Python Machine Learning Case Studies

Five Case Studies for the Data Scientist
 
 
Apress
  • erschienen am 27. Oktober 2017
  • |
  • XVII, 204 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-1-4842-2823-4 (ISBN)
 
Embrace machine learning approaches and Python to enable automatic rendering of rich insights and solve business problems. The book uses a hands-on case study-based approach to crack real-world applications to which machine learning concepts can be applied. These smarter machines will enable your business processes to achieve efficiencies on minimal time and resources.
Python Machine Learning Case Studies takes you through the steps to improve business processes and determine the pivotal points that frame strategies. You'll see machine learning techniques that you can use to support your products and services. Moreover you'll learn the pros and cons of each of the machine learning concepts to help you decide which one best suits your needs.
By taking a step-by-step approach to coding in Python you'll be able to understand the rationale behind model selection and decisions within the machine learning process. The book is equipped with practical examples along with code snippets to ensure that you understand the data science approach to solving real-world problems.
What You Will Learn
  • Gain insights into machine learning concepts
  • Work on real-world applications of machine learning
  • Learn concepts of model selection and optimization
  • Get a hands-on overview of Python from a machine learning point of view

Who This Book Is For
Data scientists, data analysts, artificial intelligence engineers, big data enthusiasts, computer scientists, computer sciences students, and capital market analysts.

1st ed.
  • Englisch
  • CA
  • |
  • USA
APRESS
  • 99
  • |
  • 21 s/w Abbildungen, 99 farbige Abbildungen
  • |
  • 21 schwarz-weiße und 99 farbige Abbildungen, Bibliographie
  • 8,38 MB
978-1-4842-2823-4 (9781484228234)
1484228235 (1484228235)
10.1007/978-1-4842-2823-4
weitere Ausgaben werden ermittelt
Danish Haroon currently leads the Data Sciences team at Market IQ Inc, a patented predictive analytics platform focused on providing actionable, real-time intelligence, culled from sentiment inflection points. He received his MBA from Karachi School for Business and Leadership, having served corporate clients and their data analytics requirements. Most recently, he led the data commercialization team at PredictifyME, a startup focused on providing predictive analytics for demand planning and real estate markets in the US market. His current research focuses on the amalgam of data sciences for improved customer experiences (CX).
Chapter 1: Statistics and ProbabilityChapter Goal: Introduction and hands on approach to central limit theorem, distributions, confidence intervals, statistical tests, ROC curves, plots, probabilities, permutations and combinationsNo of pages: 70-80Sub -Topics1. Exploratory Data analysis2. Probability Distributions3. Concept of Permutations and Combinations4. Statistical tests5. Applications in the industry6. Case study
Chapter 2: RegressionChapter Goal: Introduction and hands on approach to the concept of regression, linear regression models, non linear regression models.No of pages: 50-60Sub - Topics1. Concept of Regression2. Linear regression3. Polynomial order regression4. Statistical tests5. Applications in the industry6. Case study<Chapter 3: Time series modelsChapter Goal: Introduction and hands on approach to concepts of trends, cycles, seasonal variations, anomaly detection, exponential smoothing, rolling moving averages, ARIMA, ARMA, over fitting.No of pages: 60-70Sub - Topics:1. Concept of trends, cycles, and seasonal variations2. Time series decomposition3. ARIMA, and ARMA models4. Concept of over fitting5. Statistical tests6. Applications in the industry7. Case study
Chapter 4: Classification and ClusteringChapter Goal: Introduction and hands on approach to supervised, semi supervised and unsupervised models. Emphasis on Logistic regression, k-means, Support Vector Machines, Neural networksNo of pages: 80-90Sub - Topics:1. Concept of Classification and clustering2. Deep neur3. Support Vector Machines4. Concept of Gradient descent5. Statistical tests6. Applications in the industry7. Case study
Chapter 5: Ensemble methodsChapter Goal: Introduction and hands on approach to Bagging, and Gradient BoostingNo of pages: 50-60Sub - Topics:1. Concept of ensemble methods2. Concept of Bagging 3. Concept of Gradient Boosting4. Statistical tests5. Applications in the industry6. Case study

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

39,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

39,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok