Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. Dezember 2017
  • |
  • 696 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-0-12-813630-0 (ISBN)
 

Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology focuses on the fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. In particular, the following aspects of nanoparticle preparation methods are discussed: the need for less toxic reagents, simplification of the procedure to allow economic scale-up, and optimization to improve yield and entrapment efficiency. Written by a diverse range of international researchers, the chapters examine characterization and manufacturing of nanomaterials for pharmaceutical applications. Regulatory and policy aspects are also discussed.

This book is a valuable reference resource for researchers in both academia and the pharmaceutical industry who want to learn more about how nanomaterials can best be utilized.

  • Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products
  • Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years
  • Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanoscale Fabrication, Optimization, Scale-up and Biological Aspects of Pharmaceutical Nanotechnology
  • Copyright Page
  • Contents
  • List of Contributors
  • Series Preface: Pharmaceutical Nanotechnology
  • Preface
  • 1 Fabrication of polymeric core-shell nanostructures
  • 1.1 Introduction
  • 1.1.1 Definition and Historical Perspectives on Nanotechnology/Nanomedicine
  • 1.1.2 The Rationale for the Development of Polymeric Core-Shell Nanoparticles
  • 1.1.2.1 Drug solubility enhancement
  • 1.1.2.2 Combination drug therapy and modulation of the pharmacokinetics of the drugs
  • 1.1.2.3 Site-specific drug delivery via passive/active targeting
  • 1.1.2.3.1 Passive targeting using stealth corona-core nanoparticles: EPR effect
  • 1.1.2.3.2 Active targeting: nanoparticles with surface (corona) tagged proteins
  • 1.1.2.3.3 Active targeting: nanoparticles with surface (corona) tagged peptides
  • 1.1.2.3.4 Polymeric nanoparticles for targeted delivery of bioactive agents for HIV/aids treatment
  • 1.1.2.3.5 Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy
  • 1.1.2.3.6 Core-shell nanoparticles for imaging, diagnosis and treatment
  • 1.2 Materials for the Fabrication of Polymeric Core-Shell Nanostructures
  • 1.2.1 Natural Polymers
  • 1.2.2 Synthetic Polymers
  • 1.2.3 Materials for the Metallic Core of Core-Shell Nanoparticles
  • 1.3 Methods for the Fabrication of Polymeric Core-Shell Nanostructures
  • 1.3.1 Methods for Preparation of Nanoparticles From Preformed Polymers
  • 1.3.1.1 Emulsification solvent evaporation
  • 1.3.1.2 Emulsification solvent diffusion
  • 1.3.1.3 Double emulsion method
  • 1.3.1.4 Nanoprecipitation
  • 1.3.1.5 Microphase-inversion
  • 1.3.1.6 Salting out
  • 1.3.1.7 Dialysis
  • 1.3.1.8 Supercritical fluid technology
  • 1.3.1.8.1 Rapid expansion of supercritical solution (RESS)
  • 1.3.1.8.2 Rapid expansion of supercritical solution into liquid solvent (RESOLV)
  • 1.3.2 In-Situ Polymerization
  • 1.3.2.1 Suspension polymerization
  • 1.3.2.2 Interfacial polymerization
  • 1.3.2.3 Interfacial polycondensation
  • 1.3.2.4 Emulsion polymerization
  • 1.3.2.4.1 Conventional emulsion polymerization
  • 1.3.2.4.2 Inverse emulsification polymerization
  • 1.3.2.5 Mini-emulsion polymerization
  • 1.3.2.6 Micro-emulsion polymerization
  • 1.4 Dispersion Polymerization the Fabrication of Core-Shell Nanoparticles
  • 1.4.1 Mechanism of Dispersion Polymerization
  • 1.4.1.1 Particle formation stage
  • 1.4.1.2 The particle growth stage
  • 1.4.2 Factors Influencing Properties of Particles Produced by Free Radical Dispersion Polymerization
  • 1.4.2.1 Initiator
  • 1.4.2.2 Stabilizer
  • 1.4.2.3 Solvent medium
  • 1.4.2.4 Crosslinking agent
  • 1.4.2.5 Monomers
  • 1.4.3 In-Situ Dispersion Polymerization at Ambient Temperature Involving Redox Initiator System for the Fabrication of Core...
  • 1.4.4 Examples of Nanoparticles From Our Laboratory Fabricated by Free Radical Dispersion Polymerization at Ambient Tempera...
  • 1.4.4.1 Hydrolyzable crosslinked stealth nanoparticles prepared by dispersion polymerization
  • 1.4.4.2 Fabrication of stealth PLA-based nanoparticles by dispersion polymerization
  • 1.4.4.3 Fabrication of stealth biodegradable cross-linked poly-e-caprolactone nanoparticles by dispersion polymerization
  • 1.4.4.4 Antiretroviral drugs-loaded nanoparticles fabricated by dispersion polymerization
  • 1.4.4.5 Activation of HIV-1 with nanoparticle-packaged small-molecule protein phosphatase-1-targeting compound
  • 1.4.4.6 Applications of statistical experimental design (DoE), computer optimization and quality by design (QbD) in the fab...
  • References
  • Further Reading
  • 2 The emulsification-diffusion method to obtain polymeric nanoparticles: Two decades of research
  • 2.1 Introduction
  • 2.2 Emulsification-diffusion (E-D) method
  • 2.2.1 Generalities, Advantages and Disadvantages
  • 2.2.2 Formation Mechanism
  • 2.2.3 Raw Materials
  • 2.2.4 Preparative Variables
  • 2.3 Polymeric Nanoparticles Obtained by the E-D Method
  • 2.3.1 Drugs and Biologically Active Molecules Encapsulation
  • 2.4 Innovations
  • 2.5 Conclusions
  • Acknowledgments
  • References
  • Further Reading
  • 3 Tools and techniques for the optimized synthesis, reproducibility and scale up of desired nanoparticles from plant derive...
  • 3.1 Introduction
  • 3.2 History of the Synthesis of Nanoparticles
  • 3.3 Nanoparticles Synthesis and Mechanism
  • 3.3.1 Chemical Synthesis
  • 3.3.1.1 Dispersion of preformed polymers
  • 3.3.1.2 Polymerization of monomers
  • 3.3.1.3 Ionic chelation or coacervation of hydrophilic polymers
  • 3.3.2 Physical Synthesis
  • 3.3.3 Biological Synthesis
  • 3.3.3.1 Biological synthesis of nanoparticles using bacteria
  • 3.3.3.2 Biological synthesis of nanoparticles using fungi
  • 3.3.3.3 Biosynthesis of nanoparticles using yeast
  • 3.4 Synthesis of Nanoparticles Using Top-to-Bottom and Bottom-to-Top Approach
  • 3.4.1 Bottom-to-Top Approach
  • 3.4.2 Top-to-Bottom Approach
  • 3.5 Biosynthesis of Nanoparticles Using Plant Extracts
  • 3.5.1 Plant-Derived Material
  • 3.5.2 Green Synthesis (Plant-Mediated) of Metallic Nanoparticles
  • 3.6 Role of Plant Metabolites in Bio-Reduction of Metal Ions
  • 3.6.1 Terpenoids
  • 3.6.2 Flavonoids
  • 3.6.3 Sugars
  • 3.6.4 Proteins
  • 3.7 Mechanism of Action (MOA) of Nanoparticles
  • 3.8 Characterization of Nanoparticles
  • 3.9 Types of Metallic Nanoparticles
  • 3.9.1 Silver Nanoparticles (AgNPs)
  • 3.9.2 Gold nanoparticles (AuNPs)
  • 3.9.3 Zinc Oxide Nanoparticles (ZnONPs)
  • 3.9.4 Nickle, Platinum, and Palladium Nanoparticles
  • 3.10 Factors Affecting Synthesis and Physio-Chemical Properties of Nanoparticles
  • 3.11 Reproducibility of Nanoparticles
  • 3.12 Scale Up of Nanoparticles
  • 3.13 Predictability of Nanoparticles
  • 3.14 Risk Assessment and Risk Management
  • 3.15 Regulatory Challenges
  • 3.16 Pharmacological Application of Nanoparticles
  • 3.16.1 Antibacterial Activity of Nanoparticles
  • 3.16.2 Antifungal Activity of Metallic Nanoparticles
  • 3.16.3 Antiplasmodial Activity of Nanoparticles
  • 3.16.4 Antiinflammatory Action of Nanoparticles
  • 3.16.5 Anticancer Activity of Nanoparticles
  • 3.16.6 Antiviral Nanoparticles
  • 3.16.7 Antidiabetic Activity of Nanoparticles
  • 3.16.8 Antioxidant Activity of Nanoparticles
  • 3.17 Conclusion
  • 3.18 Future aspects
  • References
  • Further Reading
  • 4 Scale up of biopharmaceuticals production
  • 4.1 Introduction
  • 4.2 Expression Systems Used for Biopharmaceuticals Production
  • 4.2.1 Bacteria
  • 4.2.2 Yeasts
  • 4.2.3 Filamentous Fungi
  • 4.2.4 Insect Cells
  • 4.2.5 Mammalian Cells
  • 4.2.6 Transgenic Plants
  • 4.2.7 Transgenic Animals
  • 4.3 Bioreactor Production Strategies for Biopharmaceuticals
  • 4.3.1 Inoculum Development
  • 4.3.2 Process Optimization for Fermentation
  • 4.3.3 Fermentation Strategies
  • 4.3.4 Bioreactors Used for Biopharmaceuticals Production
  • 4.3.5 Scale Up of Biopharmaceuticals Production
  • 4.3.6 Challenges in Scale Up Processes
  • 4.4 Downstream Purification Strategies for Biopharmaceutical Products
  • 4.5 Recent Developments on Scale Up of Biopharmaceuticals Production
  • 4.6 Conclusions and Future Perspectives
  • References
  • 5 Physicochemical and morphological characterization of pharmaceutical nanocarriers and mathematical modeling of drug encap...
  • 5.1 Spectroscopic Methods
  • 5.1.1 Spectrophotometry
  • 5.1.1.1 Derivative spectrophotometry
  • 5.1.1.2 Infrared spectroscopy
  • 5.1.1.3 Fourier transform infrared spectroscopy
  • 5.1.2 Near Infrared Spectroscopy
  • 5.1.3 Nuclear Magnetic Resonance Spectroscopy
  • 5.1.4 Fluorimetry and Phosphorimetry
  • 5.1.5 Raman Spectroscopy
  • 5.1.6 Dynamic Light Scattering
  • 5.1.7 X-ray Photoelectron Spectroscopy
  • 5.1.8 Acoustic Spectroscopy
  • 5.2 Chromatographic Methods
  • 5.2.1 High Performance Liquid Chromatography
  • 5.2.2 Liquid Chromatography-Mass Spectrometry
  • 5.3 Microscopic Methods
  • 5.3.1 Scanning electron microscopy
  • 5.3.2 Transmission Electron Microscopy
  • 5.3.3 Atomic Force Microscopy
  • 5.4 Nanoparticles Characterization-Size, Porosity, Surface Characteristics
  • 5.4.1 Surface Area
  • 5.4.2 Particle Size, Zeta Potential, and Surface Charge
  • 5.4.3 Dynamic Light Scattering
  • 5.4.4 Static Light Scattering/Fraunhofer diffraction
  • 5.4.5 X-ray Diffraction
  • 5.5 Thermal Analyses
  • 5.5.1 Differential Thermal Analyses
  • 5.5.2 Thermogravometric Analyses
  • 5.6 Titrimetric Methods
  • 5.6.1 Potentiometric Titration
  • 5.6.2 Isothermal Titration Calorimetry
  • 5.7 Drug Encapsulation Study
  • 5.7.1 Equilibrium Modeling of Drug Encapsulation
  • 5.7.2 Kinetics Modeling of Drugs Encapsulation
  • 5.8 Drugs Release Study
  • 5.8.1 Release Mechanism
  • 5.8.2 Kinetics Modeling of Drugs Release
  • 5.9 Conclusions and Future Perspectives
  • References
  • Further Reading
  • 6 Biopharmaceutics and pharmacokinetics of multifunctional nanoparticles
  • 6.1 Introduction
  • 6.2 Nanoparticles Used as Multifunctional Systems
  • 6.2.1 Liposomes
  • 6.2.2 Dendrimers
  • 6.2.3 Micelles
  • 6.2.4 Solid-Lipid Nanoparticles
  • 6.2.5 Polymeric Nanoparticles
  • 6.3 Absorption
  • 6.3.1 Oral Absorption
  • 6.3.2 Transdermal Absorption
  • 6.3.3 Pulmonary Absorption
  • 6.3.4 Ocular Absorption
  • 6.4 Distribution
  • 6.5 Metabolism
  • 6.6 Elimination and Clearance
  • 6.7 Advantages
  • 6.8 Applications
  • 6.8.1 Imaging
  • 6.8.2 Diagnosis
  • 6.8.3 Drug Delivery
  • 6.9 Limitations
  • 6.10 Marketed Products
  • 6.11 Future Perspectives
  • References
  • 7 Technological delivery systems to improve biopharmaceutical properties
  • 7.1 Introduction
  • 7.2 Binary and Multicomponent Complexes with Cyclodextrins
  • 7.2.1 Complex Components
  • 7.2.2 Methods of Preparation of Complexes
  • 7.2.3 Methods of Characterization of Complexes
  • 7.2.4 Effect of Binary and Multicomponent Complexes on Biopharmaceutical Properties of Drugs
  • 7.2.4.1 Solubility and dissolution
  • 7.2.4.2 Permeability
  • 7.2.4.3 Stability
  • 7.3 Microemulsions and Self-Microemulsifying Drug Delivery Systems
  • 7.3.1 Microemulsions
  • 7.3.1.1 Microemulsions components
  • 7.3.1.2 Preparation and characterization method for microemulsions
  • 7.3.1.3 Characterization methods for microemulsions
  • 7.3.1.4 Effect of microemulsions on biopharmaceutical properties of drugs
  • 7.3.1.4.1 Solubility
  • 7.3.1.4.2 Stability
  • 7.3.1.4.3 Permeability
  • 7.3.2 Self-microemulsifiying Drug Delivery Systems (SMEDDS)
  • 7.3.2.1 Preparation methods for SMEDDS
  • 7.3.2.1.1 Liquid SMEDDS
  • 7.3.2.1.2 Solids SMEDDS
  • 7.3.2.2 Characterization methods for SMEDDS
  • 7.3.2.2.1 Liquid SMEDDS
  • 7.3.2.2.2 Solid SMEDDS
  • 7.3.2.3 Effect of SMEDDS on biopharmaceutical properties of drugs
  • 7.3.2.3.1 Solubility and dissolution
  • 7.3.2.3.2 Stability
  • 7.3.2.3.3 Permeability
  • 7.4 Solid Lipid Nanoparticles
  • 7.4.1 Solid Lipid Nanoparticles Components
  • 7.4.2 Methods for the Preparation of Solid Lipid Nanoparticles
  • 7.4.3 Methods for Characterization of Solid Lipid Nanoparticles
  • 7.4.4 Effect of Solid lipid Nanoparticles on Biopharmaceutical Properties of Drugs
  • 7.5 Conclusion
  • References
  • 8 From physicochemically stable Nanocarriers to targeted delivery: In vivo pharmacokinetic, pharmacodynamic and biodistribu...
  • 8.1 Introduction
  • 8.2 In Vivo Studies of Pharmaceutical Nanocarriers
  • 8.2.1 Pharmacokinetic and Biodistribution Studies
  • 8.2.2 Pharmacodynamic Studies
  • 8.2.3 In vivo Methods Complementary to Pharmacokinetic, Biodistribution and Pharmacodynamic Studies
  • 8.3 In Vivo Method Selection According to the Route of Administration
  • 8.3.1 Nanocarriers Targeting the Brain
  • 8.3.1.1 Case study 1: Risperidone
  • 8.3.2 Nanocarriers for (trans)Dermal Delivery
  • 8.3.2.1 Case study 2: Aceclofenac
  • 8.4 Concluding Remarks
  • Acknowledgement
  • References
  • 9 Sterile dosage forms loaded nanosystems for parenteral, nasal, pulmonary and ocular administration
  • 9.1 Introduction
  • 9.2 Nanosystems for Parenteral Administration
  • 9.2.1 Routes of Administration of Parenteral Dosage Forms
  • 9.2.2 Characteristics of Parenterals
  • 9.2.2.1 Detection of particulate matter
  • 9.2.3 Composition of Parenteral Dosage Forms
  • 9.2.4 Parenteral Dosage Forms
  • 9.2.4.1 Parenteral solutions
  • 9.2.4.2 Parenteral dispersion
  • 9.2.4.3 Parenteral emulsions
  • 9.2.4.4 Dried forms
  • 9.2.4.5 Large-volume parenterals
  • 9.2.5 Parenteral Nanosystems
  • 9.2.6 Sterilization of Parenterals
  • 9.2.6.1 Dry heat sterilization
  • 9.2.6.2 Moist heat (steam) sterilization
  • 9.2.6.3 Gas sterilization
  • 9.2.6.4 Sterilization by ionizing radiations
  • 9.2.6.5 Sterilization by filtration
  • 9.2.7 In-Process and Release Specifications of Parenteral Dosage Forms
  • 9.2.7.1 Volume in container
  • 9.2.7.2 Sterility testing
  • 9.2.7.2.1 Direct transfer to test media
  • 9.2.7.2.2 Membrane filtration technique
  • 9.2.7.3 Pyrogen testing
  • 9.2.7.4 Leaking testing and sealing verification
  • 9.2.7.5 Clarity testing and particulate analysis
  • 9.3 Nanosystems for Nasal and Pulmonary Administration
  • 9.3.1 Considerations of the Container and Closure System
  • 9.3.1.1 Propellants
  • 9.3.1.1.1 Liquefied gas propellants
  • 9.3.1.1.2 Compressed gas propellants
  • 9.3.1.2 Container
  • 9.3.1.3 Valves
  • 9.3.1.3.1 Continuous spray valve
  • 9.3.1.3.2 Metering valves
  • 9.3.1.3.3 Standard valves
  • 9.3.1.3.4 Foam valves
  • 9.3.1.3.5 Powdered valves
  • 9.3.1.3.6 Compressed gas valves
  • 9.3.1.4 Actuators
  • 9.3.1.5 Product concentrates
  • 9.3.1.6 Protective caps
  • 9.3.2 Formulation Characteristics
  • 9.3.2.1 Types of systems
  • 9.3.2.1.1 Two-phase system
  • 9.3.2.1.2 Water-based system
  • 9.3.2.1.3 Suspension or dispersion systems
  • 9.3.3 Filling Operations (Packaging)
  • 9.3.3.1 Cold filling method
  • 9.3.3.2 Pressure filling method
  • 9.3.4 In-Process and Release Specifications of Inhalation Dosage Forms
  • 9.3.4.1 Propellants
  • 9.3.4.2 Valves, actuators, and dip tubes
  • 9.3.4.3 Containers
  • 9.3.4.4 Flammability and combustibility tests
  • 9.3.4.5 Physicochemical characteristics tests
  • 9.3.4.6 Performance tests
  • 9.4 Nanosystems for Ocular Administration
  • 9.4.1 Ocular Absorption
  • 9.4.1.1 Corneal absorption
  • 9.4.1.1.1 Problems encountered with corneal absorption
  • 9.4.1.2 Noncorneal route of absorption
  • 9.4.2 Factors Affecting Ocular Bioavailability
  • 9.4.3 Considerations for Ocular Preparation
  • 9.4.3.1 Sterility
  • 9.4.3.2 Tonicity
  • 9.4.3.3 pH adjustment and buffering
  • 9.4.3.3.1 Stability of the drug
  • 9.4.3.3.2 Solubility of the drug
  • 9.4.3.3.3 The comfort of ophthalmic solution
  • 9.4.3.3.4 Safety of ophthalmic solution
  • 9.4.3.3.5 Therapeutic efficacy of the product
  • 9.4.3.4 Clarity
  • 9.4.3.5 Preservation and preservatives
  • 9.4.3.6 Additives
  • 9.4.3.6.1 Thickening agent (viscosity modifiers)
  • 9.4.3.6.2 Surfactants
  • 9.4.3.6.3 Antioxidants
  • 9.4.3.6.4 Vehicles
  • 9.4.4 Packaging of Ocular Preparations
  • 9.4.5 Types of Ocular Dosage Forms
  • 9.4.5.1 Liquid dosage forms (eye drops)
  • 9.4.5.1.1 Ophthalmic solutions
  • 9.4.5.1.2 Ophthalmic suspension
  • 9.4.5.1.3 Ophthalmic emulsions (RESTASIS)
  • 9.4.5.1.4 Ocular powders for reconstitution
  • 9.4.5.2 Semisolid ophthalmic dosage forms (eye ointments, creams, and jells)
  • 9.4.5.3 Solid ophthalmic dosage forms: Ocular inserts (ocuserts)
  • 9.4.6 Nanosystems for Ocular Drug Delivery
  • 9.4.7 In-Process and Release Specifications of Ocular Dosage Forms
  • 9.5 Conclusions
  • References
  • 10 Quantitative characterization of targeted nanoparticulate formulations for prediction of clinical efficacy
  • 10.1 Introduction: Why Target?
  • 10.1.1 Diagnostic Applications: Imaging
  • 10.1.1.1 Radiotracers (Scintigraphy)
  • 10.1.1.2 Near-infrared fluorescent imaging
  • 10.1.1.3 Targeted contrast agents
  • 10.1.2 Therapeutic Applications: Enhancing the Therapeutic Window
  • 10.2 Nanocarrier Components
  • 10.2.1 Types of Nanoparticles
  • 10.2.1.1 Silica
  • 10.2.1.2 Lactic acid derivatives
  • 10.2.1.3 Carbon nanostructures
  • 10.2.1.4 Lipid-based formulations
  • 10.2.2 Targeting Agents
  • 10.2.2.1 Antibodies
  • 10.2.2.1.1 Whole antibodies
  • 10.2.2.1.2 Antibody fragments
  • 10.2.2.2 Endogenous ligands
  • 10.2.2.3 Peptides
  • 10.2.2.4 Aptamers
  • 10.2.3 Linkers
  • 10.3 Determining Conjugation Efficiency
  • 10.3.1 How the Components Relate to the Determination
  • 10.3.2 Direct Measurement of Targeting Ligands
  • 10.3.3 Measurement of Molecular Targets
  • 10.3.4 Measurements Based on Generic Molecular Properties
  • 10.4 Determining Targeting Efficiency
  • 10.4.1 Intrinsic Binding Strength (Affinity)
  • 10.4.2 Aggregate Binding Strength (Avidity)
  • 10.4.3 Number of Ligands Binding Per Nanoparticle
  • 10.4.4 Indices of Targeting Efficiency
  • 10.4.5 Relating TE Indices to In Vivo Localization and Efficacy
  • 10.5 Determining Binding Force
  • 10.5.1 Calculation of Binding Force From Affinity/Avidity Measures
  • 10.5.2 Experimental Measurement of Binding Force
  • 10.5.3 Algorithms of Binding Force Indices
  • 10.5.4 Relating Binding Force to In Vivo Localization and Efficacy
  • 10.6 Projection of Clinical Efficacy Based on Quantitative Nanoparticle Assessments
  • 10.7 Conclusions
  • References
  • 11 Analytical tools for reliable in vitro and in vivo performance testing of drug nanocrystals
  • 11.1 Introduction
  • 11.2 Benefits of Drug Nanocrystals
  • 11.3 Production of Drug Nanocrystals and Drug Delivery Applications
  • 11.3.1 Top-Down Methods
  • 11.3.2 Bottom-Up Methods
  • 11.3.3 Combination Methods
  • 11.3.4 Applications of Drug Nanocrystals for Drug Delivery
  • 11.4 Analytical Tools for Nanocrystal Characterization
  • 11.4.1 Particle Size and Size Deviation, Shape and Morphology
  • 11.4.2 Surface Properties
  • 11.4.3 Solid State Properties and Chemical Analysis of Drug
  • 11.4.4 Dissolution and Solubility
  • 11.4.5 Imaging of Nanocrystals in Cells and Tissues
  • 11.5 Conclusions
  • References
  • 12 Application of affinity purification of drug target proteins with practical magnetic nanoparticles to drug development
  • 12.1 Introduction
  • 12.2 Development of Handa beads (SG Beads and FG Beads)
  • 12.2.1 SG Beads
  • 12.2.2 FG Beads
  • 12.2.3 Utility of Handa Beads in Basic Science
  • 12.3 Practical Affinity Matrices to Isolate Specific Target Proteins of Biomolecules Efficiently
  • 12.4 DNA Affinity Beads
  • 12.5 Isolation of Porphyrin-Binding Proteins Using Handa Beads
  • 12.6 Effect of Salicylate on Heme Biosynthesis
  • 12.7 Discovery of a Primary Target of Thalidomide
  • 12.8 Various Effects of Thalidomide and Its Derivatives
  • 12.9 Structural Biology of the CRBN-Ligand-Substrate Complex and Novel Findings on Species Specificity
  • 12.10 Prospective of CRBN Biology and Drug Development
  • 12.11 Concluding Remarks
  • References
  • Further Reading
  • 13 Molecularly imprinted polymers as a tool for biomolecule separation
  • 13.1 Introduction
  • 13.2 Molecularly Imprinted Polymers: Recognition and Selectivity
  • 13.3 Molecularly Imprinted Materials
  • 13.3.1 Micro and Nanostructures
  • 13.3.1.1 Some selected applications
  • 13.3.2 Membranes
  • 13.3.3 Monoliths
  • 13.3.4 Cryogels
  • 13.3.4.1 Some selected applications of MIP cryogels
  • 13.3.4.1.1 MIPs for selective enrichment of disease biomarkers
  • 13.3.4.1.2 MIPs for separation and purification systems
  • 13.4 Concluding Remarks
  • References
  • 14 Detection of DNA damage induced by nanomaterials
  • 14.1 Introduction
  • 14.2 DNA Damage and Detection
  • 14.2.1 DNA Damage
  • 14.2.2 Detection of DNA Damage
  • 14.3 Nanomaterials and Toxicology
  • 14.4 Detection of DNA Damage Induced by Nanomaterials
  • 14.4.1 Metal Nanoparticles
  • 14.4.1.1 Gold nanoparticles (AuNPs)
  • 14.4.1.2 Silver nanoparticles (AgNPs)
  • 14.4.2 Metal Oxides
  • 14.4.2.1 Titanium dioxide nanoparticles (TiO2NPs)
  • 14.4.2.2 Zinc oxide nanoparticles (ZnONPs)
  • 14.4.3 Silica Nanoparticles
  • 14.4.4 Quantum Dots
  • 14.4.5 Carbon Nanoparticles
  • 14.4.5.1 Fullerenes
  • 14.4.6 Others
  • 14.5 Conclusion and Future Aspects
  • References
  • 15 Pharmacological usage of a selective inhibitor of 3-mercaptopyruvate sulfurtransferase to control H2S and polysulfide ge...
  • 15.1 Introduction
  • 15.2 The Characteristics of MST
  • 15.2.1 Molecular Properties
  • 15.2.2 Structural Properties
  • 15.2.3 Metabolism Related to MST
  • 15.2.4 Catalytic Properties
  • 15.2.5 Tissue and Cellular Distribution
  • 15.3 Physiological Functions of MST
  • 15.3.1 Antioxidant Action
  • 15.3.1.1 Disulfide bonds as redox-sensing switches
  • 15.3.1.2 Catalytic site cysteine as redox-sensing switch
  • 15.3.2 Anxiolytic-Like Effect
  • 15.3.3 Hydrogen Sulfide and Polysulfide Production
  • 15.3.3.1 Function of hydrogen sulfide and polysulfides
  • 15.3.3.2 Production of hydrogen sulfide and polysulfides
  • 15.3.4 Possible Mechanisms of Sulfur Oxide Production
  • 15.4 MST Inhibitors
  • 15.4.1 MST Selective Inhibitors
  • 15.4.2 Future Outlook
  • References
  • 16 Nanotechnology-based drug products: Science and regulatory considerations
  • 16.1 Introduction
  • 16.2 Quality by Design
  • 16.3 Particle Size Distribution
  • 16.4 In Vitro Release/Dissolution
  • 16.5 Amorphous and Crystalline Content
  • 16.6 Regulatory Guidance
  • 16.7 New Drug Application
  • 16.8 Abbreviated New Drug Application
  • 16.9 Common Technical Document
  • 16.10 Preapproval Inspection
  • 16.11 Amendments, Supplements and Comparability Protocols
  • 16.12 Postapproval Studies
  • 16.13 Environment Assessments
  • 16.14 Regulatory Research
  • 16.15 Conclusion
  • References
  • Further Reading
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen