Mineral Processing Design and Operations

An Introduction
 
 
Elsevier (Verlag)
  • 2. Auflage
  • |
  • erschienen am 2. Mai 2016
  • |
  • 882 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-444-63592-1 (ISBN)
 

Mineral Processing Design and Operations: An Introduction, Second Edition, helps further understanding of the various methods commonly used in mineral beneficiation and concentration processes. Application of theory to practice is explained at each stage, helping operators understand associated implications in each unit process. Covers the theory and formulae for unit capacities and power requirements to help the designer develop the necessary equipment and flow-sheets to economically attain maximum yield and grade.

This second edition describes theories and practices of design and operation of apparatus and equipment, including an additional chapter on magnetic, electrostatic, and conductivity modes of mineral separation. Basics of process controls for efficient and economic modes of separation are introduced.


  • Outlines the theory and practice in the design of flow sheets and operation of an integrated mineral processing plant
  • Introduces the basic magnetism, electrostatic, conductivity, and dielectrophoresis properties of minerals and related separation techniques
  • Describes automation in mineral processing plants allowing maximum yields and consistent high concentrate grades
  • Outlines problems and offers solutions in the form of various examples


25 years in Managerial Position in industry involved in operation, production and research and 18 years in academia (Teaching Undergrad, & Post Graduate courses and conducting Research). Retirement followed by work as Consultant
  • Englisch
  • Amsterdam
  • |
  • Niederlande
Elsevier Science
  • 42,17 MB
978-0-444-63592-1 (9780444635921)
0444635920 (0444635920)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Dedication
  • Contents
  • Preface to the Second Edition
  • Symbols and Units
  • Chapter 1 - Mineral Sampling
  • 1.1 - Introduction
  • 1.2 - Statistical Terminology
  • 1.2.1 - Mean
  • 1.2.2 - Variance
  • 1.2.3 - Confidence Intervals
  • 1.3 - Mineral Particles Differing in Size - Gy's Method
  • 1.4 - Mineral Particles of Different Density
  • 1.5 - Incremental Sampling
  • 1.6 - Continuous Sampling of Streams
  • 1.6.1 - Linear Cutters
  • 1.6.2 - Rotary Arc Cutter
  • 1.7 - Sampling Ores of Precious Metals
  • 1.8 - Sampling Nomographs
  • 1.9 - Problems
  • References
  • Chapter 2 - Particle Size Estimation and Distributions
  • 2.1 - Introduction
  • 2.2 - Methods of Size Estimation
  • 2.2.1 - Microscopic Method
  • 2.2.2 - Particle Size in Terms of Volume and Surface Area
  • 2.2.3 - Sedimentation Method - Gravity Sedimentation
  • 2.2.4 - Sedimentation Method - Centrifugal Sedimentation
  • 2.2.5 - Laser Diffraction Method
  • 2.3 - Particle Size Distribution
  • 2.3.1 - Sieve Analysis
  • 2.3.2 - Log-Normal Distribution
  • 2.3.3 - Gaudin-Schuhmann Distribution
  • 2.3.4 - Rosin-Rammler Distribution
  • 2.4 - Combining Size Distributions
  • 2.5 - Problems
  • References
  • Chapter 3 - Size Reduction and Energy Requirement
  • 3.1 - Introduction
  • 3.2 - Design of Size Reduction Processes
  • 3.3 - Energy for Size Reduction - Work Index
  • 3.4 - Estimation of Work Index for Crushers and Grinding Mills
  • 3.4.1 - Bond Pendulum Test
  • 3.4.2 - Narayanan and Whiten's Rebound Pendulum Test
  • 3.4.3 - JKMRC-Drop Weight Crushing Test
  • 3.4.4 - SAG Mill Comminution (SMC) Test
  • 3.4.5 - SAG Power Index (SPI) and SAGDesign Tests
  • 3.4.6 - Bond Ball Mill Test
  • 3.4.7 - Bond Rod Mill Standard Test
  • 3.5 - Factors Affecting the Work Index
  • 3.5.1 - Effect of the Test Screen Size on Work Index
  • 3.6 - Approximation Methods for Work Index
  • 3.6.1 - Magdalinovic Method
  • 3.6.2 - Methods Using a Non-Standard Mill and Charge
  • 3.6.3 - Simulation Methods
  • 3.6.4 - Work Index from Rock Mechanics
  • 3.6.5 - Work Index by Chakrabarti's Statistical Method
  • 3.6.6Work Index of Ore Blends
  • 3.6.7Correlations Between Comminution Parameters
  • 3.7 - Work Index and Abrasion
  • 3.7.1 - Bond's Abrasion Test (Also Known as Allis Chalmers Abrasion Test)
  • 3.7.2 - Metso Abrasiveness and Grindability Test
  • 3.7.3 - JKMRC Abrasion Test
  • 3.8 - Problems
  • References
  • Chapter 4 - Jaw Crusher
  • 4.1 - Introduction
  • 4.2 - Design of Jaw Crushers
  • 4.2.1 - Crusher Sizes and Power Ratings
  • 4.2.2 - Jaw Crusher Circuits
  • 4.3 - Jaw Crusher Operation
  • 4.3.1 - Operating Functions
  • 4.4 - Jaw Crusher Capacity Estimation
  • 4.4.1 - Rose and English Method
  • 4.4.2 - Taggart Method
  • 4.4.3 - Broman Method
  • 4.4.4 - Michaelson's Method
  • 4.4.5 - Comparison of Methods
  • 4.5 - Critical Operating Speed
  • 4.6 - Power Consumption Estimation
  • 4.6.1 - Rose and English Method
  • 4.6.2 - Lynch Method
  • 4.6.3 - Andersen and Napier Munn Method
  • 4.7 - Problems
  • References
  • Chapter 5 - Gyratory and Cone Crusher
  • 5.1 - Introduction
  • 5.2 - Design of Gyratory Crushers
  • 5.2.1 - Primary Crusher
  • 5.2.2 - Secondary and Tertiary Cone Crushers
  • 5.3 - Gyratory Crusher Circuit Design
  • 5.4 - Gyratory Crusher Operation
  • 5.4.1 - Gyrating Speed of Head
  • 5.5 - Capacity of Gyratory and Cone Crushers
  • 5.5.1 - Gyratory Crushers
  • 5.5.2 - Broman Method of Estimating Capacity of Gyratory Crushers
  • 5.5.3 - Rose and English Method of Estimating Capacity of Gyratory Crushers
  • 5.5.4 - Cone Crusher Capacity Estimation
  • 5.6 - Power Consumption of Gyratory and Cone Crushers
  • 5.7 - Problems
  • References
  • Chapter 6 - Roll Crushers
  • 6.1 - Introduction
  • 6.2 - Design of Roll Crushers
  • 6.2.1 - Roll Crusher Sizes and Design
  • 6.2.2 - Roll Design
  • 6.2.3 - Roll Crusher Circuit Design
  • 6.3 - Operation of Roll Crushers
  • 6.4 - Capacity of Roll Crushers
  • 6.5 - Power Consumption of Roll Crushers
  • 6.6 - High Pressure Grinding Rolls (HPGR)
  • 6.6.1 - Circuit Design and HPGR
  • 6.7 - Operation of HPGR
  • 6.7.1 - Estimation of Operating Pressure
  • 6.7.2 - Estimation of Nip Angle
  • 6.7.3 - Estimation of the Roll Gap
  • 6.7.4 - Roll Speed
  • 6.7.5 - Feed and Product Size
  • Feed Size
  • Product size
  • 6.8 - Capacity of HPGR
  • 6.9 - Power Consumption of HPGR
  • 6.10 - Problems
  • References
  • Chapter 7 - Tubular Ball Mills
  • 7.1 - Introduction
  • 7.2 - Design of Tubular Mills
  • 7.3 Operation of Tubular Ball Mills
  • 7.3.1 Charge Volume
  • 7.3.2 Charge Height
  • 7.3.3 Ball Size at Initial Ball Charge
  • 7.3.4 Ball Size as Replacement
  • 7.3.5 Ball Wear
  • 7.3.6 Ball Bulk Density
  • 7.3.7 Ball Size Distribution
  • 7.3.8 Mill Rotation and Critical Speed
  • 7.3.9 Mill Conditions and Initial Ball Charge
  • 7.4 - Estimation of Mill Capacity
  • 7.5 - Mill Power Draw-Mechanical Methods
  • 7.5.1 Rose and Sullivan Method
  • 7.5.2 Nordberg (Metso) Method
  • 7.5.3 Blanc Method
  • 7.5.4 Bond Method
  • 7.5.5 Theoretical Mill Power Draw
  • Power required for cylindrical section of Ball mills: Grate Mill
  • Power required for the cylindrical section of Ball Mill: overflow type
  • Power for conical sections of the mill
  • 7.5.6 Electrical Drive of Ball Mills
  • 7.6 - Problems
  • References
  • Chapter 8 - Tubular Rod Mills
  • 8.1 - Introduction
  • 8.2 - Design of Rod Mills
  • 8.2.1 - Design of Rod Mill-Ball Mill Circuits
  • 8.3 - Operation of Rod Mills
  • 8.3.1 - Rod Mill Charge
  • 8.3.2 - Rod Length and Diameter for an Initial Charge
  • Rod length
  • Rod diameter
  • 8.3.3 - Rod Diameter at Replacement
  • 8.3.4 - Reduction Ratio in Rod Mills
  • 8.4 - Rod Mill Capacity
  • 8.5 - Rod Mill Power Draft
  • 8.5.1 - Mill Power Corrections
  • 8.6 - Rod Mill Drive
  • 8.7 - Problems
  • References
  • Chapter 9 - Autogenous and Semi-Autogenous Mills
  • 9.1 - Introduction
  • 9.2 - Design of AG/SAG Mills
  • 9.2.1 - Design of AG/SAG Circuits
  • 9.3 - Operation of AG/SAG Mills
  • 9.3.1 - Feed Size
  • 9.3.2 - Mill Volume
  • 9.3.3 - Mill Charge
  • 9.3.4 - Mill Speed
  • 9.3.5 - Effective Grinding Length
  • 9.3.6 - Ball Wear
  • 9.4 - AG/SAG Mill Power
  • 9.4.1 - Normalised (Relative) Mill Power
  • 9.4.2 - Net Power and No Load Power
  • 9.4.3 - Mill Power, Load and Mill Operation
  • 9.5 - Choice of Options between AG and SAG Mills
  • 9.6 - Problems
  • References
  • Chapter 10 - Stirred Mills - Ultrafine Grinding
  • 10.1 - Introduction
  • 10.2 - Vertical Mills
  • 10.2.1 - Flow Pattern of Solid Media in Tower Mills
  • 10.2.2 - Flow Pattern of Slurry in Tower Mills
  • 10.2.3 - Mechanics of Grinding in Tower Mills
  • Vertical tower mill with pin stirrer
  • Vertical tower mill with spiral stirrer
  • Effect of media size
  • 10.2.4 - Operation of Vertical Mills
  • 10.3 - Horizontal Disc Mill - IsaMill
  • 10.3.1 - Stress Distribution in IsaMills
  • 10.3.2 - Stress Intensities in IsaMills
  • 10.3.3 - Effect of Grinding Media Size on Product Size
  • 10.3.4 - Effect of Grinding Media Hardness on Product Size
  • 10.3.5 - Effect of Grinding Chamber Volume on Stress Distribution and Product Size
  • 10.3.6 - Effect of Power Intensity
  • 10.3.7 - Operation of Horizontal Mills
  • 10.3.8 - Effect of Slurry Density and Rheology on Grinding Efficiency
  • Slurry viscosity
  • Slurry density
  • 10.3.9 - Effect of Chemicals on Grinding Efficiency
  • 10.3.10 - Performance of IsaMills
  • 10.4 - Design Testwork
  • 10.4.1 - Metso Jar Mill Test
  • 10.4.2 - IsaMill Signature Plot
  • 10.5 - Problems
  • References
  • Chapter 11 - Mathematical Modelling of Comminution Processes
  • 11.1 - Introduction
  • 11.2 - Basis for Modelling Comminution Systems
  • 11.2.1 - Estimation of the Breakage Function
  • 11.2.2 - Estimation of the Selection Function
  • 11.3 - Mathematical Models of Comminution Processes
  • 11.3.1 - Matrix Model
  • 11.3.2 - Kinetic Model
  • 11.4 - Modelling Crushing and Grinding Systems
  • 11.4.1 - Modelling Jaw and Gyratory Crushers
  • 11.4.2 - Modelling Ball Mills
  • Perfect mixing model
  • 11.4.3 - Modelling Rod Mills
  • 11.4.4 - Modelling AG/SAG Mills
  • 11.4.5 - Modelling High Pressure Grinding Rolls (HPGR)
  • 11.5 - Problems
  • References
  • Chapter 12 - Screening
  • 12.1 - Introduction
  • 12.2 - Basic Design Features of Screens
  • 12.2.1 - Surface and Aperture
  • Coarse screen surface - grizzly
  • Medium screens and screen surfaces
  • Perforated or punched plates
  • Woven wire screens
  • 12.2.2 - Types of Screens
  • Stationary and straight screens surfaces
  • Stationary curved screens
  • 12.2.3 - Vibrations and Movement of Straight and Curved Screens
  • 12.3 - Operation of Straight Screens
  • 12.3.1 - Basic Considerations
  • 12.3.2 - Material Balance of a Screen in Operation
  • 12.3.3 - Screen Efficiency and the Tromp Curve
  • A perfect separation
  • 12.3.4 - Bed Depth
  • 12.4 - Capacity and Screen Selection of Straight Screens
  • C1: Mass factor
  • C2: Open area factor
  • C3: Correction factor for oversize
  • C4: Correction factor for undersize (fines)
  • C5: Screen efficiency factor
  • C6: Deck factor
  • C7: Correction due to the screen slope
  • C8: Correction for aperture slot shape (slot factor)
  • C9: Correction for particle shape
  • C10: Correction factor for wet screening
  • C11: Correction factor for moisture content
  • 12.5 - Operation of Curved Screens
  • 12.5.1 - Capacity of Curved Screens
  • 12.5.2 - Rapid Method to Determine Sieve Bend Size
  • 12.6 - Modelling of the Screening Process
  • 12.6.1 - Two-Process Treatment
  • Crowded screening
  • Separated screening
  • Combined screening
  • Segregation treatment
  • 12.6.2 - Modelling Sieve Bends
  • 12.7 - Screening and Crushing Circuits
  • 12.8 - Problems
  • References
  • Chapter 13 - Classification
  • 13.1 - Introduction
  • 13.2 - Design Features of Mechanical Classifiers
  • 13.2.1 - Spiral Classifiers
  • 13.2.2 - Rake Classifiers
  • 13.2.3 - Cone Classifiers
  • 13.2.4 - Bowl Classifiers
  • 13.3 - Designing the Pool Area of Mechanical Classifiers
  • 13.4 - Design Features of Centrifugal Classifiers
  • 13.4.1 - Hydrocyclone Classifiers
  • 13.5 - Operation of Mechanical Classifiers
  • 13.6 - Capacity of Mechanical Classifiers
  • 13.7 - Operation of Centrifugal Classifiers
  • 13.7.1 - Efficiency of Separation in Hydrocyclones
  • 13.7.2 - Effect of Cyclone Variables on Operation
  • 13.8 - Hydrocyclone Models
  • 13.9 - Hydrocyclone Capacity
  • 13.10 - Hydrocyclone Circuits
  • 13.11 - Problems
  • References
  • Chapter 14 - Solid - Liquid Separation - Thickening
  • 14.1 - Introduction
  • 14.2 - Design Features of Thickeners
  • 14.3 - Thickener Design-Batch Process
  • 14.4 - Thickener Design-Continuous Thickeners
  • 14.4.1 - Estimation of Cross-Sectional Area of Tank
  • 14.4.2 - Determination of Critical Point
  • 14.4.3 - Determination of Settling Flux
  • 14.4.4 - Long Tube Method for Estimating Thickener Dimensions
  • 14.4.5 - Estimating Height (Depth) of the Compression Layer
  • Dahlstrom method
  • 14.4.6 - Estimating the Depth of the Clarifying Zone
  • 14.4.7 - Estimating the Retention Time
  • 14.5 - Operation of Thickeners
  • 14.6 - Thickeners in Circuits
  • 14.7 - Problems
  • References
  • Chapter 15 - Solid Liquid Separation - Filtration
  • 15.1 - Introduction
  • 15.2 - Design Features of Filters
  • 15.2.1 - Batch Processes of Filtration
  • Gravity filters
  • Plate and frame pressure filter
  • Chamber filters
  • Leaf filter
  • 15.2.2 - Continuous Vacuum Filtration
  • Rotating drum filter
  • Rotating disc filter
  • Ceramic disc filters
  • Horizontal belt vacuum filter
  • 15.2.3 - Design Rating of Filters
  • 15.3 - Operation of Filters
  • 15.3.1 - Constant Pressure Filtration
  • 15.3.2 - Constant Volume Filtration
  • 15.3.3 - Variable Pressure and Variable Volume Filtration
  • 15.3.4 - Compressibility of Deposited Cakes
  • 15.3.5 - Filtration through Compressible Deposits
  • 15.3.6 - Optimum Operation of Filters
  • 15.4 - Capacity of Continuous Vacuum Filters
  • 15.5 - Washing of Deposited Cake
  • 15.5.1 - Displacement Model of Washing
  • 15.5.2 - Diffusion Model of Washing
  • 15.5.3 - Washing Efficiency
  • 15.6 - Drying of Deposited Cake
  • 15.7 - Optimum Thickness of Cake
  • 15.8 - Filtering Media
  • 15.9 - Filtering Aids
  • 15.10 - Filtration in Mineral Processing Circuits
  • 15.11 - Problems
  • References
  • Chapter 16 - Gravity Separation
  • 16.1 - Introduction
  • 16.2 - Particle Settling Rates
  • 16.2.1 - The Effect of Particle Size and Shape
  • 16.3 - Gravity Separation Operations
  • 16.4 - Jigs
  • 16.4.1 - Length of Pulsation Stroke
  • 16.4.2 - Types of Jigs
  • Heavy mineral discharge
  • Pulsation
  • Inline pressure jig
  • Centrifugal jig
  • 16.4.3 - Operation of Jigs
  • 16.5 - Differential Motion Table Separators
  • 16.5.1 - Differential Motion Shaking Tables
  • 16.5.2 - Stratification and Hindered Settling
  • 16.5.3 - Operating Parameters
  • 16.5.4 - Types of Tables
  • Sand tables
  • Slimes tables
  • Gemeni gold table
  • 16.6 - Flowing Film Concentrators
  • 16.6.1 - Simple Sluice
  • 16.6.2 - Strake Table
  • 16.6.3 - Spiral Concentrator
  • 16.6.4 - Cone-Separators or Reichert Cone
  • 16.6.5 - Centrifugal Separator
  • 16.6.6 - Mozley Multi-Gravity Separator
  • 16.7 - Dense (or Heavy) Media Separation
  • 16.7.1 - Heavy Liquids
  • 16.7.2 - Pseudo Heavy Liquids
  • 16.7.3 - Types of Dense Medium Separators
  • Gravity dense medium separators
  • Centrifugal dense medium separators
  • 16.7.4 - Comparison of Dense Medium Separators and Jigs in Coal Processing
  • 16.8 - Gravity Separation Performance
  • 16.8.1 - Sink-Float Analysis
  • 16.8.2 - Washability Curves
  • Cumulative floats curve
  • Cumulative sinks curve
  • Instantaneous ash curve
  • Relative density curve
  • Distribution or ± 0.1 S.G. curve
  • 16.8.3 - Tromp Curves
  • 16.8.4 - Sink-Float Alternatives
  • 16.9 - Problems
  • References
  • Chapter 17 - Magnetic and Electrostatic Separation
  • 17.1 - Introduction
  • 17.2 - Atomic Theory of Magnetism
  • 17.3 - Types of Magnetism in Minerals
  • 17.3.1 - Paramagnetism
  • 17.3.2 - Diamagnetism
  • 17.3.3 - Ferromagnetism
  • 17.3.4 - Ferrimagnetism and Antiferromagnetism
  • 17.4 - Magnetic Properties of Some Selected Commercial Minerals
  • 17.4.1 - Iron Sulphide Minerals
  • Pyrrhotite [Fe1-x S]
  • Pyrite [FeS2]
  • Arsenopyrite [FeAsS]
  • 17.4.2 - Iron Oxide Minerals
  • Hematite [Fe2O3]
  • Magnetite [Fe3O4]
  • Ilmenite [FeTiO3]
  • 17.4.3 - Titanium Oxide Minerals
  • Rutile [TiO2]
  • 17.4.4 - Copper Sulphide Minerals
  • Chalcopyrite [CuFeS2]
  • 17.4.5 - Chrome Spinels
  • Chromites [FeCr2O4]
  • 17.4.6 - Rare Earths
  • 17.5 - Industrial Roll Design and Methods of Magnetic Separation of Minerals
  • 17.5.1 - Roll Designs and Force Distribution on Roll Surface
  • Induced Magnetic Rolls
  • Dry Permanent Magnetic Rolls
  • 17.5.2 - Magnetic Rolls and Wet Mineral Separation
  • 17.6 - Electrical Conductivity of Minerals
  • 17.6.1 - Band Theory of Conductivity
  • 17.6.2 - Conductivity and Mobility of Electrons in Minerals
  • 17.6.3 - Semi-Conducting Minerals and Junction Potential
  • 17.7 - Electrostatic Forces and Mineral Separation
  • 17.7.1 - Contact or Frictional Charging (Triboelectric Effect)
  • 17.7.2 - Conductance Charging
  • 17.7.3 - High Tension or Ion Bombardment Charging
  • 17.8 - Practical Separation Units
  • 17.8.1 - Triboelectric Charging
  • 17.8.2 - Conductance Charging
  • 17.8.3 - Charging by Corona Discharge and Ion Bombardment
  • 17.8.4 - Dielectrophoretic and Electrophoretic Forces and Mineral Particle Separation
  • References
  • Chapter 18 - Flotation
  • 18.1 - Introduction
  • 18.2 - Flotation Reagents
  • 18.2.1 - Collectors
  • 18.2.2 - Frothers
  • 18.2.3 - Modifiers
  • 18.3 - Flotation Equipment
  • 18.3.1 - Mechanical Flotation Cells
  • 18.3.2 - Pneumatic Flotation Cells
  • 18.3.3 - Laboratory Flotation Machines
  • 18.3.4 - Flotation Cell Requirements
  • 18.4 - Flotation Circuits
  • 18.5 - Flotation Kinetics
  • 18.5.1 - Batch Flotation
  • 18.5.2 - First-Order Rate Equation
  • 18.5.3 - Second-Order Rate Equation
  • 18.5.4 - Non-Integral Order
  • 18.5.5 - Experimental Results
  • 18.5.6 - Continuous Flotation
  • 18.5.7 - Laboratory Testing of Kinetic Relationships
  • Batch testing
  • Steady-state testing
  • 18.6 - Factors Affecting the Rate of Flotation
  • 18.6.1 - Impeller Speed
  • 18.6.2 - Air Flowrate
  • 18.6.3 - Particle Size
  • 18.6.4 - Reagents
  • Collectors
  • Frothers
  • Modifying agents
  • 18.7 - Application of Kinetic Equations
  • 18.7.1 - Practical Considerations
  • Physical differences from cell to cell
  • Chemical differences from cell to cell
  • Variation in residence time
  • Mixing in the cells
  • 18.7.2 - Basic Data for Process Simulation
  • 18.8 - Other Flotation Models
  • 18.8.1 - Probability Models
  • 18.8.2 - Two-Phase Model
  • 18.8.3 - Bubble Surface Area Flux
  • 18.9 - Problems
  • References
  • Chapter 19 - Metallurgical Process Assessment
  • 19.1 - Introduction
  • 19.2 - Analyses of Constituents
  • 19.3 - Definition of Terms
  • 19.3.1 - Mass or Weight
  • 19.3.2 - Slurry
  • 19.3.3 - Grade
  • 19.3.4 - Recovery
  • 19.3.5 - Distribution
  • 19.4 - Material Balance
  • 19.4.1 - Two-Product Formula
  • 19.4.2 - Three Product Formula
  • 19.5 - Circulating Load
  • 19.6 - Problems
  • References
  • Chapter 20 - Process Control
  • 20.1 - Introduction
  • 20.2 - Controller Modes
  • 20.3 - Signals and Responses
  • 20.4 - Input and Output Signals of Controllers
  • 20.5 - Integration of Processes and Block Diagrams
  • 20.6 - Setting and Tuning Controls
  • 20.7 - Complex Advanced Controllers
  • 20.7.1 - Error Squared Controllers
  • 20.7.2 - Ratio Controllers
  • 20.7.3 - Cascade Controllers
  • 20.7.4 - Adaptive Controllers
  • 20.8 - Dead Time Compensation
  • 20.9 - Instrumentation and Hardware
  • 20.9.1 - Instrumentation
  • Level 1 control
  • Level 2 control
  • Level 3 control
  • Level 4 control
  • 20.9.2 - Hardware
  • Pneumatic valves
  • 20.9.3 - Other Hardware
  • 20.10 - Controls of Selected Mineral Processing Circuits
  • 20.10.1 - Controlling Liquid Level in Tanks
  • 20.10.2 - Crushing Plant Controls
  • 20.10.3 - Grinding Mill Control in Closed Circuit
  • Level 1
  • Level 2
  • Level 3
  • 20.10.4 - Thickener Control
  • Control strategy
  • Level 1: Control loops
  • Level 2: Control loops
  • Level 3: Control loops
  • 20.10.5 - Control of Hydrocyclone Operation
  • 20.11 - Advances in Process Control Systems
  • 20.11.1 - Self-Tuning Control (STC)
  • 20.11.2 - Horizontal Control (Extended)
  • 20.12 - Expert Systems
  • 20.12.1 - Fuzzy System of Control
  • 20.12.2 - Neural and Artificial Network Methods (ANN) of Control
  • 20.13 - Mechanics of Digital Process Control Systems
  • 20.13.1 - Inputs and Outputs
  • 20.13.2 - Process Communications and Network
  • 20.14 - Problems
  • References
  • Appendix
  • Appendix A-1
  • Appendix A-2
  • Appendix A-3
  • Appendix A-4
  • Appendix A-5
  • Appendix A-6
  • Appendix B-1
  • Appendix B-2
  • Appendix B-3
  • Appendix C-1
  • Appendix C-2
  • Appendix C-3
  • Appendix C-4
  • Appendix D-1
  • Appendix D-2
  • Appendix E-1
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok