Nanobiomaterials in Antimicrobial Therapy

Applications of Nanobiomaterials
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 8. März 2016
  • |
  • 576 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-42887-3 (ISBN)
 

Nanobiomaterials in Antimicrobial Therapy presents novel antimicrobial approaches that enable nanotechnology to be used effectively in the treatment of infections. This field has gained a large amount of interest over the last decade, in response to the high resistance of pathogens to antibiotics.

Leading researchers from around the world discuss the synthesis routes of nanobiomaterials, characterization, and their applications as antimicrobial agents. The books covers various aspects: mechanisms of toxicity for inorganic nanoparticles against bacteria; the development of excellent carriers for the transport of a high variety of antimicrobials; the use of nanomaterials to facilitate both diagnosis and therapeutic approaches against infectious agents; strategies to control biofilms based on enzymes, biosurfactants, or magnetotactic bacteria; bacterial adhesion onto polymeric surfaces and novel materials; and antimicrobial photodynamic inactivation.

This book will be of interest to postdoctoral researchers, professors and students engaged in the fields of materials science, biotechnology and applied chemistry. It will also be highly valuable to those working in industry, including pharmaceutics and biotechnology companies, medical researchers, biomedical engineers and advanced clinicians.


  • A methodical approach to this highly relevant subject for researchers, practitioners and students working in biomedical, biotechnological and engineering fields.
  • A valuable guide to recent scientific progress and the latest application methods.
  • Proposes novel opportunities and ideas for developing or improving technologies in nanomedicine and nanobiology.
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 9,83 MB
978-0-323-42887-3 (9780323428873)
0323428878 (0323428878)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Nanobiomaterials in Antimicrobial Therapy
  • Copyright Page
  • Contents
  • List of contributors
  • Preface of the series
  • Preface
  • About the Series (Volumes I-XI)
  • About Volume VI
  • 1 Antimicrobial photoinactivation with functionalized fullerenes
  • 1.1 Introduction
  • 1.2 Photosensitizers
  • 1.3 Photochemistry of PDT
  • 1.4 Fullerenes Acting as Photosensitizers
  • 1.5 Biocompatibility of Fullerenes
  • 1.6 Chemical Design of Fullerene Derivatives
  • 1.6.1 Examples of the Synthesis of Mono- and Polycationic Fullerene Derivatives
  • 1.6.2 Synthesis of Hexa-Anionic Fullerene Derivatives
  • 1.6.3 Synthesis of Chromophore-Linked Fullerene Derivatives
  • 1.7 Photochemical and Photophysical Properties of Fullerenyl Molecular Micelles and Chromophore-Fullerene Conjugates
  • 1.8 Fullerenes for Antimicrobial Inactivation
  • 1.9 Conclusions
  • Acknowledgments
  • References
  • 2 Toxicity of inorganic nanoparticles against prokaryotic cells
  • 2.1 Introduction
  • 2.2 Inorganic Nanoarchitectonics with Anti-Infective Potential
  • 2.2.1 Unmodified Nanomaterials with Natural Antimicrobial Activity
  • 2.2.1.1 Silver nanoparticles
  • 2.2.1.1.1 Cytotoxicity
  • 2.2.1.1.2 Clinical studies
  • 2.2.1.2 Selenium nanoparticles
  • 2.2.1.2.1 Toxicity
  • 2.2.1.3 Copper nanoparticles
  • 2.2.1.3.1 Cytotoxicity
  • 2.2.1.4 Titanium dioxide nanoparticles
  • 2.2.1.4.1 Cytotoxicity
  • 2.2.1.5 ZnO nanoparticles
  • 2.2.2 Modified Nanomaterials with Antimicrobial Activity
  • 2.2.2.1 Phytochemical-Modified Nanomaterials
  • 2.2.2.2 Peptide- modified nanomaterials
  • 2.2.2.3 Nanomaterials Modified with Commercial Antibiotics
  • 2.3 Conclusions and Perspectives
  • References
  • 3 Antimicrobial magnetosomes for topical antimicrobial therapy
  • 3.1 Introduction
  • 3.1.1 Biosynthesis of Magnetic Particles
  • 3.1.1.1 Biologically induced mineralization
  • 3.1.1.2 Biologically controlled biomineralization
  • 3.1.1.2.1 Magnetite in eukaryotic microbes
  • 3.1.1.3 Magnetotactic bacteria
  • 3.1.1.4 Characteristics and attributes of magnetosomes
  • 3.1.1.4.1 Attributes of magnetosomes
  • 3.1.1.5 Steps involved in magnetosome formation
  • 3.1.1.6 Functionalization of magnetosomes
  • 3.1.1.7 Biochemical characteristics of magnetosome membrane
  • 3.1.1.8 Extraction and purification of magnetosomes for antimicrobial activity
  • 3.1.1.9 Surface modification of magnetosomes
  • 3.1.1.10 Applications of magnetosomes
  • 3.1.2 Green Synthesis of Magnetic Nanoparticles
  • 3.1.2.1 Extracellular synthesis of iron oxide particles
  • 3.2 Biofilm Formation
  • 3.2.1 Characteristics of Biofilm in Medical Devices
  • 3.2.2 Bacterial Biofilm in Diseases
  • 3.2.3 Structure of Bacterial Biofilm
  • 3.2.3.1 Genomics and proteomics of biofilm formation in Gram-negative bacteria
  • 3.2.3.2 Structure of Gram-negative cell wall
  • 3.2.4 Candida albicans and Biofilm
  • 3.2.4.1 Mechanism of drug resistance
  • 3.2.5 Failure of Antibiotics to Penetrate Biofilm
  • 3.3 Nanobiomaterials Against Biofilm Formation
  • 3.3.1 Mechanism of Toxicity of Nanoparticles
  • 3.3.1.1 Intracellular toxicity
  • 3.3.1.2 Action of nanoparticles on microbes
  • 3.3.1.3 Defense mechanism of bacteria against antimicrobials
  • 3.3.1.3.1 Intrinsic resistance
  • 3.3.1.3.2 Acquired resistance
  • 3.4 Antimicrobial Drug Delivery System
  • 3.4.1 Liposomes
  • 3.4.2 Solid Liquid Nanoparticles
  • 3.4.3 Detection of Pathogens Using Magnetic Particles
  • 3.4.3.1 Antimicrobial activity of iron oxide particles
  • 3.4.3.2 Magnetosomes with superparamagnetic nature
  • 3.4.3.3 Magnetosomes as topical antimicrobial agent
  • 3.4.3.4 Infections in the wound
  • 3.4.3.4.1 Microbiology and physiology of burn infection
  • 3.4.3.4.2 Skin as a site for drug delivery
  • 3.4.3.4.3 Skin: a particle barrier
  • 3.4.3.4.4 Deactivation of nanoparticles by skin metabolism
  • 3.5 Wound-Healing Property
  • 3.5.1 Microemulsions as Efficient Antimicrobials
  • 3.5.2 Nanobiomaterial-Assisted Detection of Antimicrobial Resistance and Infection
  • 3.5.3 Role of Nanotechnology in Treatment of Infections
  • 3.5.4 Nanobiomaterials for Prevention of Infectious Diseases and for Vaccination
  • 3.5.5 Nanoantibiotics
  • 3.5.5.1 Advantages of nanoantibiotics
  • 3.5.6 Recyclable Antibacterial Magnetosomes/Magnetic Particles
  • 3.5.7 Toxicity and Safety of Nanoparticles
  • 3.6 Advantages of Nanoparticles and Magnetosomes
  • 3.6.1 Advantages of Nanoparticles over Conventional Drugs
  • 3.6.2 Advantages of Magnetosomes over Nanoparticles
  • 3.7 Current Status and Future Prospects
  • References
  • 4 Synthesis, characterization, and applications of nanobiomaterials for antimicrobial therapy
  • 4.1 Introduction
  • 4.2 Methods Used to Synthesize NPs
  • 4.2.1 Physical Methods
  • 4.2.2 Chemical Methods
  • 4.2.3 Biological Methods
  • 4.3 Characterization of NPs
  • 4.3.1 Surface Plasmon Resonance Spectroscopy
  • 4.3.2 Transmission Electron Microscopy (TEM)
  • 4.3.3 High-Resolution Transmission Electron Microscope (HRTEM)
  • 4.3.4 Scanning Electron Microscopy (SEM)
  • 4.3.5 X-Ray Diffraction (XRD)
  • 4.3.6 Dynamic Light Scattering (DLS)
  • 4.3.7 Energy Dispersive X-Ray Spectroscopy (EDS)
  • 4.3.8 Atomic Force Microscopy (AFM)
  • 4.3.9 Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)
  • 4.3.10 X-Ray Photoelectron Spectroscopy (XPS)
  • 4.3.11 Fourier Transform Infrared (FTIR) Spectroscopy
  • 4.4 Applications of Nanobiomaterials for Antimicrobial Therapy
  • 4.4.1 Silver NPs
  • 4.4.2 Gold NPs
  • 4.4.3 Copper Oxide (CuO) NPs
  • 4.4.4 Magnesium Oxide (MgO) NPs
  • 4.4.5 Titanium Dioxide (TiO2) NPs
  • 4.4.6 Zinc Oxide (ZnO) NPs
  • 4.4.7 Magnetic NPs
  • 4.4.8 Nanomaterials as Antimicrobial coatings
  • 4.4.9 Nanomaterials as Drug-Delivery Systems
  • 4.4.10 Polymeric NPs
  • 4.4.11 Dendrimers
  • 4.4.12 Lipid NPs or Liposomes
  • 4.5 Conclusions
  • References
  • 5 Antimicrobial micro/nanostructured functional polymer surfaces
  • 5.1 Introduction
  • 5.2 Bacteria and Polymer Surfaces: General Issues
  • 5.2.1 Bacterial Membrane
  • 5.2.2 Interaction Between Bacteria and Material Surfaces
  • 5.2.3 Role of the Biofilm
  • 5.3 General Overview of the Technologies Developed to Reduce Infections Associated with Polymer Surfaces
  • 5.4 Antibacterial Polymers: The Chemistry
  • 5.4.1 Types of Antimicrobial Groups Introduced in Polymers
  • 5.4.1.1 Quaternary ammonium/phosphonium
  • 5.4.1.2 N-Halamine polymers
  • 5.4.1.3 Antimicrobial peptides
  • 5.4.2 Macromolecular Parameters to be Considered
  • 5.4.2.1 Hydrophobic/hydrophilic balance
  • 5.4.2.2 Molecular weight
  • 5.4.2.3 Branched structures
  • 5.4.2.4 Monomer distribution: block copolymers versus random copolymers
  • 5.4.2.5 Monomer derivatization with alkyl chains: spacer length and alkyl chain effect
  • 5.4.2.6 Other macromolecular parameters involved in antibacterial activity
  • 5.5 Preparation of Polymer Surfaces with Antimicrobial Activity
  • 5.5.1 Modifying the Polymer Surface: A Key Step Toward Antibacterial Materials
  • 5.5.2 Surface Modification of the Polymer and Grafting of the Biocidal Compound
  • 5.5.3 Surface Polymerization: Grafting Strategies
  • 5.5.4 Additive Blending and Chemical Reaction: Reactive Extrusion
  • 5.5.5 Antimicrobial Coatings
  • 5.6 Micro- and Nanostructured Surfaces
  • 5.6.1 Surface Features and Effect on Bacterial Adhesion
  • 5.6.1.1 Size of the surface features
  • 5.6.1.2 Regularity of the nanoscopic features
  • 5.6.1.3 Level of size roughness
  • 5.6.1.4 Hierarchical surface structures
  • 5.6.2 Micrometer-Scale Patterned Surfaces
  • 5.6.3 Bacteria on Nanoscale Surface Features
  • 5.6.3.1 Antimicrobial nanoparticles in polymer nanocomposites
  • 5.6.3.1.1 Silver nanoparticles
  • 5.6.3.1.2 TiO2 nanoparticles
  • 5.6.3.2 Natural surfaces: insect wings, animal skin, or plant leaves
  • 5.6.3.3 Artificially constructed nanostructured polymer surfaces
  • 5.7 Conclusions
  • Acknowledgments
  • References
  • 6 Differential biological activities of silver nanoparticles against Gram-negative and Gram-positive bacteria: a novel appr...
  • 6.1 Introduction
  • 6.2 Synthesis of Silver Nanoparticles
  • 6.3 Characterization of Silver Nanoparticles
  • 6.3.1 Microscopic Techniques
  • 6.3.2 UV-Visible Spectroscopy
  • 6.3.3 Single (Nano) Particle Inductively Coupled Plasma Mass Spectrometry
  • 6.4 Biological Synthesis of Silver Nanoparticles
  • 6.4.1 Bacteria
  • 6.4.2 Actinomycetes
  • 6.4.3 Fungi
  • 6.4.4 Plants
  • 6.5 Mechanism of Silver Nanoparticle Biogenesis
  • 6.5.1 Enzymatic Biogenesis
  • 6.5.2 Peptide-Mediated Biogenesis
  • 6.6 Size-Controlling Parameters of Biogenous Silver Nanoparticles
  • 6.7 Antibacterial Therapy Using Silver Nanoparticles
  • 6.7.1 Mode of Action of Silver Nanoparticles Against Bacteria
  • 6.8 Silver Nanoparticles in the Treatment and Control of Other Infectious Diseases
  • 6.8.1 Virus
  • 6.9 Industrial Application of Silver Nanoparticles Against Gram-Negative and -Positive Bacteria
  • 6.9.1 Food Processing Industry
  • 6.9.2 Health Industry
  • 6.9.3 Textile Industry
  • 6.10 The Rise of Bacterial Resistance Toward Antibiotics
  • 6.11 Conclusions and Future Directions
  • References
  • 7 Enhancement of pathogen detection and therapy with laser-activated, functionalized gold nanoparticles
  • 7.1 Introduction
  • 7.1.1 Diagnostic Applications
  • 7.1.2 Therapeutic Applications
  • 7.2 Nanoparticle Synthesis and Functionalization
  • 7.2.1 Synthesis of AuNPs
  • 7.2.2 AuNP Functionalization
  • 7.2.3 Ligand Exchange
  • 7.2.4 Polymer Coating
  • 7.2.5 Silica Coating
  • 7.2.6 Targeted AuNPs for Antimicrobial Treatment
  • 7.3 NanoLISA for Detection of Infectious Agents
  • 7.3.1 Background
  • 7.3.2 Production of Pressure Transients by the Laser-Induced OA Response
  • 7.3.3 Detection of OA Responses by the Probe Beam Deflection Technique (PBDT)
  • 7.3.4 Preparation of Samples and Detection Reagents
  • 7.3.4.1 Preparation of samples
  • 7.3.4.2 Preparation of detection reagents
  • 7.3.5 OA Detection of Immunocomplexes Using Nanorod Contrast Enhancement
  • 7.3.5.1 Validation experiments
  • 7.3.5.2 Sensitivity measurements
  • 7.3.5.3 Signal decay in NP-mediated reactions
  • 7.3.5.4 Conclusions and future enhancements of NanoLISA
  • 7.4 Photothermal Killing of Bacteria Using Targeted AuNPs
  • 7.4.1 Background
  • 7.4.2 Mechanisms of Bacterial Killing Using Photothermal Activation of Targeted AuNPs
  • 7.4.3 Comparison of Effects of Non-Targeted Versus Targeted NPs on Bacterial Viability
  • 7.4.4 Interaction of Nanoparticle Structure with Laser Irradiation Modality
  • 7.4.5 Thermal Modeling of Laser-Activated AuNPs
  • 7.5 Conclusions and Future Directions
  • 7.5.1 Possible Enhancements to the Techniques
  • 7.5.2 Challenges
  • Acknowledgments and Disclaimers
  • References
  • 8 Antimicrobial properties of nanobiomaterials and the mechanism
  • 8.1 History of Antimicrobial Agents
  • 8.2 Nanobiomaterials as Antimicrobial Agents
  • 8.2.1 Metallic-Based Nanobiomaterials
  • 8.2.1.1 Metal-based nanoparticles
  • 8.2.1.1.1 Silver nanoparticles
  • 8.2.1.1.2 Gold nanoparticles
  • 8.2.1.1.3 Copper nanoparticles
  • 8.2.1.1.4 Silicon nanoparticles
  • 8.2.1.2 Metal-oxide-based nanoparticles
  • 8.2.1.2.1 ZnO nanoparticles
  • 8.2.1.2.2 TiO2 nanoparticles
  • 8.2.1.2.3 CuO nanoparticles
  • 8.2.1.2.4 MgO nanoparticles
  • 8.2.2 Carbon-Based Nanomaterials
  • 8.2.2.1 Carbon nanotubes (CNTs)
  • 8.2.2.2 Graphene oxide nanoparticles
  • 8.2.2.3 Fullerenes
  • 8.2.3 Other Nanomaterials with Antimicrobial Ability
  • 8.2.3.1 Bioglass
  • 8.2.3.2 Polymeric nanomaterials
  • 8.2.3.3 Other novel nanomaterials
  • 8.3 Mechanism of Antimicrobial Activity of Nanomaterials
  • 8.3.1 ROS Production and Oxidative Stress Induction
  • 8.3.2 Surface Charge-Based Electrostatic Attraction
  • 8.3.3 Accumulation- and Dissolution-Mediated Antimicrobial Mechanisms
  • 8.3.4 Other Proposed Antimicrobial Mechanisms
  • 8.4 Applications of Nanomaterials as Antimicrobial Agents
  • 8.4.1 Food Packaging
  • 8.4.2 Water Purification
  • 8.4.3 Disinfectant Agent
  • 8.5 Future Prospects
  • References
  • 9 Scopes of green synthesized metal and metal oxide nanomaterials in antimicrobial therapy
  • 9.1 Introduction
  • 9.2 AgNPs
  • 9.3 AuNPs
  • 9.4 Fe and Its Oxide NPs
  • 9.5 TiO2 NPs
  • 9.6 Copper and Its Oxide NPs
  • 9.7 ZnO NPs
  • 9.8 Al2O3 NPs
  • 9.9 SiO2 NPs
  • 9.10 MgO NPs
  • 9.11 MgF2 NPs
  • 9.12 SnO2 NPs
  • 9.13 CaO NPs
  • 9.14 Carbon-Based Materials
  • 9.15 Bioinspired Metal and Metal Oxide NPs
  • 9.16 Miscellaneous NPs and Their Antimicrobial Activity
  • 9.17 Antifungal Activities
  • 9.18 Antiviral Studies
  • 9.19 Conclusions
  • Acknowledgments
  • References
  • 10 Antifungal nanomaterials: synthesis, properties, and applications
  • 10.1 Introduction
  • 10.2 Properties
  • 10.2.1 Metal-Based Nanomaterials
  • 10.2.2 Carbon-Based Nanomaterials
  • 10.2.3 Polymer-Based Nanomaterials
  • 10.3 Synthesis of Nanomaterials
  • 10.3.1 Chemical/Physical Synthesis
  • 10.3.2 Green Synthesis
  • 10.3.2.1 Fungal synthesis of nanoparticles
  • 10.3.2.1.1 Synthesis by filamentous fungi
  • 10.3.2.1.2 Synthesis by yeasts
  • 10.3.2.1.3 Mechanisms of biological synthesis of nanomaterials
  • 10.3.2.1.3.1 Extracellular
  • 10.3.2.1.3.2 Intracellular
  • 10.4 Mycological Applications of Nanomaterials
  • 10.4.1 Therapeutic Applications of Nanomaterials in Medicine
  • 10.4.1.1 Nanoparticles
  • 10.4.1.2 Nanoparticles in drug combinations
  • 10.4.2 Antifungal Nanomaterials in Drug Delivery Systems
  • 10.4.2.1 Topical drug delivery
  • 10.4.2.2 Systemic drug delivery
  • 10.4.3 Agro-Nanotechnology
  • 10.4.3.1 Biopharmaceutical applications of nanoparticles in plant fungal diseases
  • 10.4.3.2 Management of insect pesticides by the use of nanotechnology
  • 10.5 Conclusions
  • Acknowledgment
  • References
  • 11 Strategies based on microbial enzymes and surface-active compounds entrapped in liposomes for bacterial biofilm control
  • 11.1 Introduction
  • 11.2 Association Between Biofilm Growth and Resistance to Antimicrobials
  • 11.3 Current Approaches to Prevent or Remove Biofouling
  • 11.4 Biosurfactants: Potential Antibiofilm Agents
  • 11.5 Biofilm Control Strategies Based on Enzymes
  • 11.6 Immobilization of Enzymes in Liposomes for Biofilm Control
  • 11.6.1 General Aspects of Immobilization of Enzymes-Why Is It Important?
  • 11.6.2 Liposomology: The Science of Liposomes Technology
  • 11.6.3 Antimicrobial Liposomes Loaded with Enzymes
  • 11.6.4 Biosurfactant-Based Liposomes
  • 11.7 Conclusions
  • References
  • 12 Interaction of nanoceria with microorganisms
  • 12.1 Effect of Cerium Salts on Bacterial Flora
  • 12.2 Preparation of Nanodisperse Ceria
  • 12.3 Antibacterial Activity of Ceria Nanoparticles
  • 12.4 Effect of Ceria Nanoparticles on Clinically Significant Microbial Strains
  • 12.5 Interaction of Ceria Nanoparticles with Environmental Microorganisms
  • 12.6 Antibacterial Activity of Ceria Nanoparticles in Composites
  • 12.7 Mechanism of Interactions Between CeO2 Nanoparticles and a Cell
  • 12.8 Probiotic Activity of Ceria Nanoparticles
  • 12.9 Ceria Nanoparticles as Detectors of Bacterial Processes
  • 12.10 Suggested Reasons Behind the Different Sensitivities of Different Types of Microorganisms to CeO2 Nanoparticles
  • 12.11 Conclusions
  • References
  • 13 PLA and PLGA nanoarchitectonics for improving anti-infective drugs efficiency
  • 13.1 Introduction
  • 13.2 Poly(Lactic Acid)-Based Drug-Delivery Systems
  • 13.3 Poly(Lactic-Co-Glycolic Acid)-Based Drug-Delivery Systems
  • 13.4 Conclusions
  • Acknowledgments
  • References
  • 14 Nanoparticles: boon to mankind and bane to pathogens
  • 14.1 Introduction
  • 14.2 Nanoparticles as Antimicrobials
  • 14.2.1 Mechanism of Action
  • 14.3 Synergistic Effect
  • 14.4 Doping
  • 14.5 Conclusions
  • References
  • 15 Scientometric overview regarding the nanobiomaterials in antimicrobial therapy
  • 15.1 Overview
  • 15.1.1 Issues
  • 15.1.2 Methodology
  • 15.1.3 The Research on Antimicrobials in General: Overview
  • 15.1.4 The Research on Nanomaterials in General: Overview
  • 15.1.5 The Research on Antimicrobial Nanobiomaterials: Overview
  • 15.2 The Silver Antimicrobial Nanoparticles
  • 15.2.1 Overview
  • 15.2.2 The Most-Cited Papers in Silver Antimicrobial Nanoparticles
  • 15.2.2.1 Silver nanoparticles as antimicrobial agents
  • 15.2.2.2 Toxicity of silver antimicrobial nanoparticles
  • 15.3 The Other Antimicrobial Nanobiomaterials
  • 15.3.1 Overview
  • 15.3.2 The Most-Cited Papers in Other Antimicrobial Nanobiomaterials
  • 15.3.2.1 Various antimicrobial nanobiomaterials
  • 15.3.2.2 Antimicrobial fullerenes
  • 15.3.2.3 Antimicrobial titania
  • 15.3.2.4 Antimicrobial zirconia
  • 15.3.2.5 Antimicrobial graphene
  • 15.3.2.6 Antimicrobial carbon nanotubes
  • 15.4 Conclusions
  • References
  • Index
  • Back Cover
BISAC Classifikation

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

166,60 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok