Nanobiomaterials in Medical Imaging

Applications of Nanobiomaterials
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 13. April 2016
  • |
  • 518 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-41738-9 (ISBN)
 

Nanobiomaterials in Medical Imaging presents the latest developments in medical exploratory approaches using nanotechnology. Leading researchers from around the world discuss recent progress and state-of-the-art techniques.

The book covers synthesis and surface modification of multimodal imaging agents, popular examples of nanoparticles and their applications in different imaging techniques, and combinatorial therapy for the development of multifunctional nanocarriers. The advantages and potential of current techniques are also considered.

This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.


  • A valuable resource for researchers, practitioners and students working in biomedical, biotechnological and engineering fields.
  • A detailed guide to recent scientific progress, along with the latest application methods.
  • Presents innovative opportunities and ideas for developing or improving technologies in nanomedicine and medical imaging.
  • Englisch
  • Norwich
  • |
  • USA
Elsevier Science
  • 10,01 MB
978-0-323-41738-9 (9780323417389)
0323417388 (0323417388)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanobiomaterials in Medical Imaging
  • Copyright Page
  • Contents
  • List of contributors
  • Preface of the series
  • Preface
  • About the Series (Volumes I-XI)
  • About Volume VIII
  • 1 Specifically targeted imaging using functionalized nanoparticles
  • 1.1 Introduction
  • 1.2 Functionalized Quantum Dots for Imaging
  • 1.2.1 Introduction
  • 1.2.2 Obtaining Methods for Functionalized Quantum Dots
  • 1.2.3 Quantum Dots in Biomedical Imaging
  • 1.3 Functionalized Iron Oxide Nanoparticles for Imaging
  • 1.3.1 Introduction
  • 1.3.2 Obtaining Methods for Functionalized Iron Oxide Nanoparticles
  • 1.3.3 Iron Oxide Nanoparticles in Biomedical Imaging
  • 1.4 Functionalized Silver Nanoparticles for Imaging
  • 1.4.1 Introduction
  • 1.4.2 Obtaining Methods for Silver Nanoparticles
  • 1.4.3 Silver Nanoparticles in Biomedical Imaging
  • 1.5 Conclusions
  • References
  • 2 Photon and electron interactions with gold nanoparticles: a Monte Carlo study on gold nanoparticle-enhanced radiotherapy
  • 2.1 Introduction
  • 2.2 Gold Nanoparticle-Enhanced Radiotherapy
  • 2.2.1 DNA Damage and Cancer Cell Kill
  • 2.2.2 Gold Nanoparticle Fabrication, Experimental Dosimetry, and Uptake
  • 2.2.3 Gold Nanoparticles as a Contrast Agent
  • 2.2.4 Gold Nanoparticles as a Dose Enhancer
  • 2.2.5 Kilovoltage and Megavoltage Photon Beams
  • 2.3 Monte Carlo Simulation
  • 2.3.1 Monte Carlo Codes
  • 2.3.2 Monte Carlo Method in Microdosimetry
  • 2.3.3 Monte Carlo Geometry for Gold Nanoparticles
  • 2.4 Photon and Electron Interactions
  • 2.4.1 Irradiation of Gold Nanoparticles with Photon Beams
  • 2.4.1.1 Interaction of the gold nanoparticle with photons
  • 2.4.1.2 Energy spectra of the emitted electrons from the gold nanoparticle
  • 2.4.1.3 Effective electron ranges for photon beam energies
  • 2.4.1.4 Deflection angles of electrons for photon beam energies
  • 2.4.2 Irradiation of Gold Nanoparticles with Electron Beams
  • 2.4.2.1 Mean effective range and deflection angle
  • 2.4.2.2 Secondary electron energy deposition
  • 2.5 Conclusions
  • Acknowledgments
  • References
  • 3 Quantum dots: dynamic tools in cancer nanomedicine
  • 3.1 Introduction
  • 3.2 Characteristic Features of Quantum Dots
  • 3.3 Composition of Quantum Dots
  • 3.4 Architecture of Multifunctional Quantum Dots
  • 3.4.1 Detection Component (NonInvasive Imaging)
  • 3.4.2 Targeting Ligands
  • 3.4.3 Therapeutic Components
  • 3.4.4 Polymer Encapsulation/Drug-Loading Capability
  • 3.5 Synthesis and Functionalization of QDs
  • 3.6 Quantum Dots in Cancer Therapy
  • 3.6.1 Quantum-Dot-Based Anticancer Drug Delivery
  • 3.6.2 Quantum-Dot-Based Gene Delivery
  • 3.7 Quantum-Dot-Based Photodynamic Therapy (PDT)
  • 3.8 Toxicity Concerns
  • 3.9 Future Prospects
  • 3.10 Conclusions
  • References
  • 4 Basics to different imaging techniques, different nanobiomaterials for image enhancement
  • 4.1 Introduction
  • 4.2 Basics of Different Imaging Techniques
  • 4.2.1 Computed Tomography
  • 4.2.2 Magnetic Resonance Imaging
  • 4.2.3 Ultrasound
  • 4.2.4 Optical Imaging
  • 4.2.5 Positron Emission Tomography
  • 4.2.6 Single Photon Emission Computed Tomography
  • 4.3 Imaging Agents
  • 4.3.1 Nanoparticle-Based Imaging Agents
  • 4.3.2 Bionanomaterials as Imaging Agents
  • 4.4 Different Nanobiomaterials for Image Enhancement
  • 4.4.1 Albumin-Based Nanoparticles as Imaging Agents
  • 4.4.2 Alginate-Based Nanoparticles as Imaging Agents
  • 4.4.3 Apoferritin-Based Nanoparticles as Imaging Agents
  • 4.4.4 Beta Glucan-Based Nanoparticles as Imaging Agent
  • 4.4.5 Casein-Based Nanoparticles as Imaging Agents
  • 4.4.6 Cellulose-Based Nanoparticles as Imaging Agents
  • 4.4.7 Chitosan-Based Nanoparticles as Imaging Agents
  • 4.4.8 Chondroitin-Sulfate-Based Nanoparticles as Imaging Agents
  • 4.4.9 Collagen-Based Nanoparticles as Imaging Agents
  • 4.4.10 Cyclodextrin-Based Nanoparticles as Imaging Agents
  • 4.4.11 Dextran-Based Nanoparticles as Imaging Agents
  • 4.4.12 Fibrinogen-Based Nanoparticles as Imaging Agents
  • 4.4.13 Fibroin-Based Nanoparticles as Imaging Agents
  • 4.4.14 Fucoidan-Based Nanoparticles as Imaging Agent
  • 4.4.15 Gelatin-Based Nanoparticles as Imaging Agents
  • 4.4.16 Heparin-Based Nanoparticles as Imaging Agents
  • 4.4.17 Hyaluronic-Acid-Based Nanoparticles as Imaging Agents
  • 4.4.18 Lectin-Based Nanoparticles as Imaging Agents
  • 4.4.19 Mannan-Based Nanoparticles as Imaging Agents
  • 4.4.20 Mannose-Based Nanoparticles as Imaging Agents
  • 4.4.21 Pullulan-Based Nanoparticles as Imaging Agents
  • 4.4.22 Starch-Based Nanoparticles as Imaging Agents
  • 4.4.23 Zein-Based Nanoparticles as Imaging Agents
  • 4.5 Miscellaneous
  • 4.6 Conclusions and Outlook
  • References
  • 5 Design of plasmonic probes through bioconjugation and their applications in biomedicine: from cellular imaging to cancer ...
  • 5.1 Introduction
  • 5.2 Optical Properties of Metal Nanoparticles
  • 5.2.1 Electrodynamic Insight on Plasmonics
  • 5.2.2 Plasmonic Properties
  • 5.3 Synthesis and Functionalization of Plasmonic Nanoparticles
  • 5.3.1 Nanoparticle Synthesis
  • 5.3.2 Stabilizing Colloidal Nanoparticles
  • 5.3.3 Bioconjugation: Biomolecule-Functionalization Strategies
  • 5.3.3.1 Biotin and streptavidin
  • 5.3.4 Deoxyribonucleic Acid
  • 5.3.4.1 Peptides, proteins, enzymes, and antibodies
  • 5.4 Applications in Biomedicine
  • 5.4.1 Plasmonic Nanobiosensors
  • 5.4.2 Biosensing and Cellular Imaging
  • 5.4.3 Cancer Therapy
  • 5.5 Conclusions
  • Acknowledgments
  • References
  • 6 Multifunctional nanocarriers for codelivery of nucleic acids and chemotherapeutics to cancer cells
  • 6.1 Introduction
  • 6.1.1 Therapeutic Modalities for Cancer Therapy-Fundamentals and Challenges
  • 6.1.2 DNA Expression Vectors and RNAi Technology and Biological Properties and Advantages
  • 6.1.2.1 DNA biopharmaceuticals
  • 6.1.2.2 RNAi biopharmaceuticals
  • 6.2 Design of Multifunctional Delivery Systems for Drug-Gene Coadministration
  • 6.3 Multifunctional Nanomaterials for Codelivery of Drug-Nucleic Acid Combinations
  • 6.3.1 Inorganic Nanomaterials
  • 6.3.1.1 Gold nanoparticles
  • 6.3.1.2 Mesoporous silica nanoparticles
  • 6.3.1.3 Carbon-based nanomaterials
  • 6.3.2 Lipid-Based Biomaterials
  • 6.3.2.1 Liposomes
  • 6.3.2.2 Lipid-polymer hybrids
  • 6.3.3 Natural and Semisynthetic Nanomaterials
  • 6.3.3.1 Chitosan
  • 6.3.3.2 Alginate
  • 6.3.3.3 Dextran
  • 6.3.3.4 Hyaluronic acid
  • 6.3.3.5 Cyclodextrins
  • 6.3.3.6 Polyamino acids
  • 6.3.4 Synthetic Nanomaterials
  • 6.3.4.1 Poly(e-caprolactone)
  • 6.3.4.2 Polylactic/glycolytic-acid-based polymers
  • 6.4 Conclusions and Future Perspectives
  • References
  • 7 Targeting and imaging of cancer cells using nanomaterials
  • 7.1 Introduction
  • 7.2 Quantum Dots
  • 7.3 Dendrimers
  • 7.3.1 Targeting and Imaging of Cells Using Dendrimers
  • 7.4 Magnetic Nanoparticles (MNPs)
  • 7.5 Colloidal Gold Nanoparticles
  • 7.5.1 Synthesis of GNPs
  • 7.5.2 Functionalization
  • 7.6 Carbon-Based Nanomaterials
  • 7.6.1 Graphene
  • 7.6.2 Carbon Nanotubes
  • 7.6.3 Fullerene
  • 7.6.4 CBNs in Biomedical Applications
  • 7.7 Liposomal Nanocarriers
  • 7.8 Conclusions and Future Directions
  • References
  • 8 Multimodal inorganic nanoparticles for biomedical applications
  • 8.1 Introduction
  • 8.2 Types of Multimodal Inorganic Nanoparticles
  • 8.2.1 Magnetic Core Directly Coated with Phosphor Materials or Quantum Dots
  • 8.2.2 Magnetic Core Coated with a Silica Shell Containing Fluorescent Components
  • 8.2.3 Magnetic Core Linked to a Fluorescent/Plasmonic Entity
  • 8.2.4 Rare-Earth-Doped Inorganic Nanoparticles
  • 8.3 Toxicological Considerations and Surface Modification of Multimodal Inorganic Nanoparticles
  • 8.4 Biomedical Applications of Multimodal Inorganic Nanoparticles
  • 8.4.1 Fluorescent and Magnetic Resonance Imaging
  • 8.4.2 Sorting and Bioseparation
  • 8.4.3 Drug Delivery and Therapeutics
  • 8.4.4 Biosensing
  • 8.4.5 Hyperthermia Treatment
  • 8.5 Summary and Future Outlook
  • Acknowledgments
  • References
  • 9 Iron oxide nanomaterials for functional imaging
  • 9.1 Introduction
  • 9.2 Iron Oxide Nanoparticles as Contrast Agents in Noninvasive Imaging Diagnosis
  • 9.3 Functionalized Iron Oxide Nanoparticles for Imaging Diagnosis
  • 9.3.1 Iron Oxide-Metallic Nanostructures for Cancer Imaging and Theranostics
  • 9.3.2 Iron Oxide-Natural Polymers/Cells Composites for Cancer Imaging and Theranostics
  • 9.3.3 Iron Oxide-Synthetic Molecules for Cancer Imaging and Theranostics
  • 9.3.3.1 Amino acids
  • 9.3.3.2 Nucleic acids
  • 9.3.3.3 Biodegradable polymers
  • 9.3.3.4 Nonbiodegradable polymers
  • 9.3.3.5 Smart polymers
  • 9.3.3.6 Mesoporous silica
  • 9.3.3.7 Graphenes
  • 9.3.3.8 Quantum dots
  • 9.3.3.9 Bioactive molecules
  • 9.3.3.10 Vesicles
  • 9.3.4 Iron-Oxide-Based Nanostructures for Dual- and Tri-Modal Imaging
  • 9.3.5 Challenges of Using Magnetic Nanoparticles in Noninvasive Imaging Diagnosis
  • 9.3.5.1 Increasing the bioavailability and half-life of the contrast agents
  • 9.3.5.2 Deep investigation of contrast agents cytotoxicity
  • 9.4 Conclusions
  • References
  • 10 Nanobiomaterials involved in medical imaging technologies
  • 10.1 Introduction
  • 10.2 Medical Imaging Technology
  • 10.2.1 Contrast Agents
  • 10.2.2 Magnetic Resonance Imaging
  • 10.2.3 Radiography
  • 10.2.4 Ultrasound
  • 10.2.5 Scintigraphy
  • 10.2.6 Computed Tomography
  • 10.2.7 Tactile Imaging
  • 10.2.8 Echocardiography
  • 10.3 Nanobiomaterials in Medical Imaging
  • 10.3.1 Nanotechnology
  • 10.3.2 Nanoparticles in Medical Imaging
  • 10.3.3 Magnetic Nanoparticles in Medical Imaging
  • 10.3.4 Nanomaterials in Medical Imaging
  • 10.3.5 Nanogels in Medical Imaging
  • 10.3.6 Carbon Nanotubes in Medical Imaging
  • 10.3.7 Quantum Dots in Medical Imaging
  • 10.3.8 Graphene in Medical Imaging
  • 10.3.9 Dendrimers in Medical Imaging
  • 10.3.10 Liposomes in Medical Imaging
  • 10.4 Conclusions
  • References
  • 11 Applications of carbon dots in biosensing and cellular imaging
  • 11.1 Introduction
  • 11.2 CDs as Fluorescent Probes for Sensing of Biomolecules
  • 11.3 CDs as Fluorescent Probes for Imaging of Biomolecules and Cells
  • 11.4 Conclusions and Perspectives
  • References
  • 12 Inorganic nanobiomaterials for medical imaging
  • 12.1 Introduction
  • 12.1.1 Inorganic Nanobiomaterials for Medical Imaging
  • 12.1.2 Role of Nanotechnology in Medical Imaging
  • 12.2 Solid Silica Nanoparticles (SNPs)
  • 12.2.1 Synthesis of the Silica Nanoparticles
  • 12.2.1.1 "Top-down" production
  • 12.2.1.2 "Bottom-up" production
  • 12.2.1.3 Sol-gel synthesis
  • 12.2.1.4 Reverse-phase microemulsions method for silica nanoparticle synthesis
  • 12.2.2 Applications in Diagnostic Imaging
  • 12.3 Gold Nanoparticles (AuNPs)
  • 12.3.1 Different Shapes of Gold Nanoparticles
  • 12.3.1.1 Gold nanonpheres
  • 12.3.1.2 Gold nanorods
  • 12.3.1.3 Gold nanocages
  • 12.3.2 Synthesis of Gold Nanoparticles
  • 12.3.2.1 Citrate reduction method (Turkevich method) (Frens, 1973)
  • 12.3.2.2 The ?-irradiation method
  • 12.3.3 Applications in Diagnostic Imaging
  • 12.4 Iron Oxide Nanoparticles
  • 12.4.1 Synthesis of Iron Oxide Nanoparticles
  • 12.4.1.1 Co-precipitation method
  • 12.4.2 Applications in Diagnostic Imaging
  • 12.5 Quantum Dots (QDs)
  • 12.5.1 Synthesis of Quantum Dots
  • 12.5.1.1 Kinetic growth method
  • 12.5.1.2 Preparation of Quantum Dots
  • 12.5.2 Application in Diagnostic Imaging
  • 12.6 Conclusions
  • References
  • 13 Nanobiomaterials in X-ray luminescence computed tomography (XLCT) imaging
  • 13.1 Introduction
  • 13.2 XLCT Imaging System
  • 13.2.1 Pencil-Beam XLCT Imaging System
  • 13.2.2 Fan-Beam XLCT Imaging System
  • 13.2.3 Cone-Beam XLCT Imaging System
  • 13.2.4 Limited-View XLCT Imaging System
  • 13.3 XLCT Reconstruction Methods
  • 13.3.1 Forward Model
  • 13.3.1.1 X-ray transport model
  • 13.3.1.2 Light transport model
  • 13.3.2 Inverse Problem
  • 13.3.2.1 Reconstruction based on FBP
  • 13.3.2.2 Reconstruction based on an optical tomography scheme
  • 13.3.2.3 Reconstruction based on sparse scheme
  • 13.3.2.4 Reconstruction based on a priori information
  • 13.4 Future Directions in XLCT
  • 13.5 Conclusions
  • Acknowledgments
  • References
  • 14 Multifunctional carbon nanotubes in cancer therapy and imaging
  • 14.1 Introduction
  • 14.2 Carbon Nanotubes
  • 14.2.1 Historical Perspectives
  • 14.2.2 Nature and Types of CNTs
  • 14.2.3 Classification of CNTs
  • 14.2.4 Advantages of f-CNTs
  • 14.2.5 Disadvantages of CNTs
  • 14.2.6 Functionalization of CNTs
  • 14.2.6.1 Noncovalent functionalization
  • 14.2.6.2 Covalent functionalization
  • 14.2.7 Characterization of CNTs
  • 14.2.7.1 Microscopy
  • 14.2.7.2 Raman spectroscopy
  • 14.2.7.3 XRD analysis
  • 14.2.7.4 Elemental analysis
  • 14.2.8 Thermogravimetric Analysis and Differential Scanning Calorimetry
  • 14.3 Transcellular Trafficking Mechanism of f-CNTs
  • 14.3.1 Pinocytosis
  • 14.3.2 Macropinocytosis
  • 14.3.3 Phagocytosis
  • 14.3.4 Clathrin-Dependent Pinocytosis and Receptor-Mediated Endocytosis
  • 14.3.5 Clathrin-Independent Pinocytosis
  • 14.3.6 Caveolae-Dependent Pinocytosis
  • 14.4 CNTs in Cancer Therapy
  • 14.4.1 Anthracycline Chemotherapeutics
  • 14.4.1.1 Doxorubicin
  • 14.4.1.2 Daunorubicin
  • 14.4.1.3 Epirubicin hydrochloride
  • 14.4.2 Taxane Alkaloids Derivatives
  • 14.4.3 Camptothecin Analogs
  • 14.4.4 Platinum Coordination Complexes
  • 14.4.5 Small Interfering RNA (siRNA) Delivery
  • 14.5 CNTs in Imaging
  • 14.5.1 Molecular Imaging and CNTs
  • 14.5.2 Photoacoustic Tomography and CNTs
  • 14.5.3 MRI and CNTs
  • 14.5.4 Fluorescence Imaging and CNTs
  • 14.5.5 Nuclear Imaging and CNTs
  • 14.6 Conclusions
  • Acknowledgments
  • References
  • 15 Functionalized carbon nanotubes and their promising applications in therapeutics and diagnostics
  • 15.1 Introduction
  • 15.2 Origin and Historical Perspective of CNT
  • 15.3 Classification of CNTs
  • 15.4 Methods for Preparation of CNTs
  • 15.5 Functionalization of CNTs
  • 15.5.1 Noncovalent Functionalization
  • 15.5.2 Covalent Functionalization
  • 15.6 Characterization of CNTs
  • 15.7 Cellular Trafficking of CNTs
  • 15.7.1 Direct Cytoplasmic Translocation
  • 15.7.2 Receptor-Mediated Endocytosis
  • 15.8 Applications of CNTs
  • 15.8.1 Drug Delivery with CNTs
  • 15.8.2 Targeted Delivery with CNTs
  • 15.8.2.1 Nanotube-based antibody therapy
  • 15.8.2.2 Lymphatic targeting
  • 15.8.2.3 Brain targeting
  • 15.8.2.4 Ocular drug targeting
  • 15.8.2.5 Cancer targeting
  • 15.8.3 CNTs in Tissue and Nerve Regeneration
  • 15.8.4 CNTs in Controlled Drug Delivery
  • 15.8.5 CNTs in Transdermal Drug Delivery
  • 15.8.6 CNTs in Vaccine Delivery
  • 15.8.7 CNTs in Gene Delivery
  • 15.8.8 Treatment of Infectious Diseases
  • 15.8.9 CNTs as Antioxidants
  • 15.8.10 CNTs in Antitumor Immunotherapy
  • 15.9 Role of CNTs in Diagnostics
  • 15.10 Toxicity Consideration of CNTs
  • 15.11 Biodistribution of CNTs
  • 15.12 Regulatory Considerations
  • 15.13 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok