Nutraceuticals

Nanotechnology in the Food Industry Volume 4
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 8. November 2016
  • |
  • 890 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-804376-9 (ISBN)
 
Volume 4 Nutraceuticals

Assistant Professor
Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Romania
2451-9324
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 23,38 MB
978-0-12-804376-9 (9780128043769)
0128043768 (0128043768)
weitere Ausgaben werden ermittelt
  • Cubierta
  • Title Page
  • Copyright Page
  • Contents
  • List of contributors
  • Series Foreword
  • Series Preface
  • About the Series (Volumes I-X)
  • Volume Preface
  • 1 - Mineral and vitamin fortification
  • 1 - Introduction
  • 2 - Minerals
  • 2.1 - Copper
  • 2.2 - Iron
  • 2.3 - Zinc
  • 2.4 - Manganese
  • 2.5 - Nickel
  • 2.6 - Daily Needs for the Essential Metals
  • 3 - Vitamins
  • 3.1 - Vitamins Soluble in Fats (Oils)
  • 3.1.1 - Vitamin A
  • 3.1.2 - Vitamin D
  • 3.1.3 - Vitamin E
  • 3.1.4 - Vitamin K
  • 3.2 - Vitamins Soluble in Water
  • 3.2.1 - Vitamin C
  • 3.2.2 - Vitamin B1: Thiamine
  • 3.2.3 - Vitamin B2: Riboflavin
  • 3.2.4 - Vitamin B3: Niacin
  • 3.2.5 - Vitamin B5: Pantenonic Acid
  • 3.2.6 - Vitamin B6: Pyridoxin
  • 3.2.7 - Vitamin B12: Cobalamine
  • 3.2.8 - Vitamin B9: Folic Acid
  • 3.2.9 - Vitamin H: Biotin
  • 4 - Fortification of Food With Vitamins and Minerals
  • 5 - Determination of Vitamins and Minerals in Fortified Food
  • 6 - Improvements of Awareness and Health Culture on Fortified Food
  • 7 - Conclusions
  • References
  • 2 - Functional nutraceuticals: past, present, and future
  • 1 - Introduction
  • 2 - Naturally Derived Bioactive Compounds
  • 1.1 - Subtlety of Nutraceuticals
  • 3 - Indicative Matrix of Phytochemicals (With Nutraceutical Properties) and Possible Health Benefits
  • 3.1 - Therapeutic Properties of Phytochemicals
  • 4 - Chronic Disease Management with Nutraceuticals
  • 4.1 - Alzheimer's Disease (AD)
  • 4.2 - Cardiovascular Diseases (CVD)
  • 4.3 - Carcinoma
  • 4.4 - Renal Diseases
  • 4.5 - Osteoarthritis
  • 5 - Extraction of Nutraceuticals from Plants and Animals
  • 5.1 - Soxhlet Extraction
  • 5.2 - Sonication Assisted Extractions
  • 5.3 - Microwave Assisted Extraction (MAE)
  • 5.4 - Supercritical Fluid Extraction
  • 6 - Analytical Techniques Used for the Characterization of Nutraceuticals
  • 7 - Issues Related with the Incorporation of Nutraceuticals in Foods
  • 8 - Delivery Systems for Enhancing the In Vivo Bioavailability and Stability of Nutraceuticals
  • 8.1 - Some of the Presently Focused Nutraceutical Delivery Vehicles
  • 8.1.1 - Phospholipid-Based Delivery Vehicles
  • 8.1.2 - Liposomes as Carrier Systems
  • 8.1.3 - Niosomes as Carrier Systems
  • 8.1.4 - Emulsion-Based Delivery Systems
  • 8.1.5 - Microemulsion/Nanoemulsions as Delivery Vehicles
  • 8.1.6 - Ethosomes as Carrier Systems
  • 8.1.7 - Self-Microemulsifying Drug Delivery Systems (SMEDDS)
  • 9 - Nanoencapsulation-Based Delivery Vehicles
  • 9.1 - Solid Lipid Nanoparticles (SLNs)
  • 9.2 - Nanostructured Lipid Carriers (NLCs)
  • 10 - Challenges Associated with Epidemiological Research on Nutraceuticals
  • 11 - Future of Nutraceutials and Nutraceutials Research
  • 12 - Conclusions
  • References
  • 3 - Nutrition nutraceuticals: a proactive approach for healthcare
  • 1 - Introduction
  • 2 - Nutraceuticals
  • 3 - Classifying Nutraceutical Factors
  • 3.1 - Dietary Supplements
  • 3.2 - Functional Foods
  • 3.3 - Nutraceuticals as Bioactives for Health Benefits
  • 4 - Role of Nutraceuticals as "Dietary Antioxidants"
  • 4.1 - Prooxidant Activity of Antioxidants
  • 5 - Nutraceuticals for Self-Care and Longevity
  • 6 - Nutraceuticals in Chemotherapy
  • 7 - Using Natural Compounds Combinations in Nutraceuticals
  • 8 - Nutraceuticals as Bioenhancers
  • 8.1 - Mechanism of Action of Bioenhancers
  • 8.2 - Details of Some Important Natural Bioenhancers
  • 8.2.1 - Piperine
  • 8.2.2 - Ginger (Z. officinale)
  • 8.2.3 - Quercetin
  • 8.2.4 - Naringin
  • 8.2.5 - Glycyrrhizin
  • 9 - Role of Nanotechnology for Anticancer Nutraceuticals
  • 10 - Regulations for Nutraceuticals
  • 11 - Future of Nutraceuticals
  • 12 - Conclusions
  • References
  • 4 - Potential of nanotechnology in nutraceuticals delivery for the prevention and treatment of cancer
  • 1 - Introduction
  • 1.1 - Nutraceuticals
  • 2 - Nutraceuticals for Cancer Prevention and Treatment
  • 2.1 - Curcumin
  • 2.2 - Propolis
  • 2.3 - Green Tea (Catechins)
  • 2.4 - Silymarin
  • 2.5 - Capsaicin
  • 2.6 - Genistein
  • 2.7 - Vitamin D3 (Calcitriol)
  • 3 - Clinical Problems of Nutraceuticals
  • 4 - Formulations to Enhance Nutraceuticals' Characteristics
  • 4.1 - Liposomes
  • 4.2 - Nanoemulsions
  • 4.3 - Nanoparticles
  • 4.4 - Phytosomes
  • 5 - Nanoformulation of Anticancer Nutraceuticals
  • 5.1 - Oral Delivery Systems of Nutraceuticals
  • 5.2 - Other Delivery Routes of Nutraceuticals
  • 6 - Advantages of the Nanoformulation of Anticancer Nutraceuticals
  • 6.1 - Enhanced Solubility
  • 6.2 - Sustained Duration of Action
  • 6.3 - Stability under Storage Conditions
  • 6.4 - Cancer Targeting
  • 7 - Conclusions
  • References
  • 5 - Adulteration and safety issues in nutraceuticals and dietary supplements: innocent or risky?
  • 1 - Introduction
  • 2 - Regulatory Issues with Nutraceuticals and Dietary Supplements
  • 3 - Intentional Adulteration, Counterfeiting, and Undeclared Labeling in Nutraceuticals, Dietary Supplements, and Other Her...
  • 3.1 - Adulteration in Herbal Preparations for Sexual Enhancement
  • 3.2 - Adulteration in Herbal Slimming Preparations
  • 3.3 - Adulteration in Nutraceuticals and Dietary Supplements Used for Other Therapeutic Purposes
  • 3.4 - Use of Novel and Advanced Analysis Techniques for Morphologically Substitute Species: Contamination and Adulteration ...
  • 3.5 - Adulteration in Essential Oils
  • 4 - Conclusions
  • References
  • 6 - Regulatory perspectives on nanotechnology in nutraceuticals
  • 1 - Introduction
  • 2 - Regulatory Aspects on the Use of Nanomaterials in Nutraceuticals
  • 2.1 - Regulatory Framework
  • 2.1.1 - International Regulatory Framework
  • 2.1.1.1 - USA Approach
  • 2.1.1.2 - Canadian Approach
  • 2.1.1.3 - Australian Approach
  • 2.1.2 - European Regulatory Framework
  • 2.2 - Nanomaterial Definition
  • 2.2.1 - International and National definitions
  • 2.2.2 - Regulatory Definitions in EU
  • 2.2.2.1 - Horizontal Definitions
  • 2.2.2.1.1 - EU Level Recommendation
  • 2.2.2.1.2 - National Registries
  • 2.2.2.2 - Other Regulatory Nanomaterial Definitions
  • 2.3 - Nanofood Safety Assessment
  • 3 - Characterization of Nanomaterials for Regulatory Purposes
  • 3.1 - State of the Art
  • 3.2 - Validated Methods
  • 3.3 - Determination of Size and Size Distribution of Nanoparticles
  • 3.4 - Other Relevant Parameters
  • 4 - Hazard Identification and Characterization
  • 5 - Concluding Remarks
  • References
  • 7 - Elucidating the therapeutic potential of nutraceuticals
  • 1 - Introduction
  • 2 - Functional Foods and Nutraceuticals
  • 3 - Extraction of Bioactive Components
  • 4 - Supercritical Fluid Extraction
  • 5 - Advantages and Disadvantages of SFE
  • 6 - Encapsulation of Nutraceutical Compounds
  • 7 - Microencapsulation Technologies Used for Bioactive Food Ingredients
  • 7.1 - Microbial Products
  • 7.2 - Nonmicrobial Products
  • 8 - Bioactive Components Delivery
  • 8.1 - Microbial Products
  • 8.2 - Nonmicrobial Products
  • 9 - Therapeutic Potential of Nutraceutical Compounds
  • 10 - Cardamom
  • 10.1 - Antibacterial/Fungal Activity
  • 10.2 - Large Cardamom Activity as Antidiabetic
  • 10.3 - Cardio-Adaptogen Activity
  • 10.4 - Cardamom Antioxidant Activity
  • 10.5 - Cardamom Antihyperlipidemic Activity
  • 10.6 - Cardiovascular Diseases
  • 10.7 - Pharmacological Potential/Ethnobotanical Uses
  • 11 - Cinnamon
  • 11.1 - Antioxidant Activity
  • 11.2 - Antidiabetic Activity
  • 11.3 - Hypolipidemic Potential
  • 11.4 - Antipyretic and Analgesic Effects
  • 11.5 - Antibacterial Activity
  • 11.6 - Antiinflammatory Activity
  • 11.7 - Antimicrobial Activities
  • 11.8 - Nematicidal Activity
  • 12 - Turmeric
  • 12.1 - Hypocholesterolemic and Hypoglycemic Potential
  • 12.2 - Antiinflammatory Activity
  • 12.3 - Antioxidant Effect
  • 12.4 - Antimutagenic and Anticancerous Property
  • 12.5 - Antiviral, Antimicrobial, and Antiparasitic Activities
  • 13 - Ginger
  • 13.1 - Antiinflammatory and Anticancer Properties
  • 13.2 - Antiplatelet Effect
  • 13.3 - Antioxidant Effect
  • 13.4 - Antiulcer Properties
  • 13.5 - Anticonvulsive and Analgesic Effect
  • 13.6 - Cardiovascular Effect
  • 14 - Cassia
  • 14.1 - Antiulcerogenic Activity
  • 14.2 - Antifungal Activity
  • 14.3 - Hypoglycemic and Hyperlipidemic Effects
  • 14.4 - Pesticidal Activity
  • 15 - Clove
  • 15.1 - Antimicrobial Activity
  • 15.2 - Antioxidant Activity
  • 15.3 - Antiinflammatory Activity
  • 15.4 - Mosquito-Repellent Activity
  • 15.5 - Insecticidal Activity
  • 15.6 - Antiviral Activity
  • 15.7 - Toxicity Studies
  • 16 - Nutmeg and Mace
  • 16.1 - Antimicrobial and Antiamoebic Activity
  • 16.2 - Antibacterial Activity
  • 16.3 - Anticancer Activity
  • 17 - Coriander
  • 17.1 - Hypoglycaemic Potential
  • 17.2 - Aflatoxin Control and Insecticidal Effect
  • 18 - Cumin
  • 18.1 - Antioxidant Activity
  • 18.2 - Reproductive and Hypoglycaemic Properties
  • 18.3 - Antimicrobial Activity
  • 19 - Fennel
  • 19.1 - Antioxidant Activity
  • 19.2 - Antimicrobial Property
  • 19.3 - Anticancer Property
  • 19.4 - Act as a Food Allergen
  • 20 - Fenugreek
  • 20.1 - Wound Healing
  • 20.2 - Immunomodulatory Effect
  • 20.3 - Antioxidant Activity
  • 20.4 - Hypocholesterolaemic Activity
  • 21 - Chili
  • 21.1 - Anticancerous Activity
  • 21.2 - Antiobesity Potential
  • 22 - Vanillin
  • 22.1 - Antioxidant Property
  • 22.2 - Antimicrobial Activity
  • 23 - Aniseed
  • 23.1 - Antiinflammatory and Antibacterial Activity
  • 24 - Garcinia
  • 24.1 - Antioxidant
  • 24.2 - Astringent
  • 24.3 - Anti-HIV Agent
  • 24.4 - Antibacterial Agent
  • 24.5 - Antiobesity Factor
  • 24.6 - Analgesic Effect
  • 25 - Curry Leaf
  • 25.1 - Antimicrobial
  • 25.2 - Antidiabetic
  • 25.3 - Pesticidal Properties
  • 25.4 - Antiinflammatory
  • 26 - Bay Leaf
  • 26.1 - Antifungal Activity
  • 26.2 - Anticonvulsant
  • 26.3 - Antimicrobial and Insecticidal Activity
  • 27 - Conclusions
  • References
  • 8 - Advanced nanocarriers for nutraceuticals based on structured lipid and nonlipid components
  • 1 - Introduction
  • 2 - Nutraceuticals: Lipid and Nonlipid Origins
  • 3 - Nanocarriers for Pure and Structured Lipid and Nonlipid-Based Nutraceuticals: Nanoemulsions and Nanocapsules
  • 4 - Manufacturing Methodologies of Nanonutraceutical Products
  • 4.1 - Namoemulsions or Nanodispersions
  • 4.2 - Nanocapsules
  • 4.3 - Release From Nanocapsules
  • 5 - Characterization Techniques of Nanocarriers for Nutraceuticals
  • 5.1 - Dynamic Light-Scattering Technique
  • 5.2 - Zeta Potential
  • 5.3 - Differential Scanning Calorimetry
  • 5.4 - X-Ray Diffraction Technique
  • 5.5 - Imaging Techniques
  • 5.5.1 - Transmission Electron Microscopy
  • 5.5.2 - Scanning Electron Microscopy
  • 5.5.3 - Atomic Forced Microscopy
  • 5.6 - Encapulation Efficiency
  • 6 - Conclusions
  • References
  • 9 - Encapsulation of nutraceuticals in novel delivery systems
  • 1 - Introduction
  • 2 - Distinction Between Nutrients, Functional Food, and Nutraceuticals
  • 3 - Nanotechnology-Based Delivery Systems Applied in the Nutraceuticals Encapsulation
  • 3.1 - Nanoemulsions
  • 3.2 - Lipid Nanoparticles
  • 3.3 - Liposomes and Niosomes
  • 3.4 - Polymeric Nanoparticles
  • 3.5 - Micelles
  • 3.6 - Cyclodextrins
  • 4 - Micro- and Nanoencapsulation of Nutraceuticals
  • 4.1 - Encapsulation of Probiotics, Prebiotics, and Synbiotics
  • 4.1.1 - An Overview on Probiotics, Prebiotics, and Synbiotics
  • 4.1.2 - Delivery of Probiotics, Prebiotics, and Synbiotic
  • 4.2 - Encapsulation of Oils and Omega-3 Fatty Acids
  • 4.3 - Encapsulation of Antioxidants
  • 4.3.1 - Encapsulation of Polyphenols
  • 4.3.1.1 - Curcumin and Derivatives
  • 4.4 - Vitamins
  • 5 - Conclusions
  • References
  • 10 - Novel paradigm of design and delivery of nutraceuticals with nanoscience and technology
  • 1 - Introduction
  • 1.1 - Classification of Nutraceuticals
  • 1.2 - Concept of Nutraceuticals
  • 1.3 - Conventional Mode of Design and Delivery of Nutraceuticals
  • 2 - Nanoscience and Technology in Nutraceuticals
  • 2.1 - Concept of Nanodelivery Systems for Nutraceuticals
  • 2.2 - Different Methods of Synthesis and Formulation of NPs With Nutraceuticals
  • 2.2.1 - Approaches for the Preparation of Nanoparticles by Mechanical Methods
  • 2.2.2 - Approaches for the Preparation of Nanoparticles by Chemical Methods
  • 2.2.2.1 - Dispersion of Preformed Polymers
  • 2.2.2.1.1 - Nanoprecipitation
  • 2.2.2.1.2 - Solvent Evaporation
  • 2.2.2.1.3 - Emulsification/Solvent Diffusion
  • 2.2.2.1.4 - Salting-Out
  • 2.2.2.1.5 - Dialysis
  • 2.2.2.2 - Polymerization of Monomers
  • 2.2.2.2.1 - Emulsion Polymerization
  • 2.2.2.2.2 - Miniemulsion Polymerization
  • 2.2.2.2.3 - Microemulsion Polymerization
  • 2.2.2.2.4 - Interfacial Polymerization
  • 2.2.2.2.5 - Controlled/Living Radical Polymerization
  • 2.2.2.3 - Ionic Gelation or Coacervation of Hydrophilic Polymers
  • 2.3 - Potential Nanodelivery Systems
  • 2.3.1 - Nanodispersions and Nanoencapsulates
  • 2.3.2 - Nanolaminates
  • 2.3.3 - Nanofibers
  • 3 - Function of Nanoscience and Technology for Nutraceuticals
  • 4 - Conclusions
  • References
  • 11 - Nutraceutical aspects of ß-glucan with application in food products
  • 1 - Introduction
  • 2 - ß-Glucan Extraction
  • 3 - Rheology of ß-Glucan
  • 4 - ß-Glucan Physiological Effects in Humans
  • 5 - ß-Glucan Immune Modulating Effect
  • 6 - Skin Health Promotion
  • 6.1 - Wound Healing
  • 6.2 - Cosmetics Development
  • 7 - Effects of ß-Glucan on Some Environmental Toxins
  • 8 - Health Benefits of ß-Glucan
  • 9 - ß-Glucan Application in Foods
  • 9.1 - Use of ß-Glucan in Pasta Products
  • 9.2 - ß-Glucan as a Bread Ingredient
  • 9.3 - ß-Glucan as Fat Replacer in Mayonnaise
  • 9.4 - Use of ß-Glucan in Beverages
  • 9.5 - Use of ß-Glucan in Dairy Products
  • 9.6 - ß-Glucan Uses in the Development of Low-Fat Yogurt
  • 9.7 - Uses of ß-Glucan in Meat Industry
  • 9.8 - Use of ß-Glucan as Gelling Agent
  • 10 - Safety of ß-Glucan as a Food Ingredient
  • 11 - Conclusions
  • References
  • 12 - Nanotechnological approach to improve the bioavailability of dietary flavonoids with chemopreventive and anticancer...
  • 1 - Flavonoids as Dietary Agents with Chemopreventive and Chemotherapeutic Potential
  • 2 - Obstacles to Implementation of Anticancer Potential of Flavonoids
  • 3 - Absorption and Metabolic Bioconversion of Flavonoids
  • 4 - Nanotechnological Approach to Overcome the Current Barriers
  • 5 - Overview of Nanovehicles Used for Encapsulation of Flavonoids
  • 5.1 - Lipid-Based Nanocarrier Systems
  • 5.2 - Polymer-Based Nanocarrier Systems
  • 5.3 - Biophysicochemical Properties Impacting Nanosized Drug Delivery Systems
  • 6 - Enhanced Anticancer Efficacy of Nanoencapsulated Flavonoids
  • 6.1 - Targeted Anticancer Therapy with Nanoencapsulated Flavonoids
  • 6.2 - Coencapsulation of Flavonoids with Standard Chemotherapeutics
  • 7 - Summary and Further Perspectives
  • References
  • 13 - Improving bioavailability of nutraceuticals by nanoemulsification
  • 1 - Introduction to Nutraceuticals
  • 1.1 - Definitions
  • 1.2 - Nutraceuticals and Their Impact on Health
  • 1.3 - Nutraceuticals Market Share
  • 2 - Categorizing Nutraceuticals
  • 2.1 - Nutraceuticals Classification Based on Therapeutic Constituent
  • 2.2 - The Nutraceutical Bioavailability Classification Scheme (NuBACS)
  • 2.2.1 - NuBACS B
  • 2.2.2 - NuBACS A
  • 2.2.3 - NuBacs T
  • 3 - Bioactive Phytoconstituents as Nutraceuticals
  • 4 - Nanoemulsion Fabrication
  • 4.1 - Excipients for Nanoemulsion Formulation
  • 4.2 - Nanoemulsion Fabrication Techniques
  • 4.2.1 - Low-Energy Spontaneous Nanoemulsification
  • 4.2.1.1 - PIT and PIC
  • 4.2.1.2 - Emulsion Phase Inversion or Self-Emulsifying Drug Delivery System (SEDDS)
  • 4.2.2 - High-Energy Nanoemulsification
  • 4.2.2.1 - HPH
  • 4.2.2.2 - Microfluidization
  • 4.2.2.3 - Ultrasound Irradiation
  • 4.2.2.4 - Electrified Coaxial Liquid Jets
  • 5 - Examples of Nutraceuticals Encapsulated in Nanoemulsion
  • 5.1 - Curcumin
  • 5.2 - Resveratrol
  • 5.3 - Lutein
  • 6 - Concluding Remarks
  • References
  • 14 - Bioavailability and delivery of nutraceuticals by nanoparticles
  • 1 - Introduction
  • 2 - Nutraceuticals and Functional Foods
  • 2.1 - Routes of Nutraceutical Delivery
  • 2.1.1 - Oral Delivery
  • 2.1.2 - Dermal Delivery
  • 2.1.3 - Ophthalmic Delivery
  • 2.2 - Bioaccessibility, Bioavailability and Bioactivity of Nutraceuticals
  • 3 - Nanotechnological Approaches for Enhancing Nutritional Quality and Stability of the Nutraceuticals
  • 3.1 - Nanoparticles (NP)
  • 3.2 - Nano-Delivery Systems
  • 3.2.1 - Nanoemulsions and Nanosuspensions
  • 3.2.2 - Solid Lipid Nanoparticles (SLNs)
  • 3.2.3 - Nanoencapsulation
  • 3.2.4 - Nanostructured Lipid Carriers (NLC)
  • 3.2.5 - Self-Emulsifying Drug Delivery Systems
  • 4 - Nanoparticles in Foods for Improved Nutritional Quality
  • 4.1 - Effects of the Size and Surface Characteristics of Nanoparticles on Bioavailability
  • 4.1.1 - Nanostructures for Uniform Delivery in Food Matrices and Improved Chemical Stability
  • 4.1.2 - Nanoparticles for Controlled Enteric or Colonic Delivery
  • 4.1.3 - Mucoadhesive Particles to Enhance Bioavailability
  • 4.1.4 - Nanoparticles Decrease First-Pass Metabolism of Nutraceuticals
  • 5 - Conclusions
  • References
  • 15 - Bioavailability enhancement of curcumin nutraceutical through nano-delivery systems
  • 1 - Introduction
  • 2 - Curcumin
  • 2.1 - Curcumin Chemistry
  • 2.2 - Physico-Chemical Properties of Curcumin
  • 2.3 - Curcumin Safety and Toxicity
  • 2.4 - Clinical Studies on Curcumin
  • 2.5 - Bioavailability and Pharmacokinetics of Curcumin
  • 3 - Nano-Drug Delivery System
  • 3.1 - Polymeric Nanoparticles
  • 3.2 - Solid-Lipid Nanoparticle
  • 3.3 - Nanogel
  • 3.4 - Nanoemulsion
  • 3.5 - Liposomes
  • 3.6 - Micelles
  • 3.7 - Phospholipid Complexes
  • 3.8 - Nanocrystal
  • 3.9 - Conjugates
  • 3.10 - Niosome
  • 3.11 - Dendrimers
  • 4 - Future Developments
  • 5 - Conclusions
  • References
  • 16 - Microencapsulation of probiotic cells: applications in nutraceutic and food industry
  • 1 - Introduction
  • 2 - Probiotics
  • 2.1 - Probiotic Cells
  • 2.2.1 - Lactic Acid Bacteria (LAB)
  • 2.2.1.1 - Gender Lactobacillus
  • 2.2.1.2 - Gender Bifidobacterium
  • 2.1.2 - Propionibacteria
  • 2.1.3 - Yeasts
  • 2.2 - Beneficial Effects of Probiotics on Human Health
  • 2.2.1 - Lactose Intolerance
  • 2.2.2 - Diarrhea
  • 2.2.3 - Inflammatory Bowel Disease
  • 2.2.4 - Helicobacter Pylori Associated Gastritis
  • 2.2.5 - Irritable Bowel Syndrome (IBS)
  • 2.2.6 - Colorectal Cancer
  • 2.2.7 - Urinary Tract Disorders: Vaginitis
  • 2.2.8 - Immune System and Allergies
  • 2.2.9 - Hypercholesterolemia
  • 2.3 - Probiotics as Nutraceuticals
  • 3 - Microencapsulation
  • 3.1 - Techniques for Microencapsulation of Probiotics
  • 3.1.1 - Spray Drying
  • 3.1.1.1 - Spray Freeze Drying
  • 3.1.1.2 - Spray Chilling
  • 3.1.1.3 - Ultrasonic Vacuum Spray Dryer
  • 3.1.1.4 - Encapsulation by Coating and Agglomeration
  • 3.1.2 - Ionic Gelification
  • 3.1.2.1 - Ionic Gelification and Emulsification
  • 3.1.2.2 - Ionic Gelification and Extrusion Method
  • 3.1.3 - Interfacial Polymerization
  • 3.1.4 - Impinging Aerosol Technology
  • 3.1.5 - Electrospinning
  • 3.2 - Supporting Materials
  • 3.2.1 - Alginate
  • 3.2.2 - Gellan Gum and Xanthan Gum
  • 3.2.3 - Carrageenan
  • 3.2.4 - Cellulose Acetate Phthalate
  • 3.2.5 - Chitosan
  • 3.2.6 - Starch
  • 3.2.7 - Gelatin
  • 3.2.8 - Milk Proteins
  • 3.3 - Encapsulation Efficiency
  • 3.4 - Morphology and Size of Microparticles
  • 4 - Food and Pharmaceutical Applications
  • 5 - Futures Trends and Conclusions
  • References
  • 17 - New trends in food science: the use of nutraceuticals as an antiinflammatory therapeutic tool in exercise
  • 1 - Introduction
  • 2 - Immune Function in Sports and Exercise
  • 2.1 - Overview of the Immune System
  • 2.2 - Antiinflammatory Nature of Regular Moderate Exercise
  • 2.3 - Exercise as an Immunosuppressant
  • 2.4 - Interactions of Exercise and Immune System and Decrease of Performance
  • 2.4.1 - Upper Respiratory Tract Illness
  • 2.4.2 - Delayed-Onset Muscle Damage (DOMS)
  • 3 - Nutraceuticals for Maximizing Recovering and Performance in Athletes
  • 3.1 - Omega 3 Fatty Acids
  • 3.2 - Glutamine
  • 3.3 - Branched-Chain-Amino Acids (BCAAs)
  • 3.4 - Phytochemicals
  • 3.5 - Conclusions
  • 4 - New Trends: The Use of Nanotechnology for Immune Modulation
  • 4.1 - Nanotechnology and Functional Foods
  • 4.1.1 - Types of Nanostructured Delivery Systems for Functional Food
  • 4.1.2 - Sensory Aspects of Functional Food (Texture, Flavor, Odor)
  • 4.1.3 - Improvement of Bioavailability of Bioactive Compounds
  • 4.1.4 - Health Aspects of Nano Enrichment of Food: Safety and Efficacy
  • 4.2 - Sports Drinks to Modulate the Immune System and Increase Performance
  • 4.3 - Future Trends Evolving Sports Beverages
  • 5 - Concluding Remarks
  • References
  • 18 - Functional food ingredients and nutraceuticals, milk proteins as nutraceuticals nanoScience and food industry
  • 1 - Introduction
  • 2 - Nanodelivery Systems
  • 2.1 - Nanoencapsulation
  • 2.1.1 - Top-Down Approaches
  • 2.1.2 - Bottom-Up Approaches
  • 2.2 - Nanoemulsions
  • 2.3 - Liposomes
  • 3 - Milk Proteins
  • 3.1 - Casein and Casein Micelles
  • 3.2 - Whey Proteins
  • 3.3 - ß-Lactoglobulin
  • 3.4 - a-Lactalbumin
  • 3.5 - Lactoferrin
  • 4 - Nanoemulsion-Encapsulated Phytochemicals
  • 4.1 - Carotenoids
  • 4.2 - Zein
  • 4.3 - V-Amylose
  • 4.4 - Chitosan
  • 4.5 - Phenolic Compounds
  • 5 - Nanoemulsions and Lipids
  • 5.1 - Omega-3 Fatty Acids
  • 6 - Conclusions
  • References
  • 19 - Protein-based dietary supplements as nutraceuticals
  • 1 - Introduction
  • 2 - Nanotechnology
  • 2.1 - Nanodelivery Systems
  • 3 - Nutraceuticals
  • 4 - Protein-Based Dietary Supplements
  • 4.1 - Why Humans Need Protein-Based Dietary Supplements
  • 4.2 - Beneficial Effect of Protein-Based Dietary Supplements
  • 5 - Conclusions
  • References
  • 20 - Nutraceuticals-loaded chitosan nanoparticles for chemoprevention and cancer fatigue
  • 1 - Nutraceuticals
  • 1.1 - Importance of Nutraceuticals
  • 1.2 - Polyphenols
  • 1.3 - Curcumin
  • 1.4 - Vitamin C
  • 1.5 - Vitamin D
  • 1.6 - Vitamin B12
  • 1.7 - Connection between Iron and Vitamins
  • 2 - Cancer
  • 2.1 - Types of Cancer
  • 2.2 - Causes of Cancer
  • 2.3 - Cancer Detection and Diagnosis
  • 2.4 - Treatment of Cancer
  • 2.5 - Cancer Fatigue
  • 3 - Nanotechnology
  • 3.1 - High-Pressure Homogenization (HPH)
  • 3.2 - Ultrasonication
  • 3.3 - Phase Inversion Temperature
  • 3.4 - Microfluidizer
  • 3.5 - Spray Dryer
  • 3.6 - Parameters for Evaluation of Formulation
  • 3.6.1 - Specificity
  • 3.6.2 - Accuracy
  • 3.6.3 - Precision
  • 3.6.3.1 - Repeatability
  • 3.6.3.2 - Intermediate Precision
  • 3.6.3.3 - Reproducibility
  • 3.6.4 - Detection Limit
  • 3.6.5 - Quantitation Limit
  • 3.6.6 - Linearity
  • 3.6.7 - Range
  • 3.6.8 - Robustness
  • 3.7 - Key Benefits of Nanotechnology-Based Drug Delivery
  • 3.8 - Chitosan-Biodegradable Polymers
  • 3.9 - Preparation of Nanoparticles by Various Methods
  • 4 - Preparation of Blank Chitosan Nanoparticles (W/W)
  • 4.1 - Preparation of Vitamin and Drug-Loaded Chitosan Nanoparticles
  • 4.2 - Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
  • 4.3 - Evaluation of Encapsulation Efficiency (EE)
  • 4.4 - Antiproliferative Assay
  • 4.5 - Blood Compatibility
  • 5 - Conclusions
  • References
  • Subject Index
  • Contracubierta

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

170,17 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok