish Laboratory. He remained there for several years, working on electron optics and digital image processing before taking up a research position in the CNRS Laboratory of Electron Optics (now CEMES-CNRS) in Toulouse, of which he was Director in 1987. During the Cambridge years, he was a Research Fellow of Peterhouse and a Senior Research fellow of Churchill College. He has published extensively, both books and scientific journal articles, and is a member of the editorial boards of Ultramicroscopy and the Journal of Microscopy. He was the founder-president of the European Microscopy Society, CNRS Silver Medallist in 1983 and is a Fellow of the Optical Society of America and of the Microscopy Society of America (Distinguished Scientist, Physics, 2015), Fellow of the Royal Microscopical Society and Honorary Member of the French Microscopy Society. In 1982, he was awarded the ScD degree by the University of Cambridge.

In 1982, he took over editorship of the Advances in Electronics & Electron Physics (now Advances in Imaging & Electron Physics) from Claire Marton (widow of the first editor, Bill Marton) and followed Marton's example in maintaining a wide range of subject matter. He added mathematical morphology to the topics regularly covered; Jean Serra and Gerhard Ritter are among those who have contributed.

In 1980, he joined Professor Wollnik (Giessen University) and Karl Brown (SLAC) in organising the first international conference on charged-particle optics, designed to bring together opticians from the worlds of electron optics, accelerator optics and spectrometer optics. This was so successful that similar meetings have been held at four-year intervals from 1986 to the present day. Peter Hawkes organised the 1990 meeting in Toulouse and has been a member of the organising committee of all the meetings. He has also participated in the organization of other microscopy-related congresses, notably EMAG in the UK and some of the International and European Congresses on electron microscopy as well as three Pfefferkorn conferences.

He is very interested in the history of optics and microscopy, and recently wrote long historical articles on the correction of electron lens aberrations, the first based on a lecture delivered at a meeting of the Royal Society. He likewise sponsored biographical articles for the Advances on such major figures as Ernst Ruska (Nobel Prize 1986), Helmut Ruska, Bodo von Borries, Jan Le Poole and Dennis Gabor (Nobel Prize, 1971). Two substantial volumes of the series were devoted to 'The Beginnings of Electron Microscopy' and 'The Growth of Electron Microscopy'. and others have covered 'Cold Field Emission Scanning Transmission Electron Microscopy' and 'Aberration-corrected Electron Microscopy', with contributions by all the main personalities of the subject.

  • Englisch
  • San Diego
  • |
  • Großbritannien
Elsevier Science
  • 22,65 MB
978-0-12-813405-4 (9780128134054)
0128134054 (0128134054)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Principles of Electron Optics
  • Copyright Page
  • Contents
  • Preface to the Second Edition
  • Preface to the First Edition (Extracts)
  • Acknowledgments
  • VII. Instrumental Optics
  • 35 Electrostatic Lenses
  • 35.1 Introduction
  • 35.2 Immersion Lenses
  • 35.2.1 The Single Aperture
  • 35.2.2 The Two-Electrode Lens
  • 35.2.2.1 Adjacent cylinders
  • 35.2.2.2 Cylinders separated by a small gap
  • 35.2.2.3 Two cylinders separated by an arbitrary distance
  • 35.2.2.4 Cylinders of different radius
  • 35.2.2.5 A unified representation
  • 35.2.3 Three or More Electrodes
  • 35.2.3.1 Zoom lenses
  • 35.2.3.2 Accelerators
  • 35.2.3.3 Other studies
  • 35.3 Einzel Lenses
  • 35.3.1 The Principal Potential Models
  • 35.3.1.1 Regenstreif's model
  • 35.3.1.2 Schiske's model
  • 35.3.1.3 The model of Kanaya and Baba
  • 35.3.1.4 The theory of Wendt
  • 35.3.1.5 Shimoyama's contribution
  • 35.3.1.6 Crewe's model
  • 35.3.1.7 Ura's unified representation
  • 35.3.2 Measurements and Exact Calculations
  • 35.3.3 Miniature Lenses
  • 35.4 Grid or Foil Lenses
  • 35.5 Conical Lenses and Coaxial Lenses
  • 35.6 Cylindrical Lenses
  • 36 Magnetic Lenses
  • 36.1 Introduction
  • 36.1.1 Modes of Operation
  • 36.1.2 Practical Design
  • 36.1.3 Notation
  • 36.2 Field Models
  • 36.2.1 Symmetric Lenses: Glaser's Bell-Shaped Model
  • 36.2.1.1 Paraxial properties
  • 36.2.1.2 Aberrations
  • 36.3 Related Bell-Shaped Curves
  • 36.3.1 The Grivet-Lenz Model
  • 36.3.2 The Exponential Model
  • 36.3.3 The Power Law Model
  • 36.3.4 The Convolutional Models
  • 36.3.5 A Generalized Model
  • 36.3.6 Unsymmetric Lenses
  • 36.3.7 Hahn's Procedure
  • 36.3.8 Other Models
  • 36.4 Measurements and Universal Curves
  • 36.4.1 Introduction
  • 36.4.2 Unsaturated Lenses
  • 36.4.3 Saturated Lenses
  • 36.5 Ultimate Lens Performance
  • 36.5.1 Tretner's Analysis
  • 36.5.1.1 Chromatic aberration, electrostatic case
  • 36.5.1.2 Spherical aberration, electrostatic case
  • 36.5.1.3 Spherical aberration, magnetic case, L1
  • 36.5.1.4 Spherical aberration, magnetic case, L2
  • 36.5.1.5 Chromatic aberration, magnetic case L1
  • 36.5.1.6 Chromatic aberration, magnetic case L2
  • 36.5.2 Earlier Studies
  • 36.5.3 Optimization
  • 36.6 Lenses of Unusual Geometry
  • 36.6.1 Mini-Lenses, Pancake Lenses and Single-Polepiece Lenses
  • 36.6.2 Laminated Lenses
  • 36.7 Special Purpose Lenses
  • 36.7.1 Unsymmetrical Round Lenses
  • 36.7.2 Superconducting Shielding Lenses or Cryolenses
  • 36.7.3 Permanent-Magnet Lenses
  • 36.7.4 Triple-Polepiece Projector Lenses
  • 36.7.5 Objective Lens With Low Magnetic Field at the Specimen Capable of Good Resolution
  • 36.7.6 Probe-Forming Lenses for Low-Voltage Scanning Electron Microscopes
  • 36.7.7 Hybrid TEM-STEM Operation: the Twin and Super-Twin Geometries
  • 36.7.8 The Lotus-Root Multibeam Lens
  • 37 Electron Mirrors, Low-Energy-Electron Microscopes and Photoemission Electron Microscopes, Cathode Lenses and Field-Emiss...
  • 37.1 The Electron Mirror Microscope
  • 37.2 Mirrors in Energy Analysis
  • 37.3 Cathode Lenses, Low-Energy-Electron Microscopes and Photoemission Electron Microscopes
  • 37.4 Field-Emission Microscopy
  • 37.5 Ultrafast Electron Microscopy
  • 38 The Wien Filter
  • 39 Quadrupole Lenses
  • 39.1 Introduction
  • 39.2 The Rectangular and Bell-Shaped Models
  • 39.3 Isolated Quadrupoles and Doublets
  • 39.4 Triplets
  • 39.5 Quadruplets
  • 39.6 Other Quadrupole Geometries
  • 39.6.1 Arc Lenses
  • 39.6.2 Crossed Lenses
  • 39.6.3 Biplanar Lenses
  • 39.6.4 Astigmatic Tube Lenses
  • 39.6.5 Transaxial Lenses
  • 39.6.6 Radial Lenses
  • 40 Deflection Systems
  • 40.1 Introduction
  • 40.2 Field Models for Magnetic Deflection Systems
  • 40.2.1 Field of a Closed Loop in Free Space
  • 40.2.2 Approximate Treatment of Ferrite Shields
  • 40.2.3 The Axial Harmonics
  • 40.3 The Variable-Axis Lens
  • 40.3.1 Theoretical Considerations
  • 40.3.2 Practical Design
  • 40.4 Alternative Concepts
  • 40.5 Deflection Modes and Beam-Shaping Techniques
  • VIII. Aberration Correction and Beam Intensity Distribution (Caustics)
  • 41 Aberration Correction
  • 41.1 Introduction
  • 41.2 Multipole Correctors
  • 41.2.1 Quadrupoles and Octopoles
  • 41.2.2 Sextupole Optics and Sextupole Correctors
  • 41.2.3 Practical Designs
  • 41.2.4 Measurement of Aberrations
  • 41.3 Foil Lenses and Space Charge
  • 41.3.1 Space Charge Clouds
  • 41.3.2 Foil Lenses
  • 41.4 Axial Conductors
  • 41.5 Mirrors
  • 41.6 High-Frequency Lenses
  • 41.6.1 Spherical Correction
  • 41.6.2 Chromatic Correction
  • 41.7 Other Aspects of Aberration Correction
  • 41.8 Concluding Remarks
  • 42 Caustics and Their Uses
  • 42.1 Introduction
  • 42.2 The Concept of the Caustic
  • 42.3 The Caustic of a Round Lens
  • 42.4 The Caustic of an Astigmatic Lens
  • 42.5 Intensity Considerations
  • 42.6 Higher Order Focusing Properties
  • 42.7 Applications of Annular Systems
  • IX. Electron Guns
  • 43 General Features of Electron Guns
  • 43.1 Thermionic Electron Guns
  • 43.2 Schottky Emission Guns
  • 43.3 Cold Field Electron Emission Guns
  • 43.4 Beam Transport Systems
  • 44 Theory of Electron Emission
  • 44.1 General Relations
  • 44.2 Transmission Through a Plane Barrier
  • 44.3 Thermionic Electron Emission
  • 44.4 The Tunnel Effect
  • 44.5 Field Electron Emission
  • 44.6 Schottky Emission
  • 44.7 Concluding Remarks
  • 45 Pointed Cathodes Without Space Charge
  • 45.1 The Spherical Cathode
  • 45.2 The Diode Approximation
  • 45.3 Field Calculation in Electron Sources with Pointed Cathodes
  • 45.3.1 Analytic Field Models
  • 45.3.2 Rigorous Methods
  • 45.4 Simple Models
  • 45.4.1 A Diode-Field Model
  • 45.4.2 Thermionic Triode Guns
  • 46 Space Charge Effects
  • 46.1 The Spherical Diode
  • 46.2 Asymptotic Properties and Generalizations
  • 46.3 Determination of the Space Charge
  • 46.4 The Boersch Effect
  • 46.4.1 Introduction
  • 46.4.2 The Shift of the Mean Energy
  • 46.4.3 Thermodynamic Considerations
  • 46.4.3.1 Transverse temperatures
  • 46.4.3.2 The longitudinal temperature
  • 46.4.3.3 The thermodynamic limit
  • 46.4.3.4 The beam entropy
  • 46.4.4 Analytical Calculations
  • 47 Brightness
  • 47.1 Application of Liouville's Theorem
  • 47.2 The Maximum Brightness
  • 47.3 The Influence of Apertures
  • 47.4 Lenz's Brightness Theory
  • 47.4.1 Rotationally Symmetric Electrostatic Fields
  • 47.4.2 The Generalized Theory
  • 47.5 Measurement of the Brightness
  • 47.6 Coulomb Interactions and Brightness
  • 47.7 Aberrations in the Theory of Brightness
  • 48 Emittance
  • 48.1 Trace Space and Hyperemittance
  • 48.2 Two-Dimensional Emittances
  • 48.2.1 General Emittance Ellipses
  • 48.2.2 Acceptance and Matching
  • 48.3 Brightness and Emittance
  • 48.4 Emittance Diagrams
  • 49 Gun Optics
  • 49.1 The Fujita-Shimoyama Theory
  • 49.2 Rose's Theory
  • 49.3 Matching the Paraxial Approximation to a Cathode Surface
  • 50 Complete Electron Guns
  • 50.1 Justification of the Point Source Model
  • 50.2 The Lens System in Field-Emission Devices
  • 50.3 Hybrid Emission
  • 50.4 Conventional Thermionic Guns
  • 50.5 Pierce Guns
  • 50.6 Multi-electron-beam Systems
  • 50.7 Carbon Nanotube Emitters
  • 50.8 Further Reading
  • X. Systems with a Curved Optic Axis
  • 51 General Curvilinear Systems
  • 51.1 Introduction of a Curvilinear Coordinate System
  • 51.2 Series Expansion of the Potentials and Fields
  • 51.3 Variational Principle and Trajectory Equations
  • 51.4 Simplifying Symmetries
  • 51.5 Trajectory Equations for Symmetric Configurations
  • 51.6 Aberration Theory
  • 51.6.1 Magnetic Systems
  • 51.6.2 Compound Systems
  • 51.6.2.1 Aberrations of second rank
  • 51.6.2.2 Third-rank aberrations
  • 52 Sector Fields and Their Applications
  • 52.1 Introduction
  • 52.2 Magnetic Devices with a Circular Optic Axis
  • 52.3 Radial (Horizontal) Focusing for a Particular Model Field
  • 52.4 The Linear Dispersion
  • 52.5 The Axial (Vertical) Focusing
  • 52.6 Fringing Field Effects
  • 52.7 Aberration Theory: The Homogeneous Magnetic Field (n=0)
  • 52.8 Optimization Procedures
  • 52.8.1 Single Deflection Prisms
  • 52.8.2 Use of Symmetries
  • 52.9 Energy Analysers and Monochromators
  • 52.9.1 Introduction
  • 52.9.2 In-column Energy Analysers
  • 52.9.3 Details of the Various Filters
  • 52.9.4 The Möllenstedt and Ichinokawa Analysers
  • 52.9.5 Postcolumn Spectrometers
  • 52.9.6 Monochromators
  • 53 Unified Theories of Ion Optical Systems
  • 53.1 Introduction
  • 53.2 Electrostatic Prisms
  • 53.3 A Unified Version of the Theory
  • 53.4 The Literature of Ion Optics
  • Notes and References
  • Part VII, Chapter 35
  • Part VII, Chapter 36
  • Part VII, Chapters 37-40
  • Part VIII, Chapters 41 and 42
  • Part IX, Chapters 43-50
  • Part X, Chapters 51-53
  • Conference Proceedings
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

255,85 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok