Encapsulations

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 8. September 2016
  • |
  • 924 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804378-3 (ISBN)
 
Encapsulations, a volume in the Nanotechnology in the Agri-Food Industry series,presents key elements in establishing food quality through the improvement of food flavor and aroma. The major benefits of nanoencapsulation for food ingredients include improvement in bioavailability of flavor and aroma ingredients, improvement in solubility of poor water-soluble ingredients, higher ingredient retention during production process, higher activity levels of encapsulated ingredients, improved shelf life, and controlled release of flavor and aroma. This volume discusses main nanoencapsulation processes such as spray drying, melt injection, extrusion, coacervation, and emulsification. The materials used in nanoencapsulation include lipids, proteins, carbohydrates, cellulose, gums, and food grade polymers. Applications and benefits of nanoencapsulation such as controlled release, protections, and taste masking will be explained in detail.
  • Includes the most up-to-date information on nanoencapsulation and nanocontainer-based delivery of antimicrobials
  • Presents nanomaterials for innovation based on scientific advancements in the field
  • Provides control release strategies to enhance bioactivity, including methods and techniques for research and innovation
  • Provides useful tools to improve the delivery of bioactive molecules and living cells into foods


Dr. Alexandru Mihai Grumezescu is Assistant Professor at the Department of Science and Engineering of Oxide Materials and Nanomaterials, in the Faculty of Applied Chemistry and Materials Science, with a second affiliation to the Faculty of Medical Engineering, at the Politehnica University of Bucharest in Romania. He is an experienced and oft-published researcher and editor in the field of nano and biostructures, and he is the Editor-in-Chief of three journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience, Biomaterials and Tissue Engineering Bulletin, and Journal of Food Bioengineering and Nanoprocessing. He also serves as editor or guest editor for several notable journals. Dr. Grumezescu has published 150 peer-reviewed papers, 20 book chapters, 8 co-authored books and 21 edited books.
He has developed two new research directions related to bio-applications of metal oxide nanoparticles: (i) functional metal oxide nanostructures to improve the delivery of antimicrobials in active form with a high efficiency against Gram-positive and Gram-negative bacteria; and (ii) smart metal oxide nanostructures, functionalized with different fatty acids, essential oils or in combination with organic polymers, to inhibit bacterial colonization of different medical or industrial surfaces.
Dr Alexandru Mihai Grumezescu is Assistant Professor at the Department of Science and Engineering of Oxide Materials and Nanomaterials, in the Faculty of Applied Chemistry and Materials Science at the Politehnica University of Bucharest in Romania. He is an experienced and oft-published researcher and editor in the field of nano- and biostructures, and he is the Editor-in-Chief of four journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience, Biomaterials and Tissue Engineering Bulletin, and Journal of Food Bioengineering and Nanoprocessing. He also serves as editor or guest editor for several notable journals. Dr Grumezescu has published 160 peer-reviewed papers, 20 book chapters, 9 coauthored books, and 21 edited books. Other details are available at http://grumezescu.com/.
2451-9324
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 24,00 MB
978-0-12-804378-3 (9780128043783)
0128043784 (0128043784)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contects
  • List of Contributors
  • series Foreword
  • Series Preface
  • Volume Preface
  • 1 - Electrohydrodynamic microencapsulation technology
  • 2 - Exploring nanoencapsulation of aroma and flavors as new frontier in food technology
  • 3 - Nanoencapsulation of flavors and aromas by emerging technologies
  • 4 - Cyclodextrins as encapsulation material for flavors and aroma
  • 5 - Structural and thermodynamic insight into the potentiality of food biopolymers to behave as smart nanovehicles for ...
  • 6 - Encapsulation: entrapping essential oil/flavors/aromas in food
  • 8 - Supramolecular strategy of the encapsulation of low-molecular-weight food ingredients
  • 7 - Antimicrobials from herbs, spices, and plants
  • 9 - Novel approaches in nanoencapsulation of aromas and flavors
  • 10 - Nanocomposite for food encapsulation packaging
  • 11 - Microencapsulated bioactive components as a source of health
  • 12 - Biocompatible microemulsions for the nanoencapsulation of essential oils and nutraceuticals
  • 13 - Nanoencapsulation strategies applied to maximize target delivery of intact polyphenols
  • 14 - Nanoencapsulation technology to control release and enhance bioactivity of essential oils
  • 15 - Nanoencapsulation of essential oils for sustained release: application as therapeutics and antimicrobials
  • 16 - Nanoencapsulation and nanocontainer based delivery systems for drugs, flavors, and aromas
  • 17 - Cyclodextrins-based nanocomplexes for encapsulation of bioactive compounds in food, cosmetics, and pharmaceutical products:...
  • 18 - Nanoencapsulation of flavors and aromas by cyclodextrins
  • 19 - Natural biopolymers as nanocarriers for bioactive ingredients used in food industries
  • 20 - Process technology of nanoemulsions in food processing
  • Subject Index
  • Back cover
  • 6 - Application of Nanoemulsion Science in Food Processing
  • 7 - Conclusions
  • References
  • 4 - Low-Energy Production Technologies of Nanosized Emulsifiation
  • 5 - Functional Characterization Processes of Nanoemulsions
  • 1 - Introduction
  • 2 - Thermodynamics of Nanosized and Nanoemulsion Production Technologies
  • 3 - High-Energy Production Technologies of Nanoemulsions
  • 5 - Flavor Complexes in Food Processing
  • 6 - Cyclodextrins in Aroma Preserving and Antibiotic Active Food Packaging
  • 7 - Conclusions
  • References
  • 3 - Methods of Fabrication of Nanoparticles from Natural Polymers
  • 5 - Bioavailability and Toxicity
  • 6 - Conclusions and Future Trends
  • Abbreviations
  • References
  • 1 - Introduction
  • 2 - Natural Biopolymers Used in Nanoencapsulation
  • 1 - Introduction
  • 2 - History of Flavor Encapsulation by Cyclodextrins
  • 3 - Approval Status of Cyclodextrins
  • 4 - Formulation of Flavors with Cyclodextrins: Methods of Preparation, and Analysis
  • 6 - Case Study
  • 7 - Future Prospects
  • 8 - Conclusions
  • References
  • 1 - Introduction
  • 2 - Cyclodextrins and Their Complexes
  • 3 - General Information about Free Radicals
  • 4 - Antioxidants
  • 5 - Analysis of Antioxidants
  • 6 - Encapsulation of Selected Antioxidants by Cyclodextrins
  • 7 - Recent Advances of Cyclodextrins Application in Pharmaceutics, Food, and Cosmetics Products
  • 8 - Conclusions
  • References
  • 3 - Mechanism of Response
  • 4 - Active Molecules to be Delivered
  • 5 - Stimuli for Controlled Release
  • 1 - Introduction
  • 2 - Nanocontainers for Delivery System
  • 8 - Molecular Complexes
  • 9 - Conclusions
  • References
  • 4 - Inclusion Complexes
  • 5 - Future Prospects
  • References
  • 1 - Introduction
  • 2 - Chemical Composition of Essential Oils
  • 3 - Nanoencapsulation Strategies of Essential Oils for Various Biological Activities
  • 1 - Introduction
  • 2 - Chemical Composition of EOs
  • 4 - Nanoencapsulation Technology
  • 5 - Nanoencapsulated Delivery of EOs
  • 6 - Polymer-Based Nanoparticles
  • 7 - Lipid-Based Nanoencapsulation
  • 3 - Controlled Release of Polyphenols in the Gut
  • 4 - Conclusions
  • References
  • 1 - Introduction
  • 2 - Encapsulation Technologies
  • 4 - Conclusions and Outlook
  • Acknowledgments
  • References
  • 2 - Examples of Components and Characterization Procedures
  • 3 - Discussions
  • 1 - Introduction
  • 4 - Microencapsulation via Emulsion of Chilean Blackberry
  • 3 - Antioxidant Properties of Phenolic Compounds
  • 5 - Conclusions
  • References
  • 1 - Introduction
  • 2 - Microencapsulation
  • 2 - Nanocomposite for Food Encapsulation Packaging
  • 3 - Preparation Methods
  • 4 - Surface Adhesion
  • 5 - New Concepts in Food Encapsulation
  • 6 - Industry, Enterprise, and Market
  • 7 - Limitations and Shortcomings
  • 8 - Conclusions
  • References
  • 1 - Introduction
  • 7 - Flavors Encapsulated in Complex Coacervates
  • 8 - Conclusions
  • Acknowledgment
  • References
  • 3 - Flavors Encapsulated in Nanoemulsions
  • 4 - Encapsulation of Flavors in Lipid-Based Nanoparticles
  • 5 - Flavors Encapsulated in Liposomes
  • 6 - Flavors Encapsulated in Cyclodextrins
  • 1 - Introduction
  • 2 - Flavor Nanoencapsulation by Spray Drying
  • 4 - Molecular Complexes Based on the Guest-Host Interactions
  • 5 - Conclusions
  • Acknowledgment
  • References
  • 1 - Nanoencapsulation of Natural Antimicrobial Products
  • 6 - Conclusions
  • References
  • 3 - Polymer-Based Formulations as Delivery Systems
  • 1 - Introduction
  • 2 - Self-Assembled Delivery Systems Based on Amphiphilic Compounds
  • 1 - Introduction
  • 2 - New Technologies: Future Course
  • 3 - Nanotechnology
  • 4 - Matrix or Coating Materials
  • 5 - Encapsulation Processes
  • 1 - Introduction
  • 2 - Intermolecular Forces Underlying the Encapsulation of the Polyunsaturated Lipids by the Biopolymers
  • 3 - Protection Ability of the (Biopolymer + Lipids) Complexes Against Oxidation of the Encapsulated Lipids
  • 4 - Structural and Thermodynamic Parameters of the (Biopolymer + Lipids) Complex Particles Underlying Their Protective Abil...
  • 4 - Cyclodextrins/Aroma Inclusion Complexes
  • 5 - Effects of Encapsulation
  • 6 - Conclusions
  • References
  • 5 - Thermodynamic Parameters Controlling Solubility of the (Biopolymer + Lipids) Complex Particles in an Aqueous Medium
  • 6 - Structural Parameters of the Biopolymer Nanovehicles Controlling Release of the Polyunsaturated Lipids in Vitro
  • 6 - Edible Films Formed in Encapsulation
  • 7 - Conclusions
  • Acknowledgments
  • References
  • 7 - Retention of Volatiles
  • 8 - Storage Stability
  • 9 - Conclusions
  • References
  • 3 - Encapsulation Techniques
  • 2 - Encapsulation Process
  • 4 - Encapsulation of Lipophilic Antimicrobials
  • 1 - Introduction
  • 2 - Aroma and Flavors
  • 3 - Cyclodextrins
  • 3 - Nanoencapsulation of EOs
  • 5 - Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 1 - Introduction
  • 2 - Issues Relating to Addition of Flavors and Aromas in Foods
  • 5 - Safety and Risk Assessment of Nanotechnology and Nanofoods
  • 6 - Conclusions
  • References
  • Internet Resources
  • 4 - Emerging Technologies
  • 1 - Introduction
  • 2 - Nanoencapsulation of Aroma and Flavors
  • 3 - Advantages of Nanoencapsulation of Flavor and Aroma Compounds
  • 4 - Quality Assessment by Instrumental Methods to Predict Flavor and Aroma in Food Products
  • 1 - Introduction
  • 2 - Electrohydrodynamic Atomization
  • 3 - Micro- and Nanoencapsulation Techniques
  • 4 - Electrohydrodynamic Micro- and Nanoencapsulation
  • 5 - Electrohydrodynamic Microencapsulation for Food Processing
  • 6 - Conclusions
  • References
  • About the Series (Volumes I-X)
  • 4.1 - Gas Chromatography-Olfactometry
  • 4.2 - Infrared Spectroscopy
  • 4.4 - E-Tongue
  • 3.1 - Stability Enhancement of Flavor and Aroma Compounds in Food and Beverages
  • 3.2 - Taste and Nutrition Enhancement of Food Products
  • 3.3 - Masking of Undesirable Flavor or Aroma Compounds
  • 2.1 - Classification of Aroma and Flavors Used in Food Products
  • 2.2 - Materials for Encapsulation
  • 2.3 - Strategies for Nanoencapsulation of Aroma and Flavors
  • 2.4 - Methods of Nanoencapsulation of Aroma and Flavors
  • 4.1 - Supercritical Fluids (SCFs)
  • 2.1 - Classification and Properties
  • 4.2 - Ultrasonication
  • 3.1 - Encapsulation Materials
  • 3.1 - History
  • 3.2 - Physicochemical Properties
  • 3.3 - Inclusion Complex Formation
  • 3.4 - Fields of Application
  • 3.5 - Regulatory Status
  • 3.6 - Fate of Cyclodextrins After Ingestion
  • 2.1 - Definition/Description
  • 2.2 - Extraction and Synthesis
  • 2.3 - Physiochemical Properties
  • 5.1 - Milk Proteins and Carbohydrates as Emulsifying Agents
  • 5.2 - Nanoencapsulation of EOs for Enhanced Antimicrobial Effectiveness
  • 5.3 - Physicochemical Properties
  • 5.4 - Antimicrobial Activity in Growth Media
  • 2.1 - Design of Encapsulated Food Ingredients
  • 2.2 - Active Core
  • 3.1 - Spray Drying
  • 3.2 - Spray Cooling
  • 3.4 - Fluidized Bed Coating
  • 3.5 - Extrusion
  • 3.6 - Microencapsulation Based on Supercritical Fluids
  • 3.7 - Coacervation
  • 3.8 - Liposomes
  • 3.9 - Molecular Inclusion Complexes with Cyclodextrins
  • 7.1 - Relative Volatility
  • 6.2 - Film Performance
  • 6.4 - Flavor Retention
  • 6.5 - Flavor Release
  • 6.1 - Materials
  • 6.1 - The Density and Architecture of the Complex Particles
  • 5.1 - Solubility Enhancement
  • 5.2 - Protection of Aroma and Flavors
  • 5.4 - Improving Organoleptic Behavior and Masking Off Flavors
  • 5.5 - Active Packaging
  • 5.7 - Aroma Differentiation/Burst
  • 4.3 - Factors Controlling Encapsulation of Aroma and Flavors in CDs
  • 4.1 - Investigation and Characterization of CD/Aroma Inclusion Complexes in Solution
  • 4.2 - Investigation and Characterization of CD/Aroma Inclusion Complexes in Solid State
  • 4.1 - The Density of the Complex Particles
  • 4.2 - Thermodynamic Stability of the PC Liposome Bilayers
  • 4.3 - Microviscosity of the Bilayers of the Lipid Particles
  • 5.1 - Spray Drying
  • 5.2 - Spray Chilling
  • 5.3 - Spray Cooling
  • 5.4 - Extrusion Process
  • 5.5 - Fluidized Bed Coating
  • 5.6 - Liposomal Entrapment
  • 5.8 - Centrifugal Suspension Separation
  • 5.10 - Inclusion Complexation
  • 5.11 - Coacervation
  • 2.1 - Structure-Activity Correlation as a Basis for the Design of Nanocontainers
  • 2.2 - Application of Micelles and Microemulsions in the Food Industry
  • 2.3 - Nanoemulsion Formulations
  • 2.4 - Liposomes as Delivery Systems for Bioactive Supplements
  • 3.1 - ß-Casein in Encapsulation of Low-Molecular-Weight Ingredients
  • 3.2 - Natural Polymer Chitosan, a Representative of Polysaccharide Family
  • 3.3 - Layer-by-Layer Strategy in Food Technologies
  • 1.1 - Challenges in Applying Lipophilic Antimicrobials in Foods
  • 2.2 - EOs Extraction Methods
  • 2.5 - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers
  • 4.1 - Effect of the Addition of CDs on Organoleptic Properties
  • 4.2 - Extraction of Components
  • 4.3 - Enantioseparation
  • 4.4 - Complexes with Antioxidants
  • 4.5 - Sensors
  • 2.1 - Emulsions Processed by Spray Drying
  • 2.2 - Influence of Emulsion Droplet Size on Spray-Dried Powders
  • 2.3 - Influence of Wall Materials on Spray-Dried Powders
  • 2.4 - Influence of Aroma Type and Concentration on Spray-Dried Powders
  • 2.5 - Influence of Spray-Drying Conditions on the Powder Properties
  • 2.6 - Encapsulated Aroma Stability and Release
  • 6.1 - Regulations for CDs Application in the Food Industry
  • 6.2 - Inclusion Complexes of Cyclodextrins
  • 6.3 - Electrospinning of Inclusion Complexes
  • 6.4 - Cyclodextrins and Flavors
  • 1.1 - Food Nanotechnology
  • 1.2 - Nanocomposite
  • 1.3 - Functionality and Advantages
  • 2.1 - Nanocomposite Thin Films for High Barrier and Flame Protection
  • 2.2 - Nanofiller Materials or Nanostructures
  • 2.3 - Polymers
  • 2.1 - Methods of Microencapsulation
  • 2.2 - Surfactants
  • 2.3 - Microencapsulation Applications
  • 2.4 - Encapsulating Materials
  • 2.5 - Characterization of the Microcapsules
  • 2.6 - Release Mechanisms of Encapsulated Compounds
  • 3.1 - Phenolic Compounds
  • 3.2 - Native Species as Potential Sources of Antioxidants
  • 1.2 - Nutraceuticals
  • 1.3 - Cosmeceuticals
  • 1.4 - Oil Phase (Essential Oils, Vitamin E, Trans-anethole, Cinnamon Oil, Thyme Oil, Peppermint Oil)
  • 1.5 - Emulsions, Microemulsions, and Nanoemulsions
  • 4.1 - Aristotelia Chilensis (Elaeocarpaceae), Maqui Leaf Extracts
  • 4.2 - Phenolic Characterization and Extraction
  • 4.5 - Microencapsulation by Extract Emulsion
  • 4.6 - Determination of Microcapsule Yield, Size, and Morphology
  • 4.9 - Characterization of Maqui Leaf Extract
  • 4.10 - Determination of Extract Antioxidant Capacity
  • 4.11 - Encapsulation of Maqui (Aristotelia Chilensis) Leaf Extract
  • 4.13 - Characterization of Microcapsules
  • 4.14 - Morphology of Microcapsules with SEM
  • 4.15 - Study of Microencapsulated Maqui Leaf Extract
  • 1.1 - Surfactants
  • 3.1 - Physical Properties of Surfactants
  • 3.2 - Partial Phase Diagrams
  • 3.3 - Microemulsions
  • 2.1 - Chemicals
  • 2.2 - Microemulsion Formation
  • 1.6 - Microemulsions
  • 2.2 - Chemical Technologies
  • 2.1 - Mechanical Technologies
  • 3.1 Materials to Enable Target Delivery in the Colon
  • 3.2 Examples of Controlled Delivery of Polyphenols
  • 7.1 - Liposomes
  • 7.2 - Lipid Nanoparticles
  • 7.3 - Nanoemulsions
  • 5.1 - Methods of Nanoencapsulation
  • 5.2 - Release Mechanism of Encapsulated EO
  • 3.1 - Polymer-Based Nanocapsules
  • 3.2 - Lipid-Based Nanocarriers
  • 2.1 - Polymeric Nanocontainers
  • 5.1 - Chemical Stimuli for Permeability Changes: pH, Ionic Strength, Solvent, Electrochemical Stimuli
  • 5.2 - Physical Stimuli for Affecting Permeability: Temperature, Light, Ultrasound, Magnitude Field, Mechanical Deformation
  • 5.3 - Biological Stimuli for Release and Targeting: Enzyme Triggering, Receptor Implementing Triggering
  • 4.1 - Drugs
  • 4.2 - Flavor and Aroma Delivery
  • 4.1 - Analysis of Flavor Complexes
  • 2.1 - Proteins
  • 2.3 - Protein-Polysaccharides Complexes
  • 2.2 - Polysaccarides
  • 4.1 - Nanoencapsulation of Phytochemicals
  • 2.3 - Silica-Based Delivery System
  • 2.4 - Halloysite
  • 2.5 - Ultrasonic Technique
  • 3.1 - Rotor-Stator Technology
  • 3.2 - Ultrasonic
  • 3.3 - High-Pressure Homogenization
  • 5.1 - Rheology of Nanoemulsions or Nanosized Emulsions: Aspects of Processing of Food Nanoemulsions or Nanosized Emulsions
  • 5.2 - Biological Fate of the Lipophilic
  • 5.3 - Stability
  • 4.1 - Membrane Emulsification
  • 4.2 - Spontaneous Emulsification
  • 4.3 - Phase Inversion Methods
  • 4.4 - Secondary Emulsification Methods
  • 4.4.1 - Interfacial Engineering
  • 4.3.1 - Phase-Inversion Temperature Methods
  • 4.3.3 - Emulsion Inversion Point (EIP) Methods
  • 3.3.1 - Process Definition
  • 3.3.2 - Equipment Designs
  • 3.3.3 - Process Modeling
  • 3.3.4 - Process Optimization
  • 3.3.5 - State-of-the-Art High-Pressure Homogenization Technology for Food Nanoemulsions
  • 3.2.1 - Process Definition
  • 3.2.2 - Equipment Designs
  • 3.2.3 - Process Modeling
  • 3.2.4 - Process Optimization
  • 3.2.5 - State-of-the-Art Ultrasonic Technology for Food Nanoemulsion
  • 3.2.6 - Scale Up
  • 3.1.1 - Process Definition
  • 3.1.2 - Equipment Designs
  • 3.1.3 - Process Modeling
  • 3.1.4 - Process Optimization
  • 3.1.6 - Scale Up
  • 2.1.2 - Phosphoproteins
  • 2.1.3 - Prolamines
  • 4.1.1 - Polyphenols
  • 2.2.1 - Chitosan
  • 2.2.2 - Pectin
  • 2.2.5 - Carrageenans
  • 2.2.7 - Gellan
  • 4.1.2 - Carotenoids
  • 4.1.3 - Other Phytochemicals
  • 1.6.3 - Applications
  • 4.2.3 - Essential Oils (EOs)
  • 4.2.4 - Water-Soluble Vitamins
  • 2.1.1 - Globular Proteins
  • 2.2 - Layer-by-Layer Assemblies
  • 3.2.1 - Nanoemulsions
  • 3.2.2 - Liposomes
  • 3.2.3 - Solid-Lipid Nanoparticles
  • 2.2.2 - Liposomes
  • 2.2.3 - Coacervation
  • 2.2.4 - Molecular Inclusion
  • 2.2.5 - Ionic Gelation
  • 2.2.6 - Yeast Encapsulation
  • 2.1.1 - Spray Drying
  • 2.1.2 - Spray-Cooling/Spray-Chilling
  • 2.1.3 - Freeze-Drying
  • 2.1.4 - Fluid Bed Drying
  • 2.1.5 - Extrusion and Spinning Disc
  • 2.2.1 - Emulsions and Nanoemulsions
  • 1.1.3 - Mixtures of Surfactants
  • 1.6.1 - Thermodynamics of Microemulsion Formation
  • 1.6.2 - Characterization
  • 2.4.1 - Particle Size Measurements
  • 2.4.2 - pH Measurement
  • 3.3.1 - Electrical Conductivity
  • 3.3.2 - Viscosity
  • 3.3.3 - Density
  • 3.3.5 - Stability
  • 1.1.1 - Synthetic Surfactants
  • 1.5.1 - Nanotechnology in Food and Nutraceuticals Industries
  • 1.5.3 - Differences Between Emulsions, Nano and Microemulsions
  • 1.1.2 - Natural Surfactants (Biopolymers)
  • 1.5.4 - Nano Versus Microemulsions
  • 2.4.1 - Types and Characteristics of Vesicular Systems
  • 2.4.2 - Application of Liposomes in Food Industry
  • 4.2.1 - Synthesis of Solid Inclusion Complexes
  • 4.2.2 - Characterization of Solid Inclusion Complexes
  • 4.1.1 - Static Headspace-Gas Chromatography
  • 4.1.2 - UV-Visible and Fluorescence Spectroscopies
  • 4.1.3 - Isothermal Titration Calorimetry
  • 4.1.4 - Phase Solubility Studies
  • 4.1.5 - NMR Spectroscopy
  • 4.3.1 - Hydrophobic Effect
  • 4.3.2 - Solubility Effect
  • 4.3.3 - Steric Effects
  • 6.1.1 - Gum Acacia
  • 6.1.2 - Modified Food Starch
  • 6.1.3 - Mono- and Disaccharides
  • 2.3.1 - Food Proteins
  • 2.3.3 - Lipids
  • 3.1.1 - Carbohydrates
  • 3.1.2 - Proteins
  • 3.1.3 - Lipids
  • 4.2.1 - Effects of the Application of Ultrasound in Oils
  • 4.2.2 - Applications of Ultrasonication in Obtaining Nanoemulsions of EOs
  • 2.1.1 - Stability
  • 4.1.1 - SCFs in Encapsulation of EOs
  • 4.1.2 - SCFs Encapsulation Techniques
  • 2.4.1 - Coacervation Phase Separation
  • 2.4.2 - Spray Drying
  • 2.4.3 - Freeze Drying
  • 2.4.4 - Spray Chilling/Spray Cooling
  • 2.4.5 - Extrusion
  • 2.4.7 - Supercritical Fluid
  • 2.4.8 - Emulsion Diffusion Method (EDM)
  • 2.4.9 - Cocrystallization
  • 4.1.2.1 - Rapid Expansion of Supercritical Solution (RESS)
  • 4.1.2.2 - Supercritical Solvent Impregnation (SSI)
  • 4.1.2.3 - Supercritical Antisolvent (SAS)
  • 4.1.2.4 - Particles from Gas-Saturated Solutions (PGSS)
  • 4.1.2.5 - Supercritical Fluid Extraction of Emulsions (SFEE)
  • 4.2.2.1 - Chromatographic Methods
  • 4.2.2.2 - Thermoanalytical Methods
  • 4.2.2.3 - Spectroscopic Methods
  • 1.1.2.1 - Proteins
  • 1.5.3.1 - Emulsions
  • 1.5.3.3 - Microemulsions
  • 1.1.1.1 - Mono- and Diglycerides of Fatty Acids
  • 1.1.1.2 - Diacetyltartaric Acid Esters of Mono- and Diglycerides
  • 1.1.1.3 - Sodium Stearoyl-2-Lactylate (SSL) and Calcium Stearoyl-2-Lactylate
  • 1.1.1.5 - Polyglycerol Esters of Fatty Acids (PGE)
  • 1.6.2.1 - Electronic Microscopy
  • 1.6.2.3 - Rheology
  • 1.5.4.2 - Composition
  • 2.2.1.1 Multiple Emulsions
  • 2.2.1.2 Multilayer Emulsions
  • 2.2.1.3 Solid Lipid Particles
  • 2.1.1.1 - Whey Proteins
  • 2.1.1.2 - Ovalbumin
  • 2.1.1.4 - Soy Proteins
  • 4.2.2.1 - Fat-Soluble Vitamins
  • 4.2.2.2 - Fatty Acids
  • 4.1.1.1 - Resveratrol
  • 4.1.1.2 - Tea Polyphenols
  • 4.1.1.3 - Curcumin
  • 4.1.1.4 - Quercetin
  • 4.1.1.5 - Tangeretin
  • Microemulsions
  • Nanoemulsions

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

170,17 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok