Nanobiomaterials in Galenic Formulations and Cosmetics

Applications of Nanobiomaterials
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 12. Mai 2016
  • |
  • 460 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-42891-0 (ISBN)
 

Nanobiomaterials in Galenic Formulations and Cosmetics: Applications of Nanobiomaterials is one of the first books on the market related to the application of nanotechnology in galenic formulations and cosmetics. This book provides the results of current research for those working in an applied setting. The advantage of having all this information in one coherent text is the focused nature of the chapters and the ease of which this information can be accessed.

This collection of titles brings together many of the novel applications these materials have in biology, and discusses the advantages and disadvantages of each application and the perspectives of the technologies based on these findings. At the moment there is no other comparable book series covering all the subjects approached in this set of titles.


  • Offers an updated and highly structured reference material for students, researchers, and practitioners working in biomedical, biotechnological, and engineering fields
  • Serves as a valuable resource of recent scientific progress, along with most known applications of nanomaterials in the biomedical field
  • Features novel opportunities and ideas for developing or improving technologies in nanomedicine and nanobiology
  • Englisch
  • Atlanta
  • |
  • USA
Elsevier Science
  • 6,97 MB
978-0-323-42891-0 (9780323428910)
0323428916 (0323428916)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanobiomaterials in Galenic Formulations and Cosmetics
  • Copyright Page
  • Contents
  • List of contributors
  • Preface of the series
  • Preface
  • About the Series (Volumes I-XI)
  • About Volume X
  • 1 Advances in nanobiomaterials for topical administrations: new galenic and cosmetic formulations
  • 1.1 Introduction
  • 1.2 Skin as Site for Topical Delivery
  • 1.3 Nanobiomaterials
  • 1.3.1 Liposomes
  • 1.3.2 Solid Lipid Nanoparticle
  • 1.3.3 Polymeric Nanoparticles
  • 1.3.4 Microneedles
  • 1.4 Conclusions
  • Acknowledgments
  • References
  • 2 Nanosunscreens: from nanoencapsulated to nanosized cosmetic active forms
  • 2.1 Introduction
  • 2.2 Inorganic Nanoparticles as UV Filters
  • 2.3 Studies on Cytotoxicity and Genotoxicity of Nanoparticles Acting as UV Filters
  • 2.3.1 Types of Material Used as a UV Filter
  • 2.3.2 Radiation Spectrum
  • 2.3.3 Particle Size and Skin Penetration
  • 2.4 Nanoencapsulated Chemical Sunscreens
  • 2.4.1 Polymeric Nanoparticles
  • 2.4.2 Solid Lipid Nanoparticles and Nanostructured Lipid Carriers
  • 2.5 Conclusions
  • References
  • 3 Nanocosmetics: performance enhancement and safety assurance
  • 3.1 Introduction
  • 3.2 Cosmetics: Performance Enhancement Using Nanotechnology
  • 3.3 Nanocosmetics: Types and Applications
  • 3.4 Classification of Nanocosmetics on the Basis of Formulation Technologies
  • 3.4.1 Vesicular Delivery Systems
  • 3.4.2 Nanoemulsions
  • 3.4.3 Solid Lipid Nanoparticles
  • 3.4.4 Nanostructured Lipid Carriers
  • 3.4.5 Nanosponges and Microsponges
  • 3.4.6 Nanocrystals
  • 3.4.7 Nanocapsules
  • 3.4.8 Nanopigments
  • 3.4.9 Dendrimers
  • 3.4.10 Cubosomes
  • 3.5 Nanocosmetics: Some Popular Categories
  • 3.5.1 Lipsticks
  • 3.5.2 Toothpastes
  • 3.5.3 Hair Cosmetics
  • 3.5.4 Antiaging Creams
  • 3.5.5 Sunscreen Creams
  • 3.5.6 Razor Blades
  • 3.6 Nanotechnology for UV Protection
  • 3.6.1 Solid Lipid Nanoparticles as Sunprotectants
  • 3.6.2 SunSpheres Technology
  • 3.6.3 Current Scenario
  • 3.7 Formulation and Manufacturing Aspects
  • 3.8 Nanomaterial Characterization
  • 3.9 Guidance Documents on Nanomaterials in Cosmetics
  • 3.10 Safety Assurance
  • 3.11 Impurity Profiling
  • 3.12 Assessment of Nanomaterial Toxicology
  • 3.13 Routes of Exposure
  • 3.14 Toxicity Testing
  • 3.15 Safety Assessment
  • 3.16 Conclusions
  • References
  • 4 What nanocrystals can offer to cosmetic and dermal formulations
  • 4.1 Introduction
  • 4.1.1 Issues of Cosmetic and Dermal Actives
  • 4.1.2 Overview of Cosmetics Carriers
  • 4.2 Production of Nanocrystals
  • 4.2.1 Bottom-Up Precipitation Methods
  • 4.2.2 Top-Down Technologies
  • 4.2.2.1 Milling
  • 4.2.2.2 High-pressure homogenization
  • 4.2.2.3 Combination technologies
  • 4.3 What Nanocrystals Can Offer
  • 4.3.1 Solubility and Dissolution Velocity Enhancement
  • 4.3.2 Increased Adhesion
  • 4.3.3 Increased Penetration
  • 4.4 Nanosuspension of Cosmetic Compounds
  • 4.4.1 Ascorbyl Palmitate
  • 4.4.2 Lutein
  • 4.4.3 Curcumin
  • 4.4.4 Glycyrrhetinic Acid
  • 4.4.5 Apigenin
  • 4.4.6 Resveratrol
  • 4.4.7 Hesperetin
  • 4.4.8 Caffeine
  • 4.4.9 Ursorlic Acid
  • 4.4.10 Oleanolic Acid
  • 4.4.11 Baicalin
  • 4.4.12 Magnolol
  • 4.4.13 Quercetin
  • 4.4.14 Coenzyme Q10
  • 4.5 Commercial Aspects
  • 4.6 Conclusions and Perspectives
  • References
  • 5 Role of liposomal drug-delivery system in cosmetics
  • 5.1 Introduction of Liposomes
  • 5.1.1 Structural Components of Liposomes
  • 5.1.1.1 Phospholipids
  • 5.1.1.2 Cholesterol
  • 5.1.2 Some Important Facts About Liposomes
  • 5.2 Selection Criteria of Liposomes to Be Used in Cosmetics
  • 5.3 Mechanism of Action of Liposomes
  • 5.4 Method of Preparation of Liposomes
  • 5.5 Cosmetic Benefits of Liposomes
  • 5.6 Limitations of Liposomes as a Carrier
  • 5.6.1 Chemical Stability
  • 5.7 Characterization Parameters of Liposomal-Based Cosmeceuticals
  • 5.8 Liposome-Based Cosmeceuticals
  • 5.8.1 Moisturizers
  • 5.8.2 Sunscreens/Ultraviolet Protection
  • 5.8.3 Depigmenting Agent
  • 5.8.4 Antiacne
  • 5.8.5 Antiaging
  • 5.8.6 Vitiligo
  • 5.8.7 Alopecia
  • 5.8.8 Cellulite
  • 5.8.9 Hirsutism
  • 5.8.10 Wound Treatment
  • 5.8.11 Atopic Dermatitis
  • 5.8.12 Psoriasis
  • 5.8.13 Hair Care
  • 5.8.14 Lip Care
  • 5.8.15 Nail Care
  • 5.9 Safety of Liposomes in Cosmetic Products
  • 5.10 Regulations of Nanocosmaceuticals
  • 5.11 Conclusions and Future Perspectives
  • References
  • 6 Nanobiomaterials in galenic formulations and cosmetics
  • 6.1 Introduction
  • 6.2 Cosmetic Applications
  • 6.3 Nanotechnology for Better Delivery
  • 6.3.1 Liposomes
  • 6.3.2 Niosomes
  • 6.3.3 Polymeric Nanoparticles: Nanospheres and Nanocapsules
  • 6.3.4 Dendrimers
  • 6.3.5 Nanoemulsions
  • 6.3.6 Nanocrystals
  • 6.3.7 SLNs and NLCs
  • 6.4 Nanotechnology for UV Protection
  • 6.4.1 Metal Oxide Nanoparticles for Sunscreens
  • 6.4.2 Organic Nanoparticles for Sunscreens
  • 6.5 Further Nanoparticles Used in Cosmetics
  • 6.5.1 Carbon Black
  • 6.5.2 Hydroxyapatite
  • 6.6 Safety Issues
  • 6.6.1 UV Filters and Carbon Black
  • 6.6.2 New Light and Norms Appearing
  • 6.7 Conclusions
  • References
  • 7 Nanobiomaterials in cosmetics: current status and future prospects
  • 7.1 Introduction
  • 7.2 Applications of Nanoparticles in Cosmetics
  • 7.3 Advantages of Using Nanomaterials in Cosmetics
  • 7.4 Types of Nanomaterials
  • 7.4.1 Liposomes
  • 7.4.2 Niosomes
  • 7.4.3 Transfersomes
  • 7.4.4 Solid Lipid Nanoparticles
  • 7.4.5 Nanostructured Lipid Carriers
  • 7.4.6 Dendrimers
  • 7.4.7 Nanoemulsions
  • 7.4.8 Nanocrystals
  • 7.4.9 Nanocapsules
  • 7.4.10 Buckyballs/Fullerenes
  • 7.4.11 Cubosomes
  • 7.4.12 Nanoparticles
  • 7.5 Patents
  • 7.6 Route of Exposure and Translocation of Nanoparticles
  • 7.6.1 Respiratory Uptake
  • 7.6.2 Cellular Uptake
  • 7.6.3 Nervous System Uptake
  • 7.6.4 Lymphatic System Uptake
  • 7.6.5 Circulatory System Uptake
  • 7.6.6 Liver, Spleen, Kidneys Uptake
  • 7.6.7 Gastrointestinal Tract Uptake
  • 7.6.8 Dermal Uptake
  • 7.6.9 Toxicity Profile/Risk Assessment
  • 7.7 Future Prospects
  • 7.8 Conclusions
  • References
  • 8 Nanocapsules as carriers of active substances
  • Abbreviations
  • 8.1 Introduction
  • 8.2 The Definition of Nanoencapsulation and Structure of Nanocapsules
  • 8.2.1 The Surface of Nanocapsules
  • 8.2.2 The Core of Nanocapsules
  • 8.3 Nanocapsule Preparation
  • 8.3.1 The Nanoprecipitation Method
  • 8.3.2 Emulsion-Diffusion Method
  • 8.3.3 Double-Emulsification Method
  • 8.3.4 The Emulsion-Coacervation Method
  • 8.3.5 The Polymer-Coating Method
  • 8.3.6 The Layer-by-Layer Method
  • 8.4 Characterization of Nanocapsules
  • 8.4.1 Nanocapsule Stability
  • 8.4.2 Nanocapsule Particle Size and Polydispersity
  • 8.4.3 The Charge on the Nanocapsule Surface
  • 8.4.4 Zeta Potential
  • 8.5 Application of Nanocapsules in Cosmetology, Pharmacy, and Medicine
  • 8.6 Advantages of Nanocapsules
  • 8.7 Conclusions
  • References
  • 9 Sunscreens
  • 9.1 Introduction
  • 9.2 What Are Sunscreens?
  • 9.3 Why Should People Use Sunscreens?
  • 9.4 History of Sunscreens
  • 9.5 Ideal Sunscreen Properties
  • 9.6 Approved Active Ingredients of Sunscreens
  • 9.7 Applications of Nanotechnology in Sunscreens
  • 9.7.1 Nanoparticles
  • 9.7.1.1 NP components
  • 9.7.1.1.1 Inorganic sunscreens
  • 9.7.1.1.1.1 Titanium dioxide
  • 9.7.1.1.1.2 Zinc oxide
  • 9.7.1.1.1.3 Merits of inorganic nanosunscreens
  • 9.7.1.1.1.4 Demerits of inorganic nanosunscreens
  • 9.7.1.1.1.5 Safety of inorganic nanosunscreens
  • 9.7.1.1.1.6 Preparation of inorganic nanocomponents of sunscreens
  • 9.7.1.1.2 Organic filter-biscotrizole
  • 9.7.1.2 Nanocrystals
  • 9.7.1.2.1 Nanoencapsulation
  • 9.7.1.3 Polymeric nanoparticles
  • 9.7.1.4 Solid lipid nanoparticles
  • 9.7.1.5 Nanostructured lipid carriers
  • 9.7.1.6 Crystalline lipid nanoparticles
  • 9.7.1.7 Nanoemulsions
  • 9.7.2 Cyclodextrin Complexation
  • 9.7.3 Nonpermeating Sunscreens
  • 9.7.4 Sunspheres
  • 9.7.5 Liposomes
  • 9.7.6 Mesoporous Silica
  • 9.7.7 Antioxidants
  • 9.8 Present Market for Nanosunscreens
  • 9.9 Future Prospects
  • 9.10 Conclusions
  • References
  • 10 Solid lipid nanoparticles and nanostructured lipid carriers as novel carriers for cosmetic ingredients
  • 10.1 Introduction
  • 10.2 The Skin and Drug Penetration
  • 10.2.1 Structure, Functions, and Role of the Skin
  • 10.3 Novel Carriers
  • 10.3.1 Solid Lipid Nanoparticles
  • 10.3.2 Nanostructured Lipid Carriers
  • 10.4 Methods of Preparation SLNs and NLCs
  • 10.4.1 High-Pressure Homogenization
  • 10.4.1.1 Hot homogenization
  • 10.4.1.2 Cold homogenization
  • 10.4.2 Ultrasonication or High-Speed Homogenization
  • 10.4.3 Solvent Evaporation Method
  • 10.4.4 Microemulsion Method
  • 10.4.5 Membrane Contractor
  • 10.4.6 Supercritical Fluid Method
  • 10.5 Analytical Characterization of Nanoparticles
  • 10.5.1 Measurement of Particle Size
  • 10.5.2 Zeta Potential
  • 10.5.3 Dynamic Light Scattering
  • 10.5.4 Static Light Scattering or Fraunhofer Diffraction
  • 10.5.5 Differential Scanning Calorimetry
  • 10.5.6 Nuclear Magnetic Resonance
  • 10.5.7 Electron Microscopy
  • 10.5.8 Franz Diffusion Cell
  • 10.6 SLNs and NLCs in Cosmetics
  • 10.6.1 Toxicity
  • 10.6.2 Active Substance Release from NLCs and SLNs
  • 10.6.3 The Main Advantages of Using Nanostructure Lipid Carriers in Cosmetics
  • 10.6.4 Multidirectional Use of Nanoparticles in Cosmetic Preparations
  • 10.7 Conclusions
  • References
  • 11 Skin autoimmune disorders: lipid biopolymers and colloidal delivery systems for topical delivery
  • 11.1 Introduction
  • 11.2 Autoimmune Dermal Disorders
  • 11.3 Causes of Autoimmune Disorders of Skin
  • 11.4 Treatment Strategies
  • 11.5 Hurdles in Drug Delivery Through Skin and Techniques to Overcome
  • 11.6 Lipid-Based Systems for Drug Delivery Through Skin
  • 11.7 Safety and Efficacy Profile of Lipids as Delivery System
  • 11.8 Lipid Colloidal Drug-Delivery Cargos for Autoimmune Skin Disorder
  • 11.9 Lipid-Based Colloidal Carriers
  • 11.9.1 Lipid Vesicular Carriers
  • 11.9.1.1 Liposomes
  • 11.9.1.2 Transferosomes
  • 11.9.2 Ethosomes
  • 11.10 Lipid Particulate Carriers
  • 11.11 Solid Lipid Nanoparticles
  • 11.11.1 Nanostructured Lipid Carriers
  • 11.12 Emulsion-Based Carriers
  • 11.13 Microemulsions
  • 11.13.1 Nanoemulsions
  • 11.14 Conclusions
  • Acknowledgments
  • References
  • 12 The role of liposomes and lipid nanoparticles in the skin hydration
  • 12.1 Introduction
  • 12.2 The Skin Structure
  • 12.3 Skin Hydration
  • 12.3.1 Moisturizing Ingredients
  • 12.3.2 Measuring Skin Hydration
  • 12.4 Lipid-Based Nanocarriers
  • 12.4.1 Liposomes
  • 12.4.1.1 Methods of production
  • 12.4.1.2 Role of liposomes in skin hydration
  • 12.4.2 Lipid Nanoparticles
  • 12.4.2.1 Lipid nanoparticle production
  • 12.4.2.2 Lipid nanoparticles in skin hydration
  • 12.4.3 Incorporation in Semisolid Bases
  • 12.4.4 Marketed Examples
  • 12.5 Regulatory Aspects
  • 12.6 Other Applications
  • 12.7 Conclusions
  • References
  • 13 Lipid nanoparticles for topical application of drugs for skin diseases
  • 13.1 Introduction
  • 13.2 Treatment of Topical Skin Disease: Potential Problems
  • 13.3 Liposomes
  • 13.4 Ethosomes
  • 13.5 Solid Lipid Nanoparticles
  • 13.6 Nanostructured Lipid Carriers
  • 13.7 Lipid Nanocapsules
  • 13.8 Microemulsion
  • 13.9 Production of Lipid Nanoparticles
  • 13.10 Action Mechanisms of Lipid-Based Colloid Systems for Topical Delivery
  • 13.10.1 Free Drug Permeation
  • 13.10.2 Carrier Adsorption and Penetration Enhancement
  • 13.10.3 Intact Carrier Penetration
  • 13.10.4 Transappendageal Delivery
  • 13.11 Pharmaceutical Formulations and Benefits
  • 13.11.1 Topical Glucocorticoids
  • 13.11.2 Antiandrogen
  • 13.11.3 Vitamin A Derivate
  • 13.11.4 PUVA Therapy
  • 13.11.5 Nonsteroidal Anti-Inflammatory Drugs
  • 13.11.6 Traditional Chinese Medicine
  • 13.11.7 Antimycotics
  • 13.11.8 Podophyllotoxin
  • 13.11.9 Antiacne Drugs
  • 13.11.10 UV Protection
  • 13.11.11 Colloidal Topical Dermatics for Eczema
  • 13.12 Conclusions
  • References
  • 14 Nanocarriers in cosmetology
  • 14.1 Nanosize
  • 14.2 Characterization of Nanosized Systems
  • 14.2.1 Particle Size
  • 14.2.2 Zeta Potential
  • 14.2.3 Crystallization Degree
  • 14.2.4 Active Substance Loading and Loading Capacity
  • 14.2.5 Release of Active Substances
  • 14.3 Different Types of Nanosystems Used in the Cosmetic Field
  • 14.3.1 Liposomes
  • 14.3.1.1 Structural components of liposomes
  • 14.3.1.1.1 Phospholipids
  • 14.3.1.1.2 Sphingolipids
  • 14.3.1.1.3 Sterols
  • 14.3.1.1.4 Synthetic phospholipids
  • 14.3.1.2 Production of liposomes
  • 14.3.1.2.1 Hydration of dry film
  • 14.3.1.2.2 Ethanol injection method
  • 14.3.1.2.3 Detergent dialysis
  • 14.3.1.2.4 Microfluidization
  • 14.3.2 Niosomes
  • 14.3.2.1 Production of niosomes
  • 14.3.2.1.1 Ether injection method
  • 14.3.2.1.2 Film method
  • 14.3.2.1.3 Sonication
  • 14.3.2.1.4 Method of Handjani-Vila
  • 14.3.2.1.5 Reverse-phase evaporation
  • 14.3.2.1.6 Heating method
  • 14.3.3 Nanoparticles
  • 14.3.3.1 Nanoparticle preparation methods
  • 14.3.4 SLNs and NLCs
  • 14.3.4.1 Production methods
  • 14.3.4.1.1 High-speed homogenization and ultrasound
  • 14.3.4.1.2 High-pressure homogenization
  • 14.3.4.1.3 Emulsification and solvent evaporation technique
  • 14.3.4.1.4 Microemulsion technique
  • 14.3.5 Nanoemulsions
  • 14.3.5.1 Anhydrous nanoemulsions
  • 14.3.5.2 Preparation methods of nanoemulsions
  • 14.3.5.2.1 Ultrasonic agitation
  • 14.3.5.2.2 Microfluidization
  • 14.3.5.2.3 Phase inversion temperature technique
  • 14.3.5.2.4 Solvent displacement method
  • 14.3.6 Nanocrystals
  • 14.3.6.1 Nanocrystal preparation methods
  • 14.4 Conclusions
  • References
  • 15 Silver nanoparticles as a challenge for modern cosmetology and pharmacology
  • 15.1 Introduction
  • 15.2 Synthesis
  • 15.2.1 Physical Methods
  • 15.2.2 Chemical Methods
  • 15.2.3 Biological Methods
  • 15.3 Differences Between the Physicochemical Properties of Conventional Materials and Nanomaterials
  • 15.4 Detection and Analysis of Samples Containing SNs
  • 15.5 Biological Activity of SNs
  • 15.6 Parameters Determining the Biological Activity of SNs
  • 15.7 Mechanisms of Antimicrobial Activity of SNs
  • 15.8 The Use of SNs in Cosmetic and Galenic Formulations
  • 15.8.1 SN Application to the Mucosal, Wounds, and Interrupted Epidermis
  • 15.8.2 The Use of SNs in the Production of Sterile Dressings, Bandages, and Protective Bands
  • 15.8.3 SNs as Preservative
  • 15.8.4 Cosmetics and Pharmaceutical Packaging Coated with SNs
  • 15.8.5 SNs in Acne Therapy
  • 15.8.6 SNs as Pigments in Color Cosmetics
  • 15.9 Resistance to Antimicrobials
  • 15.10 SNs Toxicology
  • 15.10.1 Oral Toxicity
  • 15.10.2 Dermal Toxicity
  • 15.10.3 Eye and Skin Irritation
  • 15.11 Safety of Cosmetic and Galenic Formulas Containing SNs
  • 15.12 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok