Nanobiomaterials in Cancer Therapy

Applications of Nanobiomaterials
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 22. März 2016
  • |
  • 588 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-42886-6 (ISBN)
 

Nanobiomaterials in Cancer Therapy presents the major applications of nanobiomaterials in oncology, offering an up-to-date overview of the latest research in this field. Utilizing nanobiomaterials, novel therapeutic approaches enable significant improvements in drug-loading capacity, formulation stability and drug efficiency.

In this book, leading researchers from around the world share their expertise and unique insights. The book covers the fabrication methods of platforms for multimodal and combinatorial therapeutic options, along with simultaneous and real-time cancer imaging, and innovative approaches for oncology by passive or active pathways of multifunctional nanocarriers. The work also classifies and discusses engineered nanobiosystems for cancer therapy, prevention, and low cancer recurrence or relapse.

This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.

  • A comprehensive resource for researchers, practitioners and students working in biomedical, biotechnological and engineering fields
  • A valuable guide to recent scientific progress and the latest application methods
  • Discusses novel opportunities and ideas for developing or improving technologies in nanomedicine and nanobiology
  • Englisch
  • Norwich
  • |
  • USA
Elsevier Science
  • 9,89 MB
978-0-323-42886-6 (9780323428866)
032342886X (032342886X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanobiomaterials in Cancer Therapy
  • Copyright Page
  • Contents
  • List of contributors
  • Preface of the series
  • Preface
  • About the Series (Volumes I-XI)
  • About Volume VII
  • 1 Nanopreparations for skin cancer therapy
  • 1.1 Introduction
  • 1.2 Skin Morphology
  • 1.3 Types of Cancer
  • 1.4 Non-Melanoma Skin Cancer
  • 1.5 Melanoma Skin Cancer
  • 1.6 Penetration Pathways of Skin
  • 1.7 Drug Delivery Systems Applied to Skin Cancer Treatment
  • 1.8 Liposomes
  • 1.9 Nanoemulsions and Nanosuspensions
  • 1.10 Polymeric Nanoparticles
  • 1.11 Lipid Nanoparticles
  • 1.12 Dendrimers
  • 1.13 Photodynamic Therapy
  • 1.14 Conclusions
  • References
  • 2 Silver nanoparticles in cancer therapy
  • 2.1 Introduction
  • 2.2 Silver Nanoparticles
  • 2.3 Synthesis
  • 2.3.1 Chemical Synthesis
  • 2.3.2 Physical Synthesis
  • 2.3.3 Biological Synthesis
  • 2.3.3.1 Silver nanoparticles synthesized by bacteria
  • 2.3.3.2 Silver nanoparticles synthesized by fungi
  • 2.3.3.3 Silver nanoparticles synthesized by plants
  • 2.4 Shape
  • 2.5 Silver Nanoparticles-Cancer Diagnosis and Treatment Applications
  • 2.5.1 Leukemia
  • 2.5.2 Breast Cancer
  • 2.5.3 Lung Cancer
  • 2.5.4 Prostate Cancer
  • 2.5.5 Hepatic Cancer
  • 2.5.6 Cervical Cancer
  • 2.5.7 Skin Cancer
  • 2.5.8 Larynx Cancer
  • 2.5.9 Colon Cancer
  • 2.6 Conclusions
  • References
  • 3 Nanobiomaterials in cancer therapy
  • 3.1 Introduction
  • 3.2 The Enhanced Permeability and Retention (EPR) Effect
  • 3.3 Nanomaterials in Cancer Therapy
  • 3.3.1 Inorganic NPs
  • 3.3.1.1 Quantum dots
  • 3.3.1.2 Magnetic NPs
  • 3.3.2 Organic NPs
  • 3.3.2.1 Liposomes
  • 3.3.2.2 Polymeric micelles
  • 3.3.2.3 Dendrimers
  • 3.4 Chemotherapy-Based Nanoformulations
  • 3.4.1 Doxorubicin
  • 3.4.2 Paclitaxel
  • 3.4.3 Cisplatin
  • 3.4.4 Docetaxel
  • 3.4.5 Nanotetrac
  • 3.5 Multifunctional NPs
  • 3.5.1 Delivery of siRNA and shRNA Complexes
  • 3.5.2 Active Targeting
  • 3.6 Cancer Therapy Using Natural Products: Nanochemoprevention
  • 3.6.1 EGCG
  • 3.6.2 Resveratrol
  • 3.6.3 Curcumin
  • 3.7 Cancer Stem Cells: A Nanotechnology Perspective
  • 3.8 Conclusions
  • References
  • 4 Advances in nanobiomaterials for oncology nanomedicine
  • 4.1 Introduction
  • 4.2 Organic Nanobiomaterials
  • 4.2.1 Liposomes
  • 4.2.2 Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC)
  • 4.2.3 Polymeric Nanocapsules and Nanospheres
  • 4.3 Inorganic Nanobiomaterials
  • 4.3.1 Mesoporous Silica Nanoparticles (MSNs)
  • 4.3.2 Spherical Nucleic Acid Nanoparticles (SNA-NPs)
  • 4.3.3 Boron Nitride Nanotubes (BNNTs)
  • 4.4 Combination of Nanotechnology with Photodynamic Therapy to Improve Cancer Treatment
  • 4.5 Toxicity and Risk Management
  • 4.6 Conclusions
  • Acknowledgments
  • References
  • 5 Nanobiomaterials: Emerging platform in cancer theranostics
  • 5.1 Introduction
  • 5.2 Theranostics and Nanomedicine
  • 5.2.1 Gold Nanoparticles
  • 5.2.2 Iron Oxide Nanoparticles in Cancer Theranostics
  • 5.2.3 Superparamagnetic Iron Oxide Nanoparticles
  • 5.2.4 Carbon Nanotubes
  • 5.2.5 Quantum Dots
  • 5.2.6 Dendrimers
  • 5.2.7 Vesicular Systems
  • 5.2.7.1 Liposomes
  • 5.2.7.2 Polymerosomes
  • 5.3 Antibody as Theranostics
  • 5.4 Challenges to Effective Cancer Theranostics
  • 5.5 Conclusions and Future Perspectives
  • References
  • 6 Nanotherapeutics promises for colorectal cancer and pancreatic ductal adenocarcinoma
  • List of Abbreviations
  • 6.1 Introduction
  • 6.2 Biology of Colorectal and Pancreatic Cancer
  • 6.2.1 Genetic Mutations and Signaling Pathways
  • 6.2.2 Tumor Stroma
  • 6.2.2.1 Role of fibroblasts
  • 6.2.2.2 Role of PSCs
  • 6.2.2.3 Cell-communication between stromal and epithelial compartments
  • 6.2.3 Multidrug Resistance
  • 6.3 Current Clinical Treatment
  • 6.3.1 CRC Chemotherapy
  • 6.3.2 PDAC Chemotherapy
  • 6.3.3 Novel Therapeutic Strategies
  • 6.4 Nanotherapeutics for Drug/Gene Delivery
  • 6.4.1 Advantages of Nanocarriers Over Conventional Drug Delivery
  • 6.4.2 Effectiveness of Nanocarriers in Overcoming MDR
  • 6.4.3 Nanoparticles
  • 6.4.4 Liposomes
  • 6.4.5 Nanomicelles
  • 6.4.5.1 Nanomicelle-drug systems
  • 6.4.5.2 Nanomicelle-phytochemical systems
  • 6.4.5.3 Nanomicellar-drug-biological agent system
  • 6.4.6 Magnetic Iron Oxide Nanoparticles
  • 6.4.7 Mesoporous Silica Nanoparticles
  • 6.4.8 Gold Nanoparticles
  • 6.4.9 Carbon Nanotubes
  • 6.5 New Nano-Based Strategies for Improved Delivery and Enhanced Bioavailability of Anticancer Drugs
  • 6.5.1 Via Stroma Depletion
  • 6.5.2 Via Improvement of the Blood-to-Tumor Transport and Extravasation
  • 6.5.2.1 Reducing interstitial fluidic pressure (IFP)
  • 6.5.2.2 Increasing MVP
  • 6.5.3 Via Targeting of avß3 Integrin Using RGD-Based Strategies
  • 6.5.4 Via miRNA- or siRNA-Based Targeting
  • 6.5.4.1 miRNA
  • 6.5.4.2 siRNA
  • 6.5.5 Via Use of Aptamer-Mediated Drug Delivery Vehicles for Active Targeting
  • 6.5.6 Via Cooperative Anticancer Effect of a Photosensitizer and Anticancer Agent
  • 6.6 Conventional and Nano-Based Prodrugs
  • 6.6.1 Conventional Prodrugs
  • 6.6.2 Nano-Based Prodrugs
  • 6.7 Challenges and Perspectives
  • References
  • 7 Multifunctional drug nanocarriers facilitate more specific entry of therapeutic payload into tumors and control multiple ...
  • 7.1 Introduction
  • 7.2 Cancer and Its Microenvironment
  • 7.3 Characteristic Features of Tumor
  • 7.3.1 Angiogenesis
  • 7.3.2 Abnormal Tumor Vasculature
  • 7.3.3 Tumor pH
  • 7.3.4 Hypoxia
  • 7.4 Different Types of Nanocarriers
  • 7.4.1 Polymeric 'NPs'
  • 7.4.2 Nanoliposomes
  • 7.4.3 Polymeric Micelles
  • 7.4.4 Niosomes
  • 7.4.5 Solid Lipid Nanoparticles
  • 7.4.6 Viral Nanoparticles
  • 7.4.7 Quantum Dots
  • 7.4.8 Dendrimers
  • 7.4.9 Fullerene
  • 7.4.10 Carbon Nanotubes
  • 7.4.11 Nanofibers
  • 7.5 Tumor Targeting Through Nanocarriers
  • 7.5.1 EPR-Mediated Passive Targeting
  • 7.5.2 Specific Ligand-Mediated Active Targeting
  • 7.6 Types of Targeting Ligands
  • 7.6.1 Monoclonal Antibodies and Antibody Fragments
  • 7.6.2 Peptides
  • 7.6.2.1 Cyclic arginyl-glycyl-aspartic acid
  • 7.6.2.2 LyP-1 peptide
  • 7.6.3 Transferrin
  • 7.6.4 Aptamers
  • 7.6.5 Small Biomolecules
  • 7.7 Challenges Associated with Targeting
  • 7.8 Drug Resistance and How to Combat It with Different Nanocarriers
  • 7.9 Major Mechanisms of Drug Resistance
  • 7.9.1 Drug Inactivation
  • 7.9.2 Alteration of Drug Targets
  • 7.9.3 Drug Efflux
  • 7.9.4 DNA Damage Repair
  • 7.9.5 Cell Death Inhibition
  • 7.9.6 Epithelial-Mesenchymal Transition and Metastasis
  • 7.10 Advantages of NP-Based Drug Delivery for Effective Cancer Therapy
  • 7.10.1 Prolonged Systemic Circulation
  • 7.10.2 Targeted Drug Delivery
  • 7.10.3 Stimuli-Responsive Drug Release
  • 7.10.4 Drug Efflux and Drug Endocytosis
  • 7.10.5 Co-Delivery of Drug and Chemo-Sensitizing Agents
  • 7.10.6 Recent Trends in Nanocarriers for Targeted Cancer Therapy
  • 7.11 Conclusions
  • References
  • 8 Nanoparticles as drug delivery systems of combination therapy for cancer
  • 8.1 Introduction
  • 8.2 Liposomes for Combination Therapy
  • 8.2.1 Types of Liposomes
  • 8.2.1.1 Traditional liposomes
  • 8.2.1.2 Optimized liposome nanoparticles
  • 8.2.2 Liposomal Formulations of Drug Combination
  • 8.2.2.1 Drug-drug combination based on liposomes
  • 8.2.2.1.1 One in liposomes and another free
  • 8.2.2.1.2 Multiple drugs co-delivered by single liposomes
  • 8.2.2.2 Combination of drug and peptides
  • 8.2.2.3 Drug-bioactive macromolecule combination based on liposomes
  • 8.3 Polymeric DDS for Combination Therapy
  • 8.3.1 Types of Polymeric DDS
  • 8.3.1.1 Polymer micelles
  • 8.3.1.2 Polymer nanoparticles
  • 8.3.1.3 Polymersomes
  • 8.3.2 Drug Combinations for Polymeric DDS
  • 8.3.2.1 Drug-drug-based polymeric DDS
  • 8.3.2.2 Drug-genetic agent-based polymeric DDS
  • 8.4 Other Types of Polymeric DDS for Combination Therapy
  • 8.4.1 Dendrimers for Combination Therapy
  • 8.4.2 Polymer-Drug Conjugate-Based Combination Therapy
  • 8.5 Challenges for Clinical Trials
  • 8.5.1 Challenge of Nanoparticle DDS for Combination Therapy
  • 8.5.2 Challenge of the Nanoparticle as a DDS Itself
  • 8.6 Conclusions
  • Acknowledgments
  • References
  • 9 Chitosan nanoparticles for efficient and targeted delivery of anticancer drugs
  • 9.1 Introduction
  • 9.1.1 Etiology of Cancer
  • 9.1.2 Diagnosis of Cancer
  • 9.1.3 Classification of Cancer
  • 9.1.4 Present Treatment Strategies
  • 9.1.5 Shortcomings of Present Treatment Strategies
  • 9.2 Nanomedicine
  • 9.2.1 Targeted Nanomedicine
  • 9.2.1.1 Passive targeting
  • 9.2.1.2 Active targeting
  • 9.2.2 Nanomedicine for Treatment of Cancer
  • 9.2.3 Liposomes
  • 9.2.4 Nanoparticles
  • 9.2.5 Chitosan Nanoparticles
  • 9.2.5.1 Chitosan-drug conjugates
  • 9.2.5.2 Crosslinked chitosan nanoparticles
  • 9.2.5.3 Chitosan-based polyelectrolyte complex nanoparticles
  • 9.2.5.4 Self-assembled chitosan nanoparticles
  • 9.3 Future Perspectives
  • Acknowledgments
  • References
  • 10 Nanoformulations: A lucrative tool for protein delivery in cancer therapy
  • 10.1 Introduction
  • 10.2 Challenges in Protein Delivery
  • 10.3 The Vast Potential for Using Proteins in Cancer Therapy
  • 10.4 The Enhanced Permeability and Retention (EPR) Effect
  • 10.5 Methods for Protein Delivery
  • 10.5.1 Conjugation with Polymers
  • 10.5.2 Drug-Delivery Systems/Nanoparticles
  • 10.5.2.1 Liposomes
  • 10.5.2.2 Nanogels
  • 10.5.2.3 Antibody-drug conjugates
  • 10.6 Commercial Aspects
  • 10.7 Conclusions
  • References
  • 11 Nanobiomaterial-based delivery of drugs in various cancer therapies: Classifying the mechanisms of action (using biochem...
  • 11.1 Introduction
  • 11.2 Polysaccharide-Based Nanoparticles
  • 11.3 Chitosan-Drug Nanocarrier System in Cancer Therapy
  • 11.3.1 Vaccine-Chitosan Delivery System in Cancer Therapy
  • 11.3.2 Chitosan-siRNA Nanocarrier System in Cancer Therapy
  • 11.4 Alginate Nanoparticles in Cancer Therapy
  • 11.5 Pullulan Nanoparticles in Cancer Therapy
  • 11.6 Heparin-Based Nanoparticles in Cancer Therapy
  • 11.7 Starch Nanoparticles in Cancer Therapy
  • 11.8 Protein-Based Nanoparticles
  • 11.9 Silk Fibroin
  • 11.10 Collagen
  • 11.11 ß-Casein Nanoparticles in Cancer Therapy
  • 11.12 Albumin Nanoparticles in Cancer Therapy
  • 11.13 Conclusions
  • References
  • 12 Dual-function nanocarriers with interfacial drug-interactive motifs for improved delivery of chemotherapeutic agents
  • 12.1 Introduction
  • 12.1.1 Current Issues in Cancer Chemotherapy
  • 12.1.2 Advantages of Nanomedicine in Chemotherapy
  • 12.1.3 Polymeric Micelles as an Attractive Nanocarrier for Chemotherapeutic Agents
  • 12.2 Dual-Function Nanocarriers for Enhanced Cancer Therapy
  • 12.2.1 PEG-Farnesylthiosalicylate Conjugates as Dual-Function Nanocarriers
  • 12.2.2 PEG-Embelin Conjugates as Dual-Function Nanocarriers
  • 12.2.3 PEG-Vitamin E Conjugates as Dual-Function Nanocarriers
  • 12.3 Dual-Function Nanocarriers with Drug-Interactive Motifs for Improved Drug Delivery
  • 12.3.1 Advances in Improvement of Carrier/Drug Compatibility of Micellar System
  • 12.3.2 Discovery of 9-Fluorenylmethoxycarbonyl as Interfacial Drug-Interactive Motifs in Nanocarriers
  • 12.3.3 Dual-Function Nanocarriers with Interfacial Fmoc Motifs for Improved Delivery of Chemotherapeutic Agents
  • 12.3.4 PEG-Fmoc Conjugates as Simple and Effective Nanocarriers for Chemotherapeutic Agents
  • 12.4 Conclusions
  • References
  • 13 Nanotechnology for cancer therapy: Invading the mechanics of cancer
  • 13.1 Introduction
  • 13.2 Nanomedicine: A Revolutionary Treatment Modality for Cancer
  • 13.3 Tumor-Targeting Strategies
  • 13.3.1 High Tumor Cell Density
  • 13.3.1.1 Priming high cell density
  • 13.3.2 Targeting Tumor Heterogeneity
  • 13.3.2.1 Cancer stem cell hypothesis and clonal evolution: Models of tumor progression and heterogeneity
  • 13.3.2.2 Dynamic state of tumor heterogeneity and its current evidence
  • 13.3.2.3 Implications for therapy
  • 13.3.3 Targeting Anticancer Drug Resistance
  • 13.3.3.1 Nanoparticles aimed at inhibition of MDR based on drug efflux pumps
  • 13.3.3.1.1 Targeted silencing of drug resistance genes
  • 13.3.3.1.2 Inhibition of drug-resistance proteins
  • 13.3.3.2 Nanoparticles repressing drug efflux pump-independent mechanisms of drug resistance
  • 13.3.3.2.1 Nanoparticles for silencing of Bcl-2 and survivin
  • 13.3.3.2.2 Nanoparticles for targeting NF-?B
  • 13.3.3.2.3 Nanoparticles for induction of elevated ceramide levels
  • 13.3.3.2.4 Nanoparticles for silencing HIF1a gene expression
  • 13.3.4 Targeting TME
  • 13.3.4.1 Nanoparticle-mediated immune modulation of TME
  • 13.3.4.1.1 Targeting TAMs
  • 13.3.4.2 Targeting modulators of tumor-"reactive" stroma
  • 13.3.4.2.1 Targeting CAFs
  • 13.3.4.2.2 Targeting TN-C
  • 13.3.4.2.3 Targeting pericytes
  • 13.3.4.2.4 Targeting cancer-associated proteases
  • 13.3.4.3 Targeting mechanisms of tumor escape
  • 13.3.4.3.1 Targeting myeloid-derived suppressor cells
  • 13.3.4.4 Emerging role of exosomes and cell fusion
  • 13.3.4.4.1 Targeting exosomes
  • 13.3.4.4.2 Targeting cell fusion
  • 13.3.4.5 Targeting tumor neovasculature
  • 13.3.4.5.1 Distinct features of tumor vessels
  • 13.3.4.5.2 Tumor vasculature markers: Potential dock-based targets
  • 13.3.4.5.3 Targeted approaches by nanoparticles
  • Targeting integrins
  • Targeting with tumor-penetrating peptides
  • 13.3.4.6 Targeting tumor pH
  • 13.3.4.6.1 Targeting tumor extracellular pH (pHe)
  • Triggered tumor pHe drug release
  • Multifunctional polymeric micelle for tumor pHe-specific TAT exposure
  • Ligand exposure by pop-up mechanism
  • 13.3.4.6.2 Targeting endosomal pH (pHENDO)
  • Receptor-mediated endocytosis and endosomal pH targeting of MDR cells
  • 13.3.4.6.3 Multifunctional nanocarriers
  • 13.3.4.7 Targeting tumor-associated lymphangiogenesis
  • 13.4 Personalized Nanomedicine
  • 13.4.1 Rationale for Personalized Nanomedicine
  • 13.4.2 Activatable Therapy
  • 13.4.3 Clinical Examples
  • 13.4.4 Challenges for Clinical Translation
  • 13.5 Conclusions
  • References
  • 14 Hadrontherapy enhanced by combination with heavy atoms: Role of Auger effect in nanoparticles
  • 14.1 Introduction
  • 14.2 Improvement of Radiation Therapy by Different Methods
  • 14.2.1 Concentration of Radiation Energy, or Physical Dose, on Target Tissue
  • 14.2.2 Inhibition of Repair Processes in Cells or Tissue
  • 14.3 Auger Effects in Radiobiology: General Properties
  • 14.3.1 Shell Structure of Atoms
  • 14.3.2 Auger Effect
  • 14.3.3 Different Mechanisms Inducing Inner-Shell Ionization
  • 14.3.4 Brief History of the Biological Effect of the Photon-Induced Auger Effect
  • 14.3.5 Radiobiological Effects Depend on the Nature of the Ionizing Particles (Photons, Ions .)
  • 14.3.6 Mechanistic Consideration: Primary Physical Events and Auger Effect
  • 14.3.7 Irradiation of DNA Loaded with Heavy Atoms by Monochromatic X-Rays
  • 14.3.8 Role of Intracellular Localization
  • 14.4 Hadrontherapy Enhanced by Combination with High-Z Atoms
  • 14.4.1 Interaction of Fast Atomic Ions with Matter
  • 14.4.2 Sensitizing Effect on DNA with Different Radiations
  • 14.4.3 Irradiation of CHO Cell Loaded with High-Z Atoms by C6+ Ion
  • 14.4.4 Localization of the PtTC Molecules Inside Cells by Nano-SIMS Experiments
  • 14.4.5 Sensitization Induced by PtTC as a Function of LET
  • 14.4.6 Proposed Mechanisms for Platinum-Induced Cell Death Amplification
  • 14.5 Hadrontherapy and Nanoparticles
  • 14.5.1 Irradiation of Cancerous Cell Line
  • 14.5.2 Selective Uptake by Cells and Efficiency of Nanoparticles
  • 14.6 Conclusions
  • 14.7 Appendix
  • 14.7.1 Preparation of the DNA-PtTC Samples: Quantitative Analysis of the DNA Breaks
  • 14.7.2 Preparation of Nanoparticles PtNP
  • 14.7.3 Cell Culture and Irradiation
  • References
  • 15 Toxicity of silver nanoparticles obtained by bioreduction as studied on malignant cells: Is it possible to create a new ...
  • List of Abbreviations
  • 15.1 Introduction
  • 15.2 Studies of NE-AgNP Toxicity on Cultured Cells and Animals: General Description
  • 15.3 Toxic Effects of NE-AgNPs Studied on Cancer Cells
  • 15.3.1 Comparison of NE-AgNP Toxicity with that of Chem-AgNPs
  • 15.3.2 Possible role of the Nanoparticle Stabilizing Layer in Their Toxic Effects
  • 15.3.3 NE-AgNP Toxicity as Studied on Normal Cells and Animals
  • 15.4 The Mechanisms of Cytotoxicity of Biogenic AgNPs
  • 15.5 Conclusions
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok