Nanobiomaterials in Dentistry

Applications of Nanobiomaterials
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 4. Juni 2016
  • |
  • 498 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-323-42890-3 (ISBN)
 

Nanobiomaterials in Dentistry: Applications of Nanobiomaterials discusses synthesis methods and novel technologies involving nanostructured bio-active materials with applications in dentistry. This book provides current research results for those working in an applied setting. The advantage of having all this information in one coherent text will be the focused nature of the chapters and the ease of which this information can be accessed.

This collection of titles brings together many of the novel applications these materials have in biology and discusses the advantages and disadvantages of each application and the perspectives of the technologies based on these findings. At the moment there is no other comparable book series covering all the subjects approached in this set of titles.


  • Offers an updated and highly structured reference material for students, researchers, and practitioners working in biomedical, biotechnological, and engineering fields
  • Serves as a valuable resource of recent scientific progress, along with most known applications of nanomaterials in the biomedical field
  • Features novel opportunities and ideas for developing or improving technologies in nanomedicine and dentistry
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 10,04 MB
978-0-323-42890-3 (9780323428903)
0323428908 (0323428908)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanobiomaterials in Dentistry
  • Copyright Page
  • Contents
  • List of contributors
  • Preface of the series
  • Preface
  • About the Series (Volumes I-XI)
  • About Volume XI
  • 1 Nanobiomaterials in dentistry
  • 1.1 Introduction
  • 1.2 Nanomedicine
  • 1.3 Nanobiomaterials Used in Dentistry
  • 1.3.1 Photoactivated Restorative Nanomaterials Used in Dentistry
  • 1.3.2 Nanosolutions
  • 1.3.3 Esthetic Materials
  • 1.3.4 Nano-Optimized Moldable Ceramics
  • 1.3.5 Impression Materials
  • 1.3.6 Nanoencapsulation
  • 1.3.7 Other Products Manufactured
  • 1.3.8 Materials to Induce Bone Growth
  • 1.3.9 Nanoneedles
  • 1.3.10 Self-Assembly
  • 1.3.11 Nanomaterials for Periodontal Drug Delivery
  • 1.3.12 Photodynamic Therapy
  • 1.3.13 Implants
  • 1.3.14 Dental Nanorobots
  • 1.3.15 Nanocomposite Artificial Teeth
  • 1.3.16 Dental Tissues and Nanostructures
  • 1.3.17 Digital Dental Imaging
  • 1.3.18 Applications of Nanotechnology in Oral and Maxillofacial Surgery
  • 1.3.19 Nanotechnology for Preventing Dental Caries
  • 1.3.19.1 Gold nanoparticles
  • 1.3.19.2 Silver nanoparticles
  • 1.3.19.3 Zinc oxide nanoparticles
  • 1.3.19.4 Titanium dioxide nanoparticles
  • 1.4 Conclusions
  • References
  • 2 Understanding dental implants
  • 2.1 Introduction
  • 2.2 Types of Dental Implants
  • 2.2.1 Trends in Dental Implants Biomaterials
  • 2.2.1.1 Ancient period (through AD 1000) to present
  • 2.2.1.2 Polymers and composites
  • 2.2.1.3 Metals and metal alloys
  • 2.2.1.4 Titanium and its alloys Ti-6Al-4V
  • 2.2.1.5 Ceramics
  • 2.2.1.6 Zirconia
  • 2.2.1.7 Carbon compounds
  • 2.2.1.8 Titanium-zirconium alloy (Straumann Roxolid)
  • 2.2.2 Dental Implant Configurations
  • 2.2.2.1 Subperiosteal implants
  • 2.2.2.2 The vitreous carbon implant
  • 2.2.2.3 Blade-vent implants
  • 2.2.2.4 The single-crystal sapphire implant
  • 2.2.2.5 The Tübingen aluminum ceramic implant
  • 2.2.2.6 The TCP-implant
  • 2.2.2.7 The TPS-screw
  • 2.2.2.8 The ITI hollow-cylinder implant
  • 2.2.2.9 The IMZ dental implant
  • 2.2.2.10 The core-vent titanium alloy implant
  • 2.2.2.11 The transosteal, mandibular staple bone plate
  • 2.2.2.12 The Brånemark osseointegrated titanium implant
  • 2.2.3 Design and Technology in Dental Implantology
  • 2.3 Dental Postimplantation Complications
  • 2.3.1 Biofilms and Implant-Associated Infections
  • 2.3.2 Avoiding Postsurgical Complications
  • 2.4 Conclusions
  • References
  • 3 Effect of titanium dioxide nanoparticle on proliferation, drug-sensitivity, inflammation, and metabolomic profiling of hu...
  • 3.1 Introduction
  • 3.2 Chemical and Physical Properties of TiO2 NPs
  • 3.3 Uses of TiO2 and TiO2 NPs
  • 3.4 Nanotoxicology and Hormetic Response
  • 3.5 Toxicity of TiO2 NPs in Dentistry
  • 3.5.1 Lower Cytotoxicity of Ti Plates as Compared to Dental Metals
  • 3.5.2 Cytotoxicity TiO2 NP Oral-Cultured Cells
  • 3.5.3 Pro-Inflammatory Action of TiO2 NPs
  • 3.5.4 Incorporation of TiO2 NPs in Oral Cells
  • 3.5.5 Exploring Intracellular Target Molecules of TiO2 NPs
  • 3.5.6 Exploring Anti-Inflammatory Substances that Target TiO2 NPs
  • 3.6 Future Direction
  • 3.7 Conclusions
  • References
  • 4 Biocements with potential endodontic use
  • 4.1 Introduction
  • 4.2 Synthesis and in vitro Bioactivity of Dicalcium Silicate and Tricalcium Aluminate
  • 4.2.1 Synthesis and Characterization of Dicalcium Silicate
  • 4.2.2 Synthesis and Characterization of Tricalcium Aluminate
  • 4.2.3 In vitro Bioactivity of Dicalcium Silicate and Tricalcium Aluminate
  • 4.3 Sol-Gel Synthesis, in vitro Bioactivity and Biological Assay of MTA Cements
  • 4.3.1 Sol-Gel Synthesis of White Mineral Aggregate and Partial Stabilized Cement
  • 4.3.2 In vitro Bioactivity and Biological Assay of White Mineral Aggregate and Partially Stabilized Cement
  • 4.4 Conclusions
  • References
  • 5 Nanobiomaterials in restorative dentistry
  • 5.1 Introduction
  • 5.2 Composite Resin
  • 5.2.1 Nanocomposites
  • 5.2.2 Antibacterial Nanoparticles and Composite Resins
  • 5.2.2.1 Applications of antibacterial nanoparticles in composite resins
  • 5.2.3 Remineralization and Composite Resins
  • 5.3 Adhesives
  • 5.4 Dental Cements and Dental Liners
  • 5.4.1 Glass Ionomer Cements
  • 5.4.2 Resin Cements
  • 5.4.3 Mineral Trioxide Aggregate
  • 5.4.4 Temporary Restorative Materials
  • 5.5 Conclusions
  • References
  • 6 New trends, challenges, and opportunities in the use of nanotechnology in restorative dentistry
  • 6.1 Introduction
  • 6.2 Restorative Dentistry Nanomaterials
  • 6.2.1 Dental Nanocomposites
  • 6.2.1.1 Resin-based composites
  • 6.2.2 Nanofilled
  • 6.2.2.1 Silica nanoparticles
  • 6.2.3 Nanocrystals
  • 6.2.4 Nanoparticles
  • 6.2.4.1 Metal nanoparticles
  • 6.2.4.2 Polymeric nanoparticles
  • 6.2.4.3 Nonpolymeric nanoparticles
  • 6.3 New Trends in Restorative Dentistry
  • 6.4 Actual Clinic Situation
  • 6.5 Conclusions
  • 6.6 Future Trends
  • References
  • 7 Antimicrobial effect of nanoparticles in endodontics
  • 7.1 Introduction
  • 7.1.1 Endodontics
  • 7.1.2 Endodontic Microbiology
  • 7.2 Difficulty in Achieving Complete Eradication of Endodontic Pathogens
  • 7.2.1 Complexity of Microorganisms
  • 7.2.2 Limitations of Cleaning and Shaping Protocols
  • 7.2.3 Anatomic Complexity
  • 7.3 Need for Nanotechnology in Endodontics
  • 7.4 Applications of Antimicrobial Nanoparticles in Endodontics
  • 7.4.1 Commonly Used Nanoparticles in Endodontics
  • 7.4.2 Nanoparticles as Irrigants
  • 7.4.3 Nanoparticles as Intracanal Medicaments
  • 7.4.4 Nanoparticles as Obturation Materials
  • 7.4.5 Nanoparticle-Based Photodynamic Therapy
  • 7.4.6 Nanomodification of Materials for Perforation Repair and Apical Seal
  • 7.5 Conclusions
  • References
  • 8 Nanotechnology in dentistry
  • 8.1 Introduction
  • 8.2 A Short History about Caries Treatment Before Dental Composites
  • 8.3 Historical Development of Dental Composites
  • 8.4 Vision in Dentistry From Micro- to Nanoscale
  • 8.5 Nanotechnology in Restorative Dentistry
  • 8.5.1 Nano-Concept in Restorative Dentistry
  • 8.5.1.1 Nanofills
  • 8.5.1.2 Nanohybrids
  • 8.5.2 Other Nanomaterials Mixed with Dental Composites
  • 8.5.3 Future Predictions
  • 8.6 Nanotechnology in Periodontics
  • 8.6.1 Periodontal Treatment Procedures
  • 8.6.2 Future Aspects of Nanotechnology in Periodontics
  • 8.7 Nanotechnology in Orthodontics
  • 8.7.1 Orthodontic Nanocomposites
  • 8.7.2 Nanotechnologic Enamel-Remineralizing Agents
  • 8.7.3 Nanocoated Orthodontic Archwire
  • 8.7.4 Nanotechnologic Orthodontic Brackets
  • 8.7.5 Orthodontic Nanorobots and Furtherance
  • 8.8 Nanotechnology in Endodontics
  • 8.8.1 Nanoparticles as Antimicrobial Agents
  • 8.8.2 Nanotechnology-Based Root-End Sealant
  • 8.8.3 Future Aspects of Nanotechnology in Endodontics
  • 8.9 Conclusions
  • Acknowledgements
  • References
  • 9 Role of nanomaterials in clinical dentistry
  • 9.1 Introduction
  • 9.1.1 Nanostructures Used in Dentistry
  • 9.1.2 Oral Health Care
  • 9.1.3 Oral Diseases
  • 9.1.4 Dental Plaque
  • 9.1.5 Etiophysiology of Dental Caries
  • 9.1.6 Biofilm Definition
  • 9.1.7 Biofilm Composition
  • 9.1.8 Role of Biofilms
  • 9.1.9 Types of Biofilm
  • 9.2 Role of Nanomaterials in Clinical Dentistry
  • 9.2.1 Oral Hygiene and Halitosis
  • 9.2.2 Mouth Rinse
  • 9.2.3 Chlorhexidine
  • 9.2.4 CHX Varnish Therapy
  • 9.2.5 Role of Calcium
  • 9.2.6 Chitosan
  • 9.2.7 NPs in Dentifrice
  • 9.2.8 Tooth Whitening/Bleaching
  • 9.2.9 HA as Surface Defect Filler
  • 9.3 Dentin Hypersensitivity
  • 9.3.1 Nanorestorative Materials: Pulp-Capping Agent
  • 9.3.2 Nanozinc Oxide
  • 9.3.3 Silver Amalgam
  • 9.3.4 Silver NPs
  • 9.3.5 Ceramic Materials
  • 9.3.6 NPs of Zirconia
  • 9.3.7 Nanoesthetic Filling Materials
  • 9.3.8 Dental Composite
  • 9.3.9 Recent Advances
  • 9.4 Bonding System
  • 9.4.1 Nanoionomer
  • 9.4.2 Prereacted Glass-Ionomer
  • 9.4.3 Dental Implants
  • 9.4.4 Esthetics and Tooth Durability
  • 9.4.5 Laser and NPs
  • 9.4.6 Nanocare Gold
  • 9.4.7 Endodontics
  • 9.4.8 Drug-Delivery System
  • 9.4.9 Impression Materials
  • 9.5 Nanoneedles
  • 9.5.1 Nanotweezers
  • 9.5.2 Surgical Devices
  • 9.5.3 Nanorobotics
  • 9.5.4 Nanodiagnostics
  • 9.5.5 Healing of Wounds
  • 9.5.6 Nano-Orthodontics
  • 9.5.7 Tissue Engineering
  • 9.5.8 Bone-Replacement Materials
  • 9.6 Future Challenges
  • 9.7 Conclusions
  • References
  • 10 Use of nanotechnology for the superlubrication of orthodontic wires
  • 10.1 Introduction
  • 10.2 Nanotechnology
  • 10.2.1 "Top-Down" or "Bottom-Up" Approaches
  • 10.2.2 Nanomaterials
  • 10.2.3 Nanorobots
  • 10.3 Nanomedicine
  • 10.4 Nanotechnology in Dentistry
  • 10.4.1 Application of Nanotechnology in Diagnosis and Treatment
  • 10.4.2 Nanocomposite in Restorative Dentistry
  • 10.4.3 Nanotechnology for Preventing Dental Caries
  • 10.4.4 Nanorobotic Dentrifices (Dentifrobots)
  • 10.4.5 Hypersensitivity Cure
  • 10.4.6 Nanosolutions (Nanoadhesives)
  • 10.4.7 Tissue Engineering and Dentistry
  • 10.4.8 Replacing Teeth
  • 10.4.9 Prosthodontics
  • 10.4.10 Dental Implants' Modified Surfaces
  • 10.4.11 Bone Replacement Materials
  • 10.4.12 Nanoanesthesia
  • 10.4.13 Impression Materials
  • 10.4.14 Nanoneedles
  • 10.4.15 Nanocomposite Denture Teeth
  • 10.4.16 Cosmetic Dentistry
  • 10.4.17 Nanotechnology in Endodontics
  • 10.4.18 Nanoencapsulation
  • 10.4.19 Digital Dental Imaging
  • 10.4.20 Radiopacity
  • 10.4.21 Surface Disinfectants
  • 10.4.22 Laser Plasma Application
  • 10.5 Nanotechnology in Orthodontics
  • 10.5.1 Nanocoatings for Friction Reduction
  • 10.5.2 Nanocoatings to Prevent Enamel Decalcification
  • 10.5.3 Nanoadhesives in Orthodontics
  • 10.5.4 Nanoparticles Released by Orthodontic Elastomeric Ligatures
  • 10.5.5 Shape-Memory Nanocomposite Polymer for Orthodontic Wires
  • 10.5.6 BioMEMS for Maxillary Expansion and Orthodontic Tooth Movement
  • 10.5.7 Nanorobots for Orthodontic Movement
  • 10.5.8 Nanotechnology and Temporary Anchorage Devices
  • 10.5.9 Nanomechanical Sensors for Orthodontic Forces Measurement
  • 10.5.10 Nano-Ultrasound Device
  • 10.6 Friction Problem in Orthodontic Treatment
  • 10.7 Fullerene-Like Nanoparticles
  • 10.7.1 Inorganic Fullerene-Like Nanoparticles
  • 10.7.2 IF-NP Synthesis
  • 10.7.3 Tribological Properties
  • 10.8 Nanoparticles as Lubricant
  • 10.9 Orthodontic Archwires Coated With Nanomaterials
  • 10.10 Biocompatible Coatings With Nanomaterials
  • 10.11 Conclusions
  • References
  • 11 Nanosynthesized calcium-silicate-based biomaterials in endodontic treatment of young permanent teeth
  • 11.1 Introduction
  • 11.2 Chemical Properties of Calcium-Silicate-Based Materials
  • 11.2.1 Portland Cement
  • 11.2.2 Mineral Trioxide Aggregate
  • 11.2.3 Hydration Mechanism
  • 11.2.4 Chemical Properties of Other Types of Calcium-Silicate-Based Materials
  • 11.3 Nanotechnology in the Process of Synthesis of New Calcium-Silicate-Based Materials
  • 11.3.1 Synthesis of Highly Active Calcium Silicates
  • 11.3.2 Synthesis of Nanostructured Biomaterials Based on Highly Active Calcium Silicates and Calcium Carbonates
  • 11.3.3 Synthesis of Superplastic, Quick-Bonding Endodontic Mixtures
  • 11.3.4 Mechanical Properties of Nanostructured Materials Based on Calcium Silicates
  • 11.3.5 Hydration Reactions
  • 11.4 Physical and Antimicrobial Properties of Calcium-Silicate-Based Materials
  • 11.4.1 Setting Time, Setting Conditions
  • 11.4.2 Solubility
  • 11.4.3 Sealing Ability
  • 11.4.4 Compressive Strength
  • 11.4.5 Flexural Strength
  • 11.4.6 Push-Out Strength
  • 11.4.7 Displacement (Effect of Condensation on MTA)
  • 11.4.8 pH Value of MTA
  • 11.4.9 Radiopacity
  • 11.4.10 Particle Size
  • 11.4.11 Microhardness
  • 11.4.12 Fracture Resistance (Effect of MTA on the Strength of Root Dentine)
  • 11.4.13 Antimicrobial Activity
  • 11.5 Microbiological Profile of Root Canals Associated with Periapical Pathosis
  • 11.5.1 Endodontic Apical Disease: Infection of Tissues
  • 11.5.2 Microbial Community: Biofilm
  • 11.5.3 General Characteristics of Biofilm
  • 11.5.4 Particularities of Biofilms in Endodontic Microenvironment
  • 11.5.5 Bacterial Diversity in Endodontic Biofilms
  • 11.6 Management of Teeth with Necrotic Pulps and Immature Root Development
  • 11.7 Using Calcium-Silicate-Based Material as an Apical Plug in the Treatment of Teeth with Necrotic Pulps and Immature Roo...
  • 11.7.1 Endodontic Procedure
  • 11.7.2 Clinical Evaluation
  • 11.8 Conclusions
  • References
  • 12 Characterization and antifungal activity of the modified PMMA denture base acrylic: Nanocomposites impregnated with gold...
  • 12.1 Background of Development for Antimicrobial Denture Acrylic
  • 12.1.1 Denture-Induced Stomatitis
  • 12.1.2 Demand on Antimicrobial Denture Acrylic Base
  • 12.1.3 Noble Metal NPs
  • 12.2 PMMA Denture NP Nanocomposite
  • 12.2.1 Denture Nanocomposite Biomaterial
  • 12.2.2 Preparation of NPs
  • 12.2.3 Incorporation of NPs into PMMA Denture Base
  • 12.3 Characterization of PDNC
  • 12.3.1 Microstructure of PDNC
  • 12.3.2 Determination of Eluted Ion from the PDNC
  • 12.4 Physical Properties of PDNC
  • 12.4.1 Thermal Stability
  • 12.4.2 Flexural Strength
  • 12.4.3 Color Change
  • 12.5 Antifungal Assay
  • 12.5.1 Antifungal Experiment
  • 12.5.2 Antiadherent Effect of PDNC
  • 12.5.3 Possible Antiadherent Mechanism of PDNC
  • 12.6 Conclusions
  • References
  • 13 Tissue engineering applications and nanobiomaterials in periodontology and implant dentistry
  • 13.1 Nanobiomaterials and Implant Dentistry
  • 13.1.1 Dental Implants: Perspective from Surrounding Tissues
  • 13.1.2 Dental Implants: Perspective from Osseointegration
  • 13.1.3 Dental Implants: Perspective from Materials
  • 13.1.4 Dental Implants: Perspective from Surface Properties
  • 13.1.4.1 Surface wettability and chemical modifications
  • 13.1.4.2 Implant surface functionalization with biomolecules
  • 13.1.5 Dental Implants: Perspective from Peri-Implant Mucosa Attachment
  • 13.1.6 Dental Implants: Perspective from Nanotechnology
  • 13.1.6.1 Nanoevents in extracellular matrix
  • 13.1.6.2 Nanofeatures of dental implants
  • 13.1.6.3 Cellular events on nanomodified implant surfaces
  • 13.1.6.4 Nanotechnology in biomimetic implant surfaces
  • 13.1.6.5 Implant surface nanofunctionalization with biomolecules
  • 13.1.6.6 Nanotechnology for peri-implant mucosa attachment
  • 13.1.6.7 Nanostructured surfaces in commercially available implants
  • 13.1.6.7.1 Osseospeed (Astra Tech AB, Mölndal, Sweden)
  • 13.1.6.7.2 Nanotite (3i Implant Innovations, Palm Beach Gardens, FL)
  • 13.1.6.7.3 Ossean (Intra-Lock, FL, USA)
  • 13.1.6.7.4 BioHelix (Brånemark Integration AB, Mölndal, Sweden)
  • 13.2 Nanobiomaterials in Periodontology
  • 13.2.1 Nanotechnology Biomaterials in Regenerative Periodontal Therapies
  • 13.2.1.1 Periodontal tissue engineering using nanostructure scaffolds
  • 13.2.1.2 Nanoparticle bone grafts: in vitro studies
  • 13.2.1.2.1 Osteoblasts and progenitors
  • 13.2.1.2.2 PDL cells
  • 13.2.1.2.3 Cementoblasts
  • 13.2.2 Guided Tissue Regeneration and Guided Bone Regeneration with Nanostructured Barrier Membranes and Nanoparticle Bone ...
  • 13.2.2.1 Guided tissue regeneration: guided bone regeneration
  • 13.2.2.2 Nanoparticle bone grafts for GTR/GBR
  • 13.3 Conclusions and Future Perspective
  • References
  • 14 Nanobiomaterials in endodontics
  • 14.1 Introduction
  • 14.2 Nanoparticles as Irrigants and Antimicrobial Agents
  • 14.2.1 Calcium Hydroxide
  • 14.2.2 Silver
  • 14.2.3 Chitosan
  • 14.2.4 Bioactive Glass
  • 14.3 Application of Nanotechnology in Root Canal Sealers
  • 14.4 Nanobiomaterials in Endodontics
  • 14.4.1 Nanomodified MTA
  • 14.4.1.1 Bioaggregate
  • 14.4.1.2 EndoSequence Bioceramic Root Repair Material
  • 14.4.2 Calcium Phosphate Cements
  • 14.4.2.1 Hydroxyapatite
  • 14.5 Regeneration
  • 14.5.1 Nanosized Scaffolds
  • 14.5.1.1 Methods of fabrication
  • 14.5.1.2 Antibiotic-releasing scaffolds
  • 14.5.1.3 Nanoscaffolds in regenerative endodontics
  • 14.5.2 Nanoparticles in Regenerative Endodontics
  • 14.5.2.1 Bioactive glass in regenerative endodontics
  • 14.5.2.2 Calcium phosphates in regenerative procedures
  • 14.6 Conclusions
  • Acknowledgments
  • References
  • 15 Scientometric overview regarding the nanobiomaterials in dentistry
  • 15.1 Overview
  • 15.1.1 Issues
  • 15.1.2 Methodology
  • 15.1.3 Dental Research: Overview
  • 15.1.4 Nanomaterial Research: Overview
  • 15.1.5 Research on the Dental Nanobiomaterials: Overview
  • 15.2 Dental Nanobiomaterials in Teeth
  • 15.2.1 Overview
  • 15.2.2 The Most Cited Papers in Dental Nanobiomaterials in Teeth
  • 15.3 Dental Nanobiomaterials in Dentin
  • 15.3.1 Overview
  • 15.3.2 The Most Cited Papers in Dental Nanobiomaterials in Dentin
  • 15.4 Dental Nanoimplants
  • 15.4.1 Overview
  • 15.4.2 The Most Cited Papers in Dental Nanoimplants
  • 15.5 Dental Nano-Osteoblasts
  • 15.5.1 Overview
  • 15.5.2 The Most Cited Papers in Dental Nano-osteoblasts
  • 15.6 Dental Nanobiomaterials in Enamel
  • 15.6.1 Overview
  • 15.6.2 The Most Cited Papers in Dental Nanobiomaterials in Enamel
  • 15.7 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok