Nanobiomaterials in Drug Delivery

Applications of Nanobiomaterials
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 26. April 2016
  • |
  • 618 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-42889-7 (ISBN)
 

Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials presents novel approaches regarding nanostructured drug delivery systems, revealing the most investigated materials for the development of particular nanobioshuttles. This book brings the results of current research to reach those who wish to use this knowledge in an applied setting, providing one coherent text, with focused chapters and easily accessible information.

At its core, it is a collection of titles, bringing together many of the novel applications these materials have in biology, also discussing the advantages and disadvantages of each application and the perspectives of the technologies based on these findings. At the moment, there is no other comparable book series covering all the subjects approached in this set of titles.


  • Provides up-to-date and well-structured reference material for students, researchers, and practitioners working in the biomedical, biotechnological, and engineering fields
  • Presents a valuable guide to recent scientific progress, along with most known applications of nanomaterials in the biomedical area
  • Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine/nanobiology
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 11,38 MB
978-0-323-42889-7 (9780323428897)
0323428894 (0323428894)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanobiomaterials in Drug Delivery
  • Copyright Page
  • Contents
  • List of contributors
  • Preface of the series
  • Preface
  • About the Series (Volumes I-XI)
  • About Volume IX
  • 1 Nanobiomaterials in drug delivery
  • Abbreviations
  • 1.1 Introduction
  • 1.1.1 Parameters of Delivery of Nanoparticles into Biological Systems
  • 1.1.2 Intratumor Drug Release
  • 1.1.3 Biological Clearance
  • 1.1.4 Toxicity of Nanoparticles
  • 1.2 Preparation and Characterization of Nanomaterials
  • 1.2.1 Preparation
  • 1.2.2 Characterization
  • 1.2.2.1 Physicochemical characterization
  • 1.3 Nanotechnology-Assisted Formulating of Poorly Water-Soluble Compounds
  • 1.4 Biodegradable Polymers Used in Controlled Drug Delivery
  • 1.5 Multifunctional Nanomaterials for Cancer Therapy
  • 1.5.1 Targeting
  • 1.5.2 Imaging
  • 1.5.3 Chemotherapy
  • 1.6 Chemical Conjugation of Nanomaterials
  • 1.6.1 pH-Sensitive Linkages Used for Bioconjugation of Nanomaterials
  • 1.6.2 Other Chemical Linkages Used for Bioconjugation of Nanomaterials
  • 1.7 Conclusions
  • Acknowledgments
  • References
  • 2 Dendrimers in drug delivery
  • 2.1 Introduction
  • 2.2 Mechanisms of Interaction Between Dendrimers and Drug Molecules
  • 2.3 Dendrimers as Carriers of Various Types of Drugs
  • 2.3.1 Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
  • 2.3.2 Anticancer Drugs
  • 2.3.3 Other Drugs
  • 2.4 Routes of Administration of Drug-Dendrimers Complexes
  • 2.4.1 Dendrimers in Intravenous Drug Delivery
  • 2.4.2 Dendrimers in Oral Drug Delivery
  • 2.4.3 Dendrimers in Transdermal Drug Delivery
  • 2.4.4 Dendrimers in Ocular Drug Delivery
  • 2.4.5 Dendrimers in Pulmonary Drug Delivery
  • 2.5 Conclusions and Further Prognosis
  • Acknowledgments
  • References
  • 3 Lipid nanoparticles as non-viral vectors for siRNA delivery: concepts and applications
  • 3.1 Introduction
  • 3.2 siRNA: Definition, Mechanism, and Applications
  • 3.3 Hurdles for siRNA Delivery
  • 3.4 Strategies to Overcome the Hurdles of siRNA Delivery
  • 3.4.1 Chemical Modifications in siRNA
  • 3.4.2 Physical Methods for siRNA Delivery
  • 3.4.3 Viral Carriers for siRNA Delivery
  • 3.4.4 Non-viral Carriers for siRNA Delivery
  • 3.5 Liposomes: The Influence of Charge and Lipid Composition for siRNA Delivery
  • 3.5.1 Cationic Lipid-Based siRNA Delivery Systems
  • 3.5.2 Neutral Lipid-Based siRNA Delivery Systems
  • 3.5.3 Anionic Lipid-Based siRNA Delivery Systems
  • 3.5.4 Stealth Liposomes
  • 3.6 Targeted Delivery of siRNA-Loaded Liposomes
  • 3.7 Combined Therapy of siRNA-Loaded Liposomes and Conventional Small-Molecule Drugs
  • 3.8 siRNA-Loaded Liposomes Associated with Physical Methods
  • 3.9 siRNA-Loaded Liposomes: Clinical Studies
  • 3.10 Conclusions and Perspectives
  • References
  • 4 Nanobiomaterials: Novel nanoplatforms for protein and peptide delivery
  • 4.1 Introduction
  • 4.2 Proteins/Peptides as Therapeutics
  • 4.2.1 Group I-Protein Therapeutics with Enzymatic or Regulatory Activity
  • 4.2.2 Group II-Protein Therapeutics with Special Targeting Activity
  • 4.2.3 Group III-Proteinaceous Vaccines
  • 4.2.4 Group IV-Protein Diagnostics
  • 4.3 Hurdles in Protein and Peptide Drug Delivery
  • 4.4 Nanobiomaterials and Carriers for Protein and Peptide Drug Delivery
  • 4.5 Classification of Polymeric Biomaterials
  • 4.6 Methods for Protein and Peptide Nanoencapsulation
  • 4.6.1 Emulsification-Polymerization
  • 4.6.2 Interfacial Polymerization
  • 4.6.3 Solvent Evaporation
  • 4.6.4 Salting Out
  • 4.6.5 Coacervation/Phase Separation Technique
  • 4.6.6 Emulsification/Solvent Diffusion
  • 4.6.7 Taylor Cone Jet Methods
  • 4.7 Nanobiomaterials-Based Nanocarriers for Protein/Peptide Delivery
  • 4.7.1 Polymeric Nanoparticles
  • 4.7.1.1 Natural polymers
  • 4.7.1.2 Synthetic polymers
  • 4.7.1.2.1 Natural nanobiomaterials
  • 4.7.1.2.2 Synthetic nanobiomaterials
  • 4.8 Lipid-Based Carriers for Proteins and Peptides
  • 4.8.1 Liposomes
  • 4.8.2 Solid Lipid Nanoparticles
  • 4.8.2.1 High-pressure homogenization (HPH)
  • 4.8.2.1.1 Hot high-pressure homogenization (hot HPH technique)
  • 4.8.2.1.2 Cold high-pressure homogenization (cold HPH)
  • 4.8.2.2 Solvent diffusion
  • 4.8.2.3 Double emulsion evaporation method
  • 4.9 Stimuli-Responsive Systems for Protein and Peptide Delivery
  • 4.9.1 Desirable Features of Smart Polymers for Protein and Peptide Delivery
  • 4.9.2 Temperature-Sensitive Delivery Systems
  • 4.9.3 Phase-Sensitive Delivery Systems
  • 4.9.4 pH-Responsive Systems
  • 4.9.5 Light-Responsive Systems
  • 4.9.6 Electric-Responsive Systems
  • 4.9.7 Dual- and Multistimuli Responsive Systems
  • 4.10 Conclusions
  • References
  • 5 Current status and future prospects of nanobiomaterials in drug delivery
  • 5.1 Introduction
  • 5.2 Properties of Nanomaterials
  • 5.3 Metallic NPs and their Biomedical Prospects
  • 5.4 Methods for the Generation of Biogenic Nanomaterials
  • 5.5 The Interaction Between Biomolecules and Nanomaterials
  • 5.6 Characterization of Nanomaterials
  • 5.7 Development of Bionanomaterials for Drug Delivery, Imaging, and Diagnosis
  • 5.8 Anticancer Potential of Nanomaterials
  • 5.9 Antioxidant Potential of NPs
  • 5.10 Metal NPs as Antimicrobial Agents
  • 5.11 Toxicity Issues Associated with Metal NPs
  • 5.12 Industrial Applications of Metal NPs
  • 5.13 Conclusions and Future Prospects
  • Acknowledgments
  • References
  • 6 Magnetoanisotropic biodegradable nanocomposites for controlled drug release
  • 6.1 Introduction
  • 6.2 Experimental Section
  • 6.2.1 Materials
  • 6.2.2 The Magnetic Compositions and Interactions Among their Components
  • 6.2.3 Experimental Technique
  • 6.3 Drug Release From Non-Magnetic PHB-Chitosan Systems
  • 6.4 FMR Spectroscopy of Magnetic Nanocomposites
  • 6.5 SEM Micrographs
  • 6.6 Equilibrium Swelling of Biodegradable Magnetic Nanocomposites
  • 6.7 Drug Transport in MNC Films
  • 6.8 Conclusions
  • Acknowledgments
  • References
  • 7 Nanomaterials in drug delivery: existing scenario and potential scope
  • 7.1 Nanotechnology in Drug Delivery
  • 7.1.1 Nanotechnology in Oral Bioavailability
  • 7.1.2 Enhancement of Bioavailability
  • 7.1.3 Approaches for Enhancement of Absorption of Orally Administered Drugs
  • 7.1.4 Excipient Selection
  • 7.1.5 Factors Affecting the Choice of Excipients for Lipid-Based Formulations
  • 7.1.6 Lipids in Bioavailability
  • 7.1.7 Intestinal Drug Dissolution
  • 7.1.8 Lipids and Drug Transporter Proteins
  • 7.1.9 Lipid-Based Formulations in Bioavailability Enhancement
  • 7.1.10 Approaches for the Development of Lipid-Based Formulations (Solid and Semi-Solid)
  • 7.2 Solid Lipid Nanoparticles
  • 7.2.1 Advantages of SLNs
  • 7.2.2 Influence of Lipids and Surfactants
  • 7.2.3 Stability of SLNs
  • 7.3 Nanotechnology in Lymphatic Targeting
  • 7.3.1 What Are Lymphatics and Their Role?
  • 7.3.2 Necessity of Delivering Drugs to the Lymphatics
  • 7.3.3 Role of Lipids in Absorption of Drugs to the Lymphatics
  • 7.3.4 Is Targeting to the Lymphatics Possible, Factors Necessary to Achieve Lymphatic Targeting and by What Routes
  • 7.3.4.1 Particle size
  • 7.3.4.2 Surface charge
  • 7.3.4.3 Molecular weight
  • 7.3.4.4 Hydrophobicity
  • 7.3.4.5 Lipophilicity
  • 7.3.4.6 Concentration and volume of particles
  • 7.3.5 Current Status and Future Perspectives of Lymphatic Targeting
  • 7.4 Nanocarriers in Neuropharmaceuticals
  • 7.4.1 BBB Drug-Targeting Strategies
  • 7.4.2 Surface-Modified Polymeric Nanocarriers
  • 7.4.3 Methods for Surface-Modified Nanocarriers
  • 7.4.4 Functionalized Nanocarriers for Drug Transport Across the BBB via Transport Vectors
  • 7.5 Carbon Nanotubes
  • 7.5.1 Types of CNTs
  • 7.5.1.1 Single-walled carbon nanotubes
  • 7.5.1.2 Double-walled carbon nanotubes
  • 7.5.1.3 Multiwalled carbon nanotubes
  • 7.5.2 Production of Carbon Nanotubes
  • 7.5.2.1 Arc discharge method
  • 7.5.2.2 Catalyst chemical vaporization method
  • 7.5.2.3 Laser ablation technique
  • 7.5.2.4 Electric arc technique
  • 7.5.3 Mechanism of Cellular Uptake
  • 7.5.4 Applications of CNTs in Drug Delivery
  • 7.5.4.1 Cancer targeting
  • 7.5.4.2 Lymph targeting
  • 7.5.4.3 Gene therapy
  • 7.5.4.4 Vaccine delivery
  • 7.5.4.5 Brain targeting
  • 7.5.4.6 Photothermal therapy of cancer
  • 7.5.4.7 Other applications
  • 7.5.5 Toxicity of CNTs
  • 7.6 Conclusions
  • References
  • 8 Natural and synthetic polymers for drug delivery and targeting
  • 8.1 Introduction
  • 8.2 Liposomes
  • 8.2.1 Natural and Semisynthetic Polymers for Liposome Formulations
  • 8.2.2 Synthetic Polymer-Based Liposomes
  • 8.3 Niosomes
  • 8.4 Polymeric Nanoparticles
  • 8.4.1 Natural Polymers for Nanoparticle Formulations
  • 8.4.2 Semisynthetic Polymers
  • 8.4.3 Synthetic Polymers
  • 8.5 Therapeutic Polymers
  • 8.5.1 Polymeric Micelles
  • 8.5.2 Dendrimers
  • 8.5.2.1 Poly(amidoamine) (PAMAM) dendrimers
  • 8.5.2.2 PEGylated ("stealth") dendrimers
  • 8.5.3 Colloidal Nanogels
  • 8.5.3.1 Natural polysaccharides for colloidal nanogels
  • 8.5.3.2 Semisynthetic polymers
  • 8.5.3.3 Synthetic polymers
  • 8.5.4 Polymeric Artificial Cells
  • 8.5.4.1 Artificial red blood cells (modified hemoglobin blood substitutes)
  • 8.5.4.2 Artificial ß-Langerhans cells
  • 8.5.4.3 Artificial cells for drug delivery and targeting
  • 8.6 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 9 Magnetically based nanocarriers in drug delivery
  • 9.1 Introduction
  • 9.2 Magnetic Nanoparticle Synthesis Methods
  • 9.2.1 Chemical Synthesis of Magnetic Nanoparticles
  • 9.2.1.1 Synthesis with coprecipitation technique
  • 9.2.1.2 Microemulsions
  • 9.2.1.3 Hydrothermal and high-temperature reactions
  • 9.2.1.4 Sol-gel reactions
  • 9.2.1.5 Polyol reactions
  • 9.2.1.6 Flow injection synthesis
  • 9.2.1.7 Gas/aerosol phase methods
  • 9.2.1.8 Sonolysis
  • 9.2.1.9 Microwave irradiation
  • 9.2.2 Green Chemistry
  • 9.2.2.1 Green synthesis through plant extract
  • 9.2.2.2 Green synthesis through plant biomass
  • 9.2.2.3 Green synthesis through biotemplate
  • 9.2.3 Magnetosomes-A Biological Source for Magnetic Nanoparticles
  • 9.3 Magnetic Nanoparticles Modifications
  • 9.3.1 Functionalization and Encapsulation with Natural Polymers
  • 9.3.2 Functionalization and Encapsulation with Synthetic Polymers
  • 9.3.3 Ligand Modifications and Targeting
  • 9.3.4 Magnetic Resonance Imaging
  • 9.3.5 Hyperthermia
  • 9.3.6 Gene Therapy
  • 9.3.7 Drug Delivery
  • 9.3.7.1 Effectiveness of the therapy
  • 9.3.7.2 Limitations of magnetic drug delivery
  • 9.3.7.3 Magnetic nanoparticles in drug delivery
  • 9.3.7.3.1 Chemotherapeutics
  • 9.3.7.3.2 Radiotherapeutics
  • 9.3.7.3.3 Biotherapeutics
  • 9.3.7.3.4 Drug delivery with magnetosomes
  • 9.4 Conclusions
  • References
  • 10 Drug-delivery nanocarriers to cross the blood-brain barrier
  • Abbreviations
  • 10.1 Introduction
  • 10.2 Blood-Brain Barrier
  • 10.3 Endothelial Cells
  • 10.3.1 Tight Junctions
  • 10.3.2 Adherens Junction
  • 10.3.3 ATP-Binding Cassette Transporters
  • 10.3.4 Transport Systems
  • 10.4 Astrocytes
  • 10.5 Pericytes
  • 10.6 Factors Influencing BBB Penetration
  • 10.7 Hydrogen Bonding
  • 10.8 Plasma Area Under the Curve
  • 10.9 Molecular Weight
  • 10.10 Parameters to Evaluate Brain Permeation
  • 10.11 Influx Clearance into the Brain
  • 10.12 Brain/Plasma Ratio
  • 10.13 Log BB
  • 10.14 Brain to Plasma Free Drug Concentration Ratio
  • 10.15 Permeability Surface Area Product
  • 10.16 Apparent Permeability
  • 10.17 Brain Uptake Index
  • 10.18 Unbound Brain Volume of Distribution
  • 10.19 Brain Unbound Concentration
  • 10.20 Brain Free Fraction
  • 10.21 Drug-Delivery Nanosystems
  • 10.22 Polymeric Nanoparticles
  • 10.23 Liposomes
  • 10.24 Solid Lipid Nanoparticles
  • 10.25 Conclusions
  • References
  • 11 Nanotechnology-based drug-delivery systems releasing growth factors to the CNS: focusing on neurodegenerative disorders
  • 11.1 Introduction
  • 11.2 Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, and Amyotrophic Lateral Sclerosis
  • 11.2.1 Alzheimer's Disease
  • 11.2.2 Parkinson's Disease
  • 11.2.3 Huntington's Disease
  • 11.2.4 Amyotrophic Lateral Sclerosis
  • 11.3 Growth Factors as a Novel Therapy to Treat Neurodegenerative Diseases
  • 11.4 In vivo Administration Routes of GFs to Reach the Brain
  • 11.4.1 Invasive Administration Routes: Intracerebroventricular and Intraparenchymal Routes
  • 11.4.2 Intrathecal Administration
  • 11.4.3 Parenteral Administration
  • 11.4.4 Intranasal Administration
  • 11.5 Nanotechnology-Based DDS Releasing Growth Factors for the Treatment of CNS Diseases
  • 11.5.1 Polymeric Nanospheres
  • 11.5.2 Liposomes and Lipidic Nanocarriers
  • 11.5.3 Gene Therapy
  • 11.6 Conclusions
  • References
  • 12 Bionanofibers in drug delivery
  • 12.1 Introduction
  • 12.2 Electrospun Nanofibers
  • 12.2.1 Introduction
  • 12.2.2 Drug-Incorporating Techniques
  • 12.2.2.1 Blending
  • 12.2.2.2 Coaxial process
  • 12.2.2.3 Emulsion electrospinning
  • 12.2.2.4 Surface modification
  • 12.2.2.5 Other electrospinning techniques
  • 12.2.3 Types of Drugs Released
  • 12.2.3.1 Hydrophobic drugs
  • 12.2.3.2 Hydrophilic drugs
  • 12.2.3.3 Growth-factor delivery
  • 12.2.3.4 DNA and siRNA delivery
  • 12.2.3.5 Other
  • 12.2.4 Clinical Applications
  • 12.2.4.1 Wound dressings
  • 12.2.4.2 Cancer therapy
  • 12.2.4.3 Adhesion barrier
  • 12.2.4.4 Tissue engineering
  • 12.2.4.4.1 Vascular tissue engineering
  • 12.2.4.4.2 Bone tissue engineering
  • 12.2.4.4.3 Tendon tissue engineering
  • 12.3 Self-Assembled Nanofibers
  • 12.3.1 Introduction
  • 12.3.2 Self-Assembly Techniques
  • 12.3.2.1 Self-assembly in response to electrostatics and temperature
  • 12.3.2.2 Self-assembly in response to pH and temperature
  • 12.3.3 Bioactive Factor Delivery Strategies
  • 12.3.3.1 Physical adsorption of bioactive factors into self-assembled scaffolds
  • 12.3.3.2 Covalent tethering of bioactive factors into self-assembled scaffolds
  • 12.3.4 Types of Drugs Incorporated
  • 12.3.4.1 Hydrophobic drugs
  • 12.3.4.2 Hydrophilic drugs
  • 12.3.4.3 Growth Factors
  • 12.3.4.4 Genes
  • 12.3.5 Applications in Tissue Engineering
  • 12.4 Nanofibers by Thermally Induced Phase Separation
  • 12.4.1 Introduction
  • 12.4.2 Parameters Influencing Phase Separation
  • 12.4.3 Drug Incorporation Techniques
  • 12.4.4 Types of Drugs Incorporated
  • 12.4.4.1 Hydrophobic drugs
  • 12.4.4.2 Hydrophilic drugs
  • 12.4.4.3 Growth Factors
  • 12.4.4.4 DNA
  • 12.4.5 Applications in Tissue Engineering
  • 12.5 Other Nanofibers
  • 12.5.1 Carbon Nanofibers
  • 12.5.2 Aluminum Nanofibers
  • 12.5.3 Titanium Nanofibers
  • 12.6 Conclusions and Future Directions
  • Acknowledgments
  • References
  • 13 Nanobiomaterials as gene-delivery vehicles
  • 13.1 Introduction
  • 13.1.1 Historical Perspectives
  • 13.1.2 Limitations and a Word of Caution!
  • 13.2 Gene Delivery
  • 13.2.1 Barriers to Gene Delivery
  • 13.2.2 Options for Gene Delivery
  • 13.2.2.1 Physical methods
  • 13.2.2.2 Chemical methods
  • 13.2.2.3 Carrier-mediated delivery systems
  • 13.2.2.3.1 Viral vectors
  • 13.2.2.3.2 Non-viral delivery strategies
  • 13.3 Clinical Trials in Gene Therapy
  • 13.3.1 Cancer
  • 13.3.2 Cardiovascular Disease
  • 13.4 Conclusions and Future Perspectives
  • References
  • 14 Nanobiomaterials set to revolutionize drug-delivery systems for the treatment of diabetes: state-of-the-art
  • Abbreviations
  • 14.1 Introduction
  • 14.2 Oral Insulin Administration
  • 14.2.1 Polymeric NPs
  • 14.2.1.1 Preparing polymeric NPs: general methods
  • 14.2.1.2 Preparing of polymeric NPs: advanced methods
  • 14.2.1.3 PLGA NPs
  • 14.2.1.4 Polylactic acid NPs
  • 14.2.1.5 Poly-caprolactone NPs
  • 14.2.1.6 Dextran NPs
  • 14.2.1.7 Polyallylamine NPs
  • 14.2.1.8 Alginate NPs
  • 14.2.1.9 Poly(alkyl cyanoacrylate) NPs
  • 14.2.1.10 Cyclodextrins
  • 14.2.1.11 Casein NPs
  • 14.2.1.12 Pectin
  • 14.2.1.13 Gelatin NPs
  • 14.2.1.14 Starch
  • 14.2.1.15 Chitosan NPs
  • 14.2.2 Solid Lipid NPs
  • 14.2.3 Ceramic NPs
  • 14.3 Conclusions
  • References
  • 15 Chitosan and its derivatives-based nano-formulations in drug delivery
  • 15.1 Introduction
  • 15.2 Basic Properties of Chitosan
  • 15.2.1 Physicochemical and Biological Properties
  • 15.2.2 Biodegradability
  • 15.2.3 Immunoadjuvant and Nonallergenic Properties
  • 15.3 Chemical Modifications of Chitosan
  • 15.3.1 Hydrophilic Modification
  • 15.3.1.1 Quaternization
  • 15.3.1.2 Thiolation
  • 15.3.1.3 PEGylation
  • 15.3.1.4 Succinylation
  • 15.3.2 Hydrophobic Modification
  • 15.4 Chitosan-Based Nano-Formulations for Drug Delivery
  • 15.4.1 Delivery of Poorly Soluble Small Molecules
  • 15.4.2 Delivery of Proteins and Peptides
  • 15.4.3 Delivery of Vaccines
  • 15.4.4 Delivery of Genes
  • 15.5 Chitosan-Based Nano-Formulations for Different Administration Routes
  • 15.5.1 Intravenous Administration
  • 15.5.2 Oral Administration
  • 15.5.3 Intranasal Administration
  • 15.5.4 Pulmonary Administration
  • 15.5.5 Ocular Administration
  • 15.5.6 Transdermal Administration
  • 15.5.7 Buccal Administration
  • 15.6 Chitosan and Its Derivatives for Site-Specific Targeted Drug Delivery
  • 15.7 Future Opportunities and Challenges
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok