Encapsulations

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 27. Mai 2016
  • |
  • 924 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804378-3 (ISBN)
 
Encapsulations, a volume in the Nanotechnology in the Agri-Food Industry series,presents key elements in establishing food quality through the improvement of food flavor and aroma. The major benefits of nanoencapsulation for food ingredients include improvement in bioavailability of flavor and aroma ingredients, improvement in solubility of poor water-soluble ingredients, higher ingredient retention during production process, higher activity levels of encapsulated ingredients, improved shelf life, and controlled release of flavor and aroma. This volume discusses main nanoencapsulation processes such as spray drying, melt injection, extrusion, coacervation, and emulsification. The materials used in nanoencapsulation include lipids, proteins, carbohydrates, cellulose, gums, and food grade polymers. Applications and benefits of nanoencapsulation such as controlled release, protections, and taste masking will be explained in detail.
  • Includes the most up-to-date information on nanoencapsulation and nanocontainer-based delivery of antimicrobials
  • Presents nanomaterials for innovation based on scientific advancements in the field
  • Provides control release strategies to enhance bioactivity, including methods and techniques for research and innovation
  • Provides useful tools to improve the delivery of bioactive molecules and living cells into foods


Dr. Alexandru Mihai Grumezescu is Assistant Professor at the Department of Science and Engineering of Oxide Materials and Nanomaterials, in the Faculty of Applied Chemistry and Materials Science, with a second affiliation to the Faculty of Medical Engineering, at the Politehnica University of Bucharest in Romania. He is an experienced and oft-published researcher and editor in the field of nano and biostructures, and he is the Editor-in-Chief of three journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience, Biomaterials and Tissue Engineering Bulletin, and Journal of Food Bioengineering and Nanoprocessing. He also serves as editor or guest editor for several notable journals. Dr. Grumezescu has published 150 peer-reviewed papers, 20 book chapters, 8 co-authored books and 21 edited books.
He has developed two new research directions related to bio-applications of metal oxide nanoparticles: (i) functional metal oxide nanostructures to improve the delivery of antimicrobials in active form with a high efficiency against Gram-positive and Gram-negative bacteria; and (ii) smart metal oxide nanostructures, functionalized with different fatty acids, essential oils or in combination with organic polymers, to inhibit bacterial colonization of different medical or industrial surfaces.
Dr Alexandru Mihai Grumezescu is Assistant Professor at the Department of Science and Engineering of Oxide Materials and Nanomaterials, in the Faculty of Applied Chemistry and Materials Science at the Politehnica University of Bucharest in Romania. He is an experienced and oft-published researcher and editor in the field of nano- and biostructures, and he is the Editor-in-Chief of four journals: Biointerface Research in Applied Chemistry, Letters and Applied NanoBioScience, Biomaterials and Tissue Engineering Bulletin, and Journal of Food Bioengineering and Nanoprocessing. He also serves as editor or guest editor for several notable journals. Dr Grumezescu has published 160 peer-reviewed papers, 20 book chapters, 9 coauthored books, and 21 edited books. Other details are available at http://grumezescu.com/.
2451-9324
  • Englisch
  • San Diego
  • |
  • USA
  • 24,00 MB
978-0-12-804378-3 (9780128043783)
0128043784 (0128043784)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contects
  • List of Contributors
  • series Foreword
  • Series Preface
  • About the Series (Volumes I-X)
  • Volume Preface
  • 1 - Electrohydrodynamic microencapsulation technology
  • 1 - Introduction
  • 2 - Electrohydrodynamic Atomization
  • 3 - Micro- and Nanoencapsulation Techniques
  • 4 - Electrohydrodynamic Micro- and Nanoencapsulation
  • 5 - Electrohydrodynamic Microencapsulation for Food Processing
  • 6 - Conclusions
  • References
  • 2 - Exploring nanoencapsulation of aroma and flavors as new frontier in food technology
  • 1 - Introduction
  • 2 - Nanoencapsulation of Aroma and Flavors
  • 2.1 - Classification of Aroma and Flavors Used in Food Products
  • 2.2 - Materials for Encapsulation
  • 2.3 - Strategies for Nanoencapsulation of Aroma and Flavors
  • 2.4 - Methods of Nanoencapsulation of Aroma and Flavors
  • 2.4.1 - Coacervation Phase Separation
  • 2.4.2 - Spray Drying
  • 2.4.3 - Freeze Drying
  • 2.4.4 - Spray Chilling/Spray Cooling
  • 2.4.5 - Extrusion
  • 2.4.6 - Electrospray
  • 2.4.7 - Supercritical Fluid
  • 2.4.8 - Emulsion Diffusion Method (EDM)
  • 2.4.9 - Cocrystallization
  • 3 - Advantages of Nanoencapsulation of Flavor and Aroma Compounds
  • 3.1 - Stability Enhancement of Flavor and Aroma Compounds in Food and Beverages
  • 3.2 - Taste and Nutrition Enhancement of Food Products
  • 3.3 - Masking of Undesirable Flavor or Aroma Compounds
  • 4 - Quality Assessment by Instrumental Methods to Predict Flavor and Aroma in Food Products
  • 4.1 - Gas Chromatography-Olfactometry
  • 4.2 - Infrared Spectroscopy
  • 4.3 - E-Nose
  • 4.4 - E-Tongue
  • 5 - Safety and Risk Assessment of Nanotechnology and Nanofoods
  • 6 - Conclusions
  • References
  • Internet Resources
  • 3 - Nanoencapsulation of flavors and aromas by emerging technologies
  • 1 - Introduction
  • 2 - Issues Relating to Addition of Flavors and Aromas in Foods
  • 2.1 - Classification and Properties
  • 2.1.1 - Stability
  • 2.1.2 - Solubility
  • 2.1.3 - Interactions with Other Food Components
  • 2.2 - EOs Extraction Methods
  • 3 - Nanoencapsulation of EOs
  • 3.1 - Encapsulation Materials
  • 3.1.1 - Carbohydrates
  • 3.1.2 - Proteins
  • 3.1.3 - Lipids
  • 4 - Emerging Technologies
  • 4.1 - Supercritical Fluids (SCFs)
  • 4.1.1 - SCFs in Encapsulation of EOs
  • 4.1.2 - SCFs Encapsulation Techniques
  • 4.1.2.1 - Rapid Expansion of Supercritical Solution (RESS)
  • 4.1.2.2 - Supercritical Solvent Impregnation (SSI)
  • 4.1.2.3 - Supercritical Antisolvent (SAS)
  • 4.1.2.4 - Particles from Gas-Saturated Solutions (PGSS)
  • 4.1.2.5 - Supercritical Fluid Extraction of Emulsions (SFEE)
  • 4.2 - Ultrasonication
  • 4.2.1 - Effects of the Application of Ultrasound in Oils
  • 4.2.2 - Applications of Ultrasonication in Obtaining Nanoemulsions of EOs
  • 5 - Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 4 - Cyclodextrins as encapsulation material for flavors and aroma
  • 1 - Introduction
  • 2 - Aroma and Flavors
  • 2.1 - Definition/Description
  • 2.2 - Extraction and Synthesis
  • 2.3 - Physiochemical Properties
  • 3 - Cyclodextrins
  • 3.1 - History
  • 3.2 - Physicochemical Properties
  • 3.3 - Inclusion Complex Formation
  • 3.4 - Fields of Application
  • 3.5 - Regulatory Status
  • 3.6 - Fate of Cyclodextrins After Ingestion
  • 4 - Cyclodextrins/Aroma Inclusion Complexes
  • 4.1 - Investigation and Characterization of CD/Aroma Inclusion Complexes in Solution
  • 4.1.1 - Static Headspace-Gas Chromatography
  • 4.1.2 - UV-Visible and Fluorescence Spectroscopies
  • 4.1.3 - Isothermal Titration Calorimetry
  • 4.1.4 - Phase Solubility Studies
  • 4.1.5 - NMR Spectroscopy
  • 4.2 - Investigation and Characterization of CD/Aroma Inclusion Complexes in Solid State
  • 4.2.1 - Synthesis of Solid Inclusion Complexes
  • 4.2.2 - Characterization of Solid Inclusion Complexes
  • 4.2.2.1 - Chromatographic Methods
  • 4.2.2.2 - Thermoanalytical Methods
  • 4.2.2.3 - Spectroscopic Methods
  • 4.2.2.4 - Microscopic Methods
  • 4.3 - Factors Controlling Encapsulation of Aroma and Flavors in CDs
  • 4.3.1 - Hydrophobic Effect
  • 4.3.2 - Solubility Effect
  • 4.3.3 - Steric Effects
  • 5 - Effects of Encapsulation
  • 5.1 - Solubility Enhancement
  • 5.2 - Protection of Aroma and Flavors
  • 5.3 - Ensuring Controlled Release
  • 5.4 - Improving Organoleptic Behavior and Masking Off Flavors
  • 5.5 - Active Packaging
  • 5.6 - Improving Handling and Dosage
  • 5.7 - Aroma Differentiation/Burst
  • 6 - Conclusions
  • References
  • 5 - Structural and thermodynamic insight into the potentiality of food biopolymers to behave as smart nanovehicles for ...
  • 1 - Introduction
  • 2 - Intermolecular Forces Underlying the Encapsulation of the Polyunsaturated Lipids by the Biopolymers
  • 3 - Protection Ability of the (Biopolymer + Lipids) Complexes Against Oxidation of the Encapsulated Lipids
  • 4 - Structural and Thermodynamic Parameters of the (Biopolymer + Lipids) Complex Particles Underlying Their Protective Abil...
  • 4.1 - The Density of the Complex Particles
  • 4.2 - Thermodynamic Stability of the PC Liposome Bilayers
  • 4.3 - Microviscosity of the Bilayers of the Lipid Particles
  • 5 - Thermodynamic Parameters Controlling Solubility of the (Biopolymer + Lipids) Complex Particles in an Aqueous Medium
  • 6 - Structural Parameters of the Biopolymer Nanovehicles Controlling Release of the Polyunsaturated Lipids in Vitro
  • 6.1 - The Density and Architecture of the Complex Particles
  • 7 - Conclusions
  • Acknowledgments
  • References
  • 6 - Encapsulation: entrapping essential oil/flavors/aromas in food
  • 1 - Introduction
  • 2 - New Technologies: Future Course
  • 3 - Nanotechnology
  • 4 - Matrix or Coating Materials
  • 5 - Encapsulation Processes
  • 5.1 - Spray Drying
  • 5.2 - Spray Chilling
  • 5.3 - Spray Cooling
  • 5.4 - Extrusion Process
  • 5.5 - Fluidized Bed Coating
  • 5.6 - Liposomal Entrapment
  • 5.7 - Lyophilization
  • 5.8 - Centrifugal Suspension Separation
  • 5.9 - Cocrystallization
  • 5.10 - Inclusion Complexation
  • 5.11 - Coacervation
  • 6 - Edible Films Formed in Encapsulation
  • 6.1 - Materials
  • 6.1.1 - Gum Acacia
  • 6.1.2 - Modified Food Starch
  • 6.1.3 - Mono- and Disaccharides
  • 6.2 - Film Performance
  • 6.3 - Emulsification Properties
  • 6.4 - Flavor Retention
  • 6.5 - Flavor Release
  • 7 - Retention of Volatiles
  • 7.1 - Relative Volatility
  • 8 - Storage Stability
  • 9 - Conclusions
  • References
  • 7 - Antimicrobials from herbs, spices, and plants
  • 1 - Nanoencapsulation of Natural Antimicrobial Products
  • 1.1 - Challenges in Applying Lipophilic Antimicrobials in Foods
  • 2 - Encapsulation Process
  • 2.1 - Design of Encapsulated Food Ingredients
  • 2.2 - Active Core
  • 2.3 - Matrix Materials for Encapsulation
  • 2.3.1 - Food Proteins
  • 2.3.2 - Food Carbohydrates
  • 2.3.3 - Lipids
  • 3 - Encapsulation Techniques
  • 3.1 - Spray Drying
  • 3.2 - Spray Cooling
  • 3.3 - Freeze Drying
  • 3.4 - Fluidized Bed Coating
  • 3.5 - Extrusion
  • 3.6 - Microencapsulation Based on Supercritical Fluids
  • 3.7 - Coacervation
  • 3.8 - Liposomes
  • 3.9 - Molecular Inclusion Complexes with Cyclodextrins
  • 4 - Encapsulation of Lipophilic Antimicrobials
  • 5 - Nano- Versus Microencapsulation
  • 5.1 - Milk Proteins and Carbohydrates as Emulsifying Agents
  • 5.2 - Nanoencapsulation of EOs for Enhanced Antimicrobial Effectiveness
  • 5.3 - Physicochemical Properties
  • 5.4 - Antimicrobial Activity in Growth Media
  • 5.5 - Antimicrobial Activity in Food Systems
  • 6 - Conclusions
  • References
  • 8 - Supramolecular strategy of the encapsulation of low-molecular-weight food ingredients
  • 1 - Introduction
  • 2 - Self-Assembled Delivery Systems Based on Amphiphilic Compounds
  • 2.1 - Structure-Activity Correlation as a Basis for the Design of Nanocontainers
  • 2.2 - Application of Micelles and Microemulsions in the Food Industry
  • 2.3 - Nanoemulsion Formulations
  • 2.4 - Liposomes as Delivery Systems for Bioactive Supplements
  • 2.4.1 - Types and Characteristics of Vesicular Systems
  • 2.4.2 - Application of Liposomes in Food Industry
  • 2.5 - Solid Lipid Nanoparticles and Nanostructured Lipid Carriers
  • 3 - Polymer-Based Formulations as Delivery Systems
  • 3.1 - ß-Casein in Encapsulation of Low-Molecular-Weight Ingredients
  • 3.2 - Natural Polymer Chitosan, a Representative of Polysaccharide Family
  • 3.3 - Layer-by-Layer Strategy in Food Technologies
  • 4 - Molecular Complexes Based on the Guest-Host Interactions
  • 4.1 - Effect of the Addition of CDs on Organoleptic Properties
  • 4.2 - Extraction of Components
  • 4.3 - Enantioseparation
  • 4.4 - Complexes with Antioxidants
  • 4.5 - Sensors
  • 5 - Conclusions
  • Acknowledgment
  • References
  • 9 - Novel approaches in nanoencapsulation of aromas and flavors
  • 1 - Introduction
  • 2 - Flavor Nanoencapsulation by Spray Drying
  • 2.1 - Emulsions Processed by Spray Drying
  • 2.2 - Influence of Emulsion Droplet Size on Spray-Dried Powders
  • 2.3 - Influence of Wall Materials on Spray-Dried Powders
  • 2.4 - Influence of Aroma Type and Concentration on Spray-Dried Powders
  • 2.5 - Influence of Spray-Drying Conditions on the Powder Properties
  • 2.6 - Encapsulated Aroma Stability and Release
  • 3 - Flavors Encapsulated in Nanoemulsions
  • 4 - Encapsulation of Flavors in Lipid-Based Nanoparticles
  • 5 - Flavors Encapsulated in Liposomes
  • 6 - Flavors Encapsulated in Cyclodextrins
  • 6.1 - Regulations for CDs Application in the Food Industry
  • 6.2 - Inclusion Complexes of Cyclodextrins
  • 6.3 - Electrospinning of Inclusion Complexes
  • 6.4 - Cyclodextrins and Flavors
  • 7 - Flavors Encapsulated in Complex Coacervates
  • 8 - Conclusions
  • Acknowledgment
  • References
  • 10 - Nanocomposite for food encapsulation packaging
  • 1 - Introduction
  • 1.1 - Food Nanotechnology
  • 1.2 - Nanocomposite
  • 1.3 - Functionality and Advantages
  • 2 - Nanocomposite for Food Encapsulation Packaging
  • 2.1 - Nanocomposite Thin Films for High Barrier and Flame Protection
  • 2.2 - Nanofiller Materials or Nanostructures
  • 2.3 - Polymers
  • 3 - Preparation Methods
  • 4 - Surface Adhesion
  • 5 - New Concepts in Food Encapsulation
  • 6 - Industry, Enterprise, and Market
  • 7 - Limitations and Shortcomings
  • 8 - Conclusions
  • References
  • 11 - Microencapsulated bioactive components as a source of health
  • 1 - Introduction
  • 2 - Microencapsulation
  • 2.1 - Methods of Microencapsulation
  • 2.2 - Surfactants
  • 2.3 - Microencapsulation Applications
  • 2.4 - Encapsulating Materials
  • 2.5 - Characterization of the Microcapsules
  • 2.6 - Release Mechanisms of Encapsulated Compounds
  • 3 - Antioxidant Properties of Phenolic Compounds
  • 3.1 - Phenolic Compounds
  • 3.2 - Native Species as Potential Sources of Antioxidants
  • 4 - Microencapsulation via Emulsion of Chilean Blackberry
  • 4.1 - Aristotelia Chilensis (Elaeocarpaceae), Maqui Leaf Extracts
  • 4.2 - Phenolic Characterization and Extraction
  • 4.3 - Antioxidant Capacity and Extract Stability
  • 4.4 - Identification and Quantification of Phenolic Compounds in the Extract
  • 4.5 - Microencapsulation by Extract Emulsion
  • 4.6 - Determination of Microcapsule Yield, Size, and Morphology
  • 4.7 - Determination of Microcapsule Antioxidant Capacity
  • 4.8 - Statistical Analysis
  • 4.9 - Characterization of Maqui Leaf Extract
  • 4.10 - Determination of Extract Antioxidant Capacity
  • 4.11 - Encapsulation of Maqui (Aristotelia Chilensis) Leaf Extract
  • 4.12 - Emulsion Yield
  • 4.13 - Characterization of Microcapsules
  • 4.14 - Morphology of Microcapsules with SEM
  • 4.15 - Study of Microencapsulated Maqui Leaf Extract
  • 5 - Conclusions
  • References
  • 12 - Biocompatible microemulsions for the nanoencapsulation of essential oils and nutraceuticals
  • 1 - Introduction
  • 1.1 - Surfactants
  • 1.1.1 - Synthetic Surfactants
  • 1.1.1.1 - Mono- and Diglycerides of Fatty Acids
  • 1.1.1.2 - Diacetyltartaric Acid Esters of Mono- and Diglycerides
  • 1.1.1.3 - Sodium Stearoyl-2-Lactylate (SSL) and Calcium Stearoyl-2-Lactylate
  • 1.1.1.4 - Sucrose Esters of Fatty Acids
  • 1.1.1.5 - Polyglycerol Esters of Fatty Acids (PGE)
  • 1.1.1.6 - Sorbitan Esters of Fatty Acids (Span Series, HLB = 2-9) and Their Ethoxylated Derivatives Polysorbates (Tween Ser...
  • 1.1.2 - Natural Surfactants (Biopolymers)
  • 1.1.2.1 - Proteins
  • 1.1.2.2 - Polysaccharides
  • 1.1.2.3 - Phospholipids
  • 1.1.3 - Mixtures of Surfactants
  • 1.1.4 - Biosurfactants
  • 1.2 - Nutraceuticals
  • 1.3 - Cosmeceuticals
  • 1.4 - Oil Phase (Essential Oils, Vitamin E, Trans-anethole, Cinnamon Oil, Thyme Oil, Peppermint Oil)
  • 1.5 - Emulsions, Microemulsions, and Nanoemulsions
  • 1.5.1 - Nanotechnology in Food and Nutraceuticals Industries
  • 1.5.2 - Food Processing
  • 1.5.3 - Differences Between Emulsions, Nano and Microemulsions
  • 1.5.3.1 - Emulsions
  • 1.5.3.2 - Nanoemulsions
  • 1.5.3.3 - Microemulsions
  • 1.5.4 - Nano Versus Microemulsions
  • 1.5.4.1 - Terminology
  • Microemulsions
  • Nanoemulsions
  • 1.5.4.2 - Composition
  • 1.5.4.3 - Optical Properties
  • 1.5.4.4 - Particle Structure
  • 1.5.4.5 - Practical Methods of Distinguishing Nanoemulsions and Microemulsions
  • 1.6 - Microemulsions
  • 1.6.1 - Thermodynamics of Microemulsion Formation
  • 1.6.2 - Characterization
  • 1.6.2.1 - Electronic Microscopy
  • 1.6.2.2 - Scattering Techniques
  • 1.6.2.3 - Rheology
  • 1.6.2.4 - Conductivity
  • 1.6.3 - Applications
  • 2 - Examples of Components and Characterization Procedures
  • 2.1 - Chemicals
  • 2.2 - Microemulsion Formation
  • 2.3 - Stability Testing
  • 2.4 - Characterization Techniques
  • 2.4.1 - Particle Size Measurements
  • 2.4.2 - pH Measurement
  • 2.4.3 - Viscosity and Rheological Behavior
  • 2.4.4 - Conductivity
  • 2.4.5 - Transmission Electronic Microscopy (TEM)
  • 2.4.6 - Density
  • 2.4.7 - Zeta Potential
  • 3 - Discussions
  • 3.1 - Physical Properties of Surfactants
  • 3.2 - Partial Phase Diagrams
  • 3.3 - Microemulsions
  • 3.3.1 - Electrical Conductivity
  • 3.3.2 - Viscosity
  • 3.3.3 - Density
  • 3.3.4 - Surface Tension
  • 3.3.5 - Stability
  • 4 - Conclusions and Outlook
  • Acknowledgments
  • References
  • 13 - Nanoencapsulation strategies applied to maximize target delivery of intact polyphenols
  • 1 - Introduction
  • 2 - Encapsulation Technologies
  • 2.1 - Mechanical Technologies
  • 2.1.1 - Spray Drying
  • 2.1.2 - Spray-Cooling/Spray-Chilling
  • 2.1.3 - Freeze-Drying
  • 2.1.4 - Fluid Bed Drying
  • 2.1.5 - Extrusion and Spinning Disc
  • 2.2 - Chemical Technologies
  • 2.2.1 - Emulsions and Nanoemulsions
  • 2.2.1.1 Multiple Emulsions
  • 2.2.1.2 Multilayer Emulsions
  • 2.2.1.3 Solid Lipid Particles
  • 2.2.2 - Liposomes
  • 2.2.3 - Coacervation
  • 2.2.4 - Molecular Inclusion
  • 2.2.5 - Ionic Gelation
  • 2.2.6 - Yeast Encapsulation
  • 3 - Controlled Release of Polyphenols in the Gut
  • 3.1 Materials to Enable Target Delivery in the Colon
  • 3.2 Examples of Controlled Delivery of Polyphenols
  • 4 - Conclusions
  • References
  • 14 - Nanoencapsulation technology to control release and enhance bioactivity of essential oils
  • 1 - Introduction
  • 2 - Chemical Composition of EOs
  • 3 - Limits and Challenges for the Use of Essential Oils for Their Biological Activities
  • 4 - Nanoencapsulation Technology
  • 5 - Nanoencapsulated Delivery of EOs
  • 5.1 - Methods of Nanoencapsulation
  • 5.2 - Release Mechanism of Encapsulated EO
  • 6 - Polymer-Based Nanoparticles
  • 7 - Lipid-Based Nanoencapsulation
  • 7.1 - Liposomes
  • 7.2 - Lipid Nanoparticles
  • 7.3 - Nanoemulsions
  • 8 - Molecular Complexes
  • 9 - Conclusions
  • References
  • 15 - Nanoencapsulation of essential oils for sustained release: application as therapeutics and antimicrobials
  • 1 - Introduction
  • 2 - Chemical Composition of Essential Oils
  • 3 - Nanoencapsulation Strategies of Essential Oils for Various Biological Activities
  • 3.1 - Polymer-Based Nanocapsules
  • 3.2 - Lipid-Based Nanocarriers
  • 3.2.1 - Nanoemulsions
  • 3.2.2 - Liposomes
  • 3.2.3 - Solid-Lipid Nanoparticles
  • 4 - Inclusion Complexes
  • 5 - Future Prospects
  • References
  • 16 - Nanoencapsulation and nanocontainer based delivery systems for drugs, flavors, and aromas
  • 1 - Introduction
  • 2 - Nanocontainers for Delivery System
  • 2.1 - Polymeric Nanocontainers
  • 2.2 - Layer-by-Layer Assemblies
  • 2.3 - Silica-Based Delivery System
  • 2.4 - Halloysite
  • 2.5 - Ultrasonic Technique
  • 3 - Mechanism of Response
  • 4 - Active Molecules to be Delivered
  • 4.1 - Drugs
  • 4.2 - Flavor and Aroma Delivery
  • 5 - Stimuli for Controlled Release
  • 5.1 - Chemical Stimuli for Permeability Changes: pH, Ionic Strength, Solvent, Electrochemical Stimuli
  • 5.2 - Physical Stimuli for Affecting Permeability: Temperature, Light, Ultrasound, Magnitude Field, Mechanical Deformation
  • 5.3 - Biological Stimuli for Release and Targeting: Enzyme Triggering, Receptor Implementing Triggering
  • 6 - Case Study
  • 7 - Future Prospects
  • 8 - Conclusions
  • References
  • 17 - Cyclodextrins-based nanocomplexes for encapsulation of bioactive compounds in food, cosmetics, and pharmaceutical products:...
  • 1 - Introduction
  • 2 - Cyclodextrins and Their Complexes
  • 3 - General Information about Free Radicals
  • 4 - Antioxidants
  • 5 - Analysis of Antioxidants
  • 6 - Encapsulation of Selected Antioxidants by Cyclodextrins
  • 7 - Recent Advances of Cyclodextrins Application in Pharmaceutics, Food, and Cosmetics Products
  • 8 - Conclusions
  • References
  • 18 - Nanoencapsulation of flavors and aromas by cyclodextrins
  • 1 - Introduction
  • 2 - History of Flavor Encapsulation by Cyclodextrins
  • 3 - Approval Status of Cyclodextrins
  • 4 - Formulation of Flavors with Cyclodextrins: Methods of Preparation, and Analysis
  • 4.1 - Analysis of Flavor Complexes
  • 5 - Flavor Complexes in Food Processing
  • 6 - Cyclodextrins in Aroma Preserving and Antibiotic Active Food Packaging
  • 7 - Conclusions
  • References
  • 19 - Natural biopolymers as nanocarriers for bioactive ingredients used in food industries
  • 1 - Introduction
  • 2 - Natural Biopolymers Used in Nanoencapsulation
  • 2.1 - Proteins
  • 2.1.1 - Globular Proteins
  • 2.1.1.1 - Whey Proteins
  • 2.1.1.2 - Ovalbumin
  • 2.1.1.3 - Pea Proteins
  • 2.1.1.4 - Soy Proteins
  • 2.1.2 - Phosphoproteins
  • 2.1.3 - Prolamines
  • 2.2 - Polysaccarides
  • 2.2.1 - Chitosan
  • 2.2.2 - Pectin
  • 2.2.3 - Alginates
  • 2.2.4 - Gum Arabic
  • 2.2.5 - Carrageenans
  • 2.2.6 - Xanthan
  • 2.2.7 - Gellan
  • 2.2.8 - Dextrans
  • 2.2.9 - Cyclodextrins
  • 2.3 - Protein-Polysaccharides Complexes
  • 3 - Methods of Fabrication of Nanoparticles from Natural Polymers
  • 4 - Nanoencapsulation of Bioactive Food Ingredients
  • 4.1 - Nanoencapsulation of Phytochemicals
  • 4.1.1 - Polyphenols
  • 4.1.1.1 - Resveratrol
  • 4.1.1.2 - Tea Polyphenols
  • 4.1.1.3 - Curcumin
  • 4.1.1.4 - Quercetin
  • 4.1.1.5 - Tangeretin
  • 4.1.1.6 - Genistein
  • 4.1.2 - Carotenoids
  • 4.1.3 - Other Phytochemicals
  • 4.2.2 - Nanoncapsulation of Lipids
  • 4.2.2.1 - Fat-Soluble Vitamins
  • 4.2.2.2 - Fatty Acids
  • 4.2.3 - Essential Oils (EOs)
  • 4.2.4 - Water-Soluble Vitamins
  • 5 - Bioavailability and Toxicity
  • 6 - Conclusions and Future Trends
  • Abbreviations
  • References
  • 20 - Process technology of nanoemulsions in food processing
  • 1 - Introduction
  • 2 - Thermodynamics of Nanosized and Nanoemulsion Production Technologies
  • 3 - High-Energy Production Technologies of Nanoemulsions
  • 3.1 - Rotor-Stator Technology
  • 3.1.1 - Process Definition
  • 3.1.2 - Equipment Designs
  • 3.1.3 - Process Modeling
  • 3.1.4 - Process Optimization
  • 3.1.5 - State-of-the-Art Rotor-Stator Technology for Food Nanoemulsion
  • 3.1.6 - Scale Up
  • 3.2 - Ultrasonic
  • 3.2.1 - Process Definition
  • 3.2.2 - Equipment Designs
  • 3.2.3 - Process Modeling
  • 3.2.4 - Process Optimization
  • 3.2.5 - State-of-the-Art Ultrasonic Technology for Food Nanoemulsion
  • 3.2.6 - Scale Up
  • 3.3 - High-Pressure Homogenization
  • 3.3.1 - Process Definition
  • 3.3.2 - Equipment Designs
  • 3.3.3 - Process Modeling
  • 3.3.4 - Process Optimization
  • 3.3.5 - State-of-the-Art High-Pressure Homogenization Technology for Food Nanoemulsions
  • 3.3.6 - Scale Up
  • 4 - Low-Energy Production Technologies of Nanosized Emulsifiation
  • 4.1 - Membrane Emulsification
  • 4.2 - Spontaneous Emulsification
  • 4.3 - Phase Inversion Methods
  • 4.3.1 - Phase-Inversion Temperature Methods
  • 4.3.2 - Phase Inversion Composition Methods
  • 4.3.3 - Emulsion Inversion Point (EIP) Methods
  • 4.4 - Secondary Emulsification Methods
  • 4.4.1 - Interfacial Engineering
  • 4.4.2 - Solvent Displacement
  • 4.4.3 - Lipid Phase Exchange
  • 4.4.4 - Lipid Crystallization
  • 5 - Functional Characterization Processes of Nanoemulsions
  • 5.1 - Rheology of Nanoemulsions or Nanosized Emulsions: Aspects of Processing of Food Nanoemulsions or Nanosized Emulsions
  • 5.2 - Biological Fate of the Lipophilic
  • 5.3 - Stability
  • 6 - Application of Nanoemulsion Science in Food Processing
  • 7 - Conclusions
  • References
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

170,17 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok