Design and Development of New Nanocarriers

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 12. Dezember 2017
  • |
  • 766 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-0-12-813628-7 (ISBN)
 

Design and Development of New Nanocarriers focuses on the design and development of new nanocarriers used in pharmaceutical applications that have emerged in recent years. In particular, the pharmaceutical uses of microfluidic techniques, supramolecular design of nanocapsules, smart hydrogels, polymeric micelles, exosomes and metal nanoparticles are discussed in detail. Written by a diverse group of international researchers, this book is a valuable reference resource for those working in both biomaterials science and the pharmaceutical industry.

  • Shows how nanomanufacturing techniques can help to create more effective, cheaper pharmaceutical products
  • Explores how nanofabrication techniques developed in the lab have been translated to commercial applications in recent years
  • Explains safety and regulatory aspects of the use of nanomanufacturing processes in the pharmaceutical industry
  • Englisch
  • San Diego
  • |
  • USA
  • 22,27 MB
978-0-12-813628-7 (9780128136287)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Design and Development of New Nanocarriers
  • Copyright Page
  • Contents
  • List of Contributors
  • Series Preface: Pharmaceutical Nanotechnology
  • Preface
  • 1 Vesicle-based drug carriers: Liposomes, polymersomes, and niosomes
  • 1.1 Introduction
  • 1.2 Amphiphilic Bilayers
  • 1.3 Liposomal Drug Carriers
  • 1.4 Polymersome Drug Carriers
  • 1.5 Niosome Drug Carriers
  • 1.6 Biomedical Applications
  • 1.7 Discussion
  • 1.8 Conclusion
  • References
  • 2 Recent advances in micellar-like polyelectrolyte/protein complexes: Design and development of biopharmaceutical vehicles
  • 2.1 Introduction
  • 2.2 Polyelectrolyte Block Copolymers
  • 2.2.1 Physicochemical Properties
  • 2.2.2 Solution Properties of Polyelectrolytes
  • 2.2.3 Biological Properties
  • 2.3 Polyelectrolyte-Protein Complexes
  • 2.3.1 Preparation and Physicochemical Characterization of Polyelectrolyte-Protein Complexes
  • 2.3.2 Biological Properties and Biomedical Applications of Polyelectrolyte-Protein Complexes
  • 2.3.2.1 Lysozyme -polyelectrolyte complexes: From in deep physicochemical understanding to biomedical applications
  • 2.3.2.2 Insulin-polyelectrolyte complexes: The pharmaceutical applications
  • 2.3.2.3 Recent advances in protein-polyelectrolyte complexes
  • 2.4 Polyelectrolyte-Protein Complexes Versus Other Nanocarriers
  • 2.5 Conclusions and Future Perspectives
  • References
  • Further Reading
  • 3 Calixarene-based micelles: Properties and applications
  • 3.1 Introduction
  • 3.2 Physicochemical Characterization of Micellar Calixarenes
  • 3.3 Anionic Calixarene Micelles
  • 3.4 Cationic Calixarene Micelles
  • 3.5 Micelles Formed by Zwitterionic Calix[4]arene Derivatives
  • 3.6 Micelles Based on Nonionic Calixarenes
  • 3.7 Calixarene Reversed Micelles
  • 3.8 Bicomponent Calixarene-Based Micelles
  • 3.9 Stimuli Responsive Micellar Calixarenes
  • 3.10 Biomedical and Pharmaceutical Applications of Micellar Calixarenes
  • 3.10.1 Micellar Calixarenes as Drug Solubilizers
  • 3.10.2 Micellar Cationic Calixarene for DNA Binding and Cell Transfection
  • 3.10.3 Calixarene Micelles for Drug Delivery
  • 3.10.4 Calixarene Micelles for Imaging, Diagnostic, and Therapy
  • 3.11 Conclusions
  • References
  • Further Reading
  • 4 Preparation of Janus nanoparticles and its application in drug delivery
  • 4.1 Introduction
  • 4.2 Different Types of Janus Materials
  • 4.2.1 Inorganic-Inorganic Janus Materials
  • 4.2.2 Polymer-Polymer Janus Materials
  • 4.2.3 Organic-Inorganic Janus Materials
  • 4.3 Different Methods for Fabrication of Janus Nanoparticles
  • 4.3.1 Self-Assembly
  • 4.3.2 Masking
  • 4.3.2.1 Templating of particles
  • 4.3.2.2 Hard template
  • 4.3.2.3 Polymer single-crystal templating
  • 4.3.2.4 Pickering emulsion
  • 4.3.3 Phase Separation
  • 4.3.3.1 Seeded emulsion polymerization
  • 4.3.3.2 Solvent evaporation in emulsion droplets
  • 4.3.3.3 Fluidic nanoprecipitation system
  • 4.3.3.4 Electrohydrodynamic co-jetting
  • 4.4 Properties of Janus Nanoparticles
  • 4.5 Importance of Janus Nanoparticles in Biomedical Field
  • 4.6 Several Applications of Janus Nanoparticles in Biomedical Fields
  • 4.7 Conclusion
  • References
  • 5 Supramolecular design of hydrophobic and hydrophilic polymeric nanoparticles
  • 5.1 Introduction
  • 5.2 Supramolecular Design of Polymeric Nanoparticles
  • 5.2.1 Polymeric Building Blocks for the Fabrication of Nanoparticles
  • 5.2.2 Self-Assembly and Supramolecular Forces
  • 5.2.3 Engineering Hydrophilic Nanoparticles
  • 5.2.3.1 Polyelectrolyte complexation
  • 5.2.3.2 Neutral nanogels
  • 5.2.3.3 Ionic gelation
  • 5.2.4 Engineering Hydrophobic Nanoparticles
  • 5.2.4.1 Emulsification
  • 5.2.4.2 Nanoprecipitation
  • 5.2.4.3 Emulsion polymerization
  • 5.3 Tools and Techniques to Monitor Self-Assemblies
  • 5.3.1 Static and Dynamic Light Scattering
  • 5.3.2 Small and Wide Angle X-ray Scattering
  • 5.3.3 Calorimetry
  • 5.3.4 Fourier Transform Infrared and Ultraviolet-Visible Light Absorption Spectroscopy
  • 5.3.5 Fluorescence Spectroscopy
  • 5.3.6 Nuclear Magnetic Resonance Spectroscopy
  • 5.3.7 Scanning Electron Microscopy and Transmission Electron Microscopy
  • 5.3.8 Atomic Force Microscopy
  • 5.4 Challenges and Future Directions
  • Acknowledgments
  • References
  • Further Reading
  • 6 Cationic polyelectrolyte-biopolymer complex hydrogel particles for drug delivery
  • 6.1 Introduction
  • 6.2 Factors Affecting the Synthesis of Polyelectrolyte Complex Hydrogels
  • 6.3 Drug Delivery Applications
  • 6.3.1 Poly-L-Lysine Based Systems
  • 6.3.2 Chitosan-Based Systems
  • 6.3.3 Polyethyleneimine Complex
  • 6.3.4 Gelatin Complex
  • 6.4 Conclusion
  • References
  • 7 Smart micelleplexes: An overview of a promising and potential nanocarrier for alternative therapies
  • 7.1 Introduction
  • 7.1.1 Nucleic Acid-Based Drugs for Alternative Therapies
  • 7.2 Smart Micelleplexes
  • 7.2.1 Micelleplexes as Non-Viral Vectors
  • 7.2.1.1 Routes of administration of micelleplexes
  • 7.2.2 Synthesis, Structure and Characterization
  • 7.2.2.1 Structure and activity relation
  • 7.2.3 Smart Micelleplexes for Site-Directed Delivery
  • 7.2.4 Advantages of Smart Micelleplexes
  • 7.2.4.1 Attractive characteristics of smart micelleplexes
  • 7.2.4.2 Cell uptake, endosomal escape, and gene delivery into cytoplasm/nucleus
  • 7.3 Therapeutic Approaches Using Micelleplexes
  • 7.4 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 8 Polymeric micelles as a versatile tool in oral chemotherapy
  • 8.1 Introduction
  • 8.1.1 Barriers and Intestinal Transport in Oral Drug Delivery Systems
  • 8.2 An Overview of Oral Chemotherapy
  • 8.3 Polymeric Micelles
  • 8.3.1 Advances in Polymers and Copolymers
  • 8.3.2 Definition, Structure and Preparation
  • 8.3.3 Polymeric Micelles With Modified Surface
  • 8.3.4 Diagnostic by Polymeric Micelles
  • 8.4 Polymeric Micelles as an Alternative Strategy for Oral Chemotherapy
  • 8.5 Polymeric Micelles in Cancer Clinical Trials
  • 8.6 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 9 Mixed micelles as drug delivery nanocarriers
  • 9.1 Physicochemical Basis for Mixed Micelles Formation
  • 9.1.1 Excipients
  • 9.1.2 Micellization Process
  • 9.2 Mixed Micelles as Drug Delivery Nanocarriers
  • 9.2.1 Excipients
  • 9.2.2 Optimizing Micellar Properties
  • 9.2.3 Mixed Micelle Formation
  • 9.2.4 Mixed Micellar Characterization
  • 9.3 Solubilization of Drugs and Drug-Like Molecules in Mixed Micellar Systems
  • 9.4 Mixed Micellar Formulation for Antineoplastic Agents
  • 9.4.1 Micellar Delivery Systems in Cancer Therapy
  • 9.4.2 Examples of Anticancer Formulations
  • 9.5 Examples of Other Mixed Micellar Systems
  • 9.6 Conclusions
  • References
  • Further Reading
  • 10 Amphiphilic block copolymers-based micelles for drug delivery
  • 10.1 Introduction
  • 10.2 Amphiphilic block copolymers
  • 10.3 Micelles formation
  • 10.3.1 Thermodynamics of Micellization
  • 10.3.2 Amphiphilic Block Copolymers Micelles Advantages
  • 10.3.3 Types of Polymeric Micelles
  • 10.3.3.1 Conventional micelles
  • 10.3.3.2 Polyion complex micelles
  • 10.3.3.3 Noncovalently connected polymeric micelles
  • 10.3.4 Drug-Loaded Micelles Preparation
  • 10.3.5 Factors Affecting Micelles Formation
  • 10.3.5.1 Interactive and repulsive forces
  • 10.3.5.2 Hydrophobicity of block copolymers
  • 10.3.5.3 Hydrophilicity of block copolymers
  • 10.3.5.4 Addition of cosolutes
  • 10.3.5.5 Effect of temperature
  • 10.4 Characterization of block copolymers micelles
  • 10.4.1 Critical Micelle Concentration
  • 10.4.2 Size
  • 10.4.3 Surface Morphology
  • 10.4.4 Zeta Potential
  • 10.4.5 Stability
  • 10.4.6 In Vitro Drug Release Behavior
  • 10.5 Factors affecting the properties of micelles
  • 10.5.1 Hydrophilic-Hydrophobic Balance
  • 10.5.2 Concentration of the Copolymer
  • 10.5.3 Drug Loading and Drug Loading Methods
  • 10.6 Block copolymers micelles applications
  • 10.6.1 Solubilization of Drugs
  • 10.6.2 Sustained Release
  • 10.6.3 Enhanced Oral Bioavailability
  • 10.6.4 Drug-Targeting Applications
  • 10.6.4.1 Passive targeting
  • 10.6.4.2 Active targeting
  • 10.6.4.2.1 Ligand-mediated targeting
  • 10.6.4.2.2 Carbohydrate-based targeting
  • 10.6.4.2.3 Monoclonal antibodies-based targeting
  • 10.6.4.2.4 Folate-based targeting
  • 10.6.4.2.5 Peptide and protein-based targeting
  • 10.6.4.2.6 Aptamer-based targeting
  • 10.6.4.2.7 Stimuli-responsive micelles drug targeting
  • 10.6.4.2.7.1 pH-responsive micelles
  • 10.6.4.2.7.2 Thermo-sensitive micelles
  • 10.6.4.2.7.3 Ultrasound-responsive micelles
  • 10.7 Limitations of micelles
  • 10.7.1 Low Drug Loading and Encapsulation Efficiency
  • 10.7.2 Poor Stability of the Micelles
  • 10.8 Conclusion
  • References
  • 11 Synthesis and evolution of polymeric nanoparticles: Development of an improved gene delivery system
  • 11.1 Introduction
  • 11.2 Methods for Synthesis of Polymeric Nanoparticles
  • 11.2.1 Strategies Involved in the Synthesis of Polymeric Nanoparticles
  • 11.2.1.1 Solvent evaporation method
  • 11.2.1.2 Salting out
  • 11.2.1.3 Nanoprecipitation
  • 11.2.1.4 Dialysis
  • 11.2.1.5 Supercritical fluid technology
  • 11.2.1.6 Synthesis of polymeric nanoparticles by polymerization of monomers
  • 11.2.1.6.1 Emulsion polymerization
  • 11.2.1.6.2 Mini- and microemulsion polymerization
  • 11.2.1.6.3 Interfacial polymerization
  • 11.3 Barriers to Successful Gene Delivery Mediated by Polymeric Nanoparticles
  • 11.3.1 Extracellular Barriers
  • 11.3.2 Intracellular Barriers
  • 11.3.3 Nucleic Acid Packaging
  • 11.3.4 Cell-Specific Delivery
  • 11.4 Physicochemical Characterization of Polymeric Nanoparticles
  • 11.4.1 Determination of Size and Size Distribution
  • 11.4.2 Determination of Surface Charge
  • 11.4.3 Nanoparticle Tracking Analysis
  • 11.5 Polymeric Nanoparticles for Gene Delivery
  • 11.6 Poly(Lactic-Co-Glycolic) Acid
  • 11.6.1 Lipid-PLGA Hybrid Nanoparticles
  • 11.6.2 PEI-Modified PLGA Nanoparticles for Enhanced Delivery
  • 11.6.3 Chitosan-Modified PLGA Nanoparticles
  • 11.7 Chitosan
  • 11.7.1 Chitosan in DNA Delivery
  • 11.7.2 Chitosan in siRNA Delivery
  • 11.8 Polyethylenemine
  • 11.8.1 Polyethylenimine in DNA Delivery
  • 11.8.2 PEI in siRNA Delivery
  • 11.9 Dendrimers
  • 11.9.1 Poly(Amidoamine) Dendrimers
  • 11.9.2 Poly(Propylenimine) Dendrimers
  • 11.9.3 Carbosilane Dendrimers
  • 11.10 Polymeric Gene Delivery System in Clinical Trials
  • 11.11 Conclusion
  • References
  • 12 Therapeutic protein and drug imprinted nanostructures as controlled delivery tools
  • 12.1 Controlled Delivery of Drugs
  • 12.2 Polymers for the Drug Delivery Systems
  • 12.2.1 Nanocarriers for Drug Delivery
  • 12.3 Molecular Recognition and Molecular Imprinting Technology in Drug Delivery
  • 12.4 Nanotechnology in Molecular Imprinted Drug Delivery Systems
  • 12.4.1 Nanoparticles for the Oral Delivery of Therapeutics
  • 12.4.2 Nanoparticles for the Ocular Delivery of Drugs
  • 12.4.3 Nanoparticles for the Dermal/Transdermal Drug Delivery
  • 12.5 Conclusion
  • References
  • 13 Application of complex coacervates in controlled delivery
  • 13.1 Introduction
  • 13.2 General Aspects of Complex Coacervation
  • 13.2.1 Synthetic Polyelectrolyte Complexes
  • 13.2.2 Natural Polyelectrolyte Complexes
  • 13.3 Models on Formation of Coacervate Systems
  • 13.4 Biopolymers Used in Complex Coacervation
  • 13.5 Characterization of Complex Coacervates
  • 13.6 Protein-Polysaccharide Complexation
  • 13.7 Complex Coacervation in Controlled Delivery
  • 13.7.1 Encapsulation by Complex Coacervation
  • 13.7.2 Membranes by Complex Coacervation
  • 13.8 Concluding Remarks
  • References
  • Further Reading
  • 14 Hydrogels: Biomedical uses
  • 14.1 Introduction
  • 14.2 Nanogels as Drug Carriers
  • 14.3 Polymers Used in Nanogel Development
  • 14.4 Manufacturing of Hydrogel Nanoparticles for Pharmaceutical Applications
  • 14.4.1 Methods to Obtain Nanogels
  • 14.4.1.1 Nanogels developed by physical methods
  • 14.4.1.2 Nanogels developed by chemical methods
  • 14.4.2 Physicochemical Properties of Drugs Incorporated in Hydrogel Nanoparticles
  • 14.4.3 Strategies for Drug Loading in Nanogels
  • 14.5 Characterization of Nanogels
  • 14.6 Drug Release From Nanogels
  • 14.6.1 Physically Controlled Drug Release
  • 14.6.2 Chemically Controlled Drug Release
  • 14.7 Optimization of Nanogels for Pharmacotherapeutic Applications
  • 14.7.1 Modifying the Geometry of the Nanoparticles
  • 14.7.2 Modifications on the Surface of the Nanoparticles
  • 14.8 Applications of Nanogels in Therapeutics
  • 14.8.1 Low-Weight Molecule Therapy
  • 14.8.2 Macromolecule Therapy
  • 14.8.3 Scaffolds
  • 14.8.4 Nanolipogels
  • 14.9 Conclusions and Future Perspectives
  • References
  • 15 Technologies that generate and modify virus-like particles for medical diagnostic and therapy purposes
  • 15.1 Introduction
  • 15.2 Structure and Function of the Capsid of Simian Virus 40
  • 15.3 Formation of Virus-Like Particles From the Simian Virus 40 Capsid Protein VP1
  • 15.4 Formation of Virus-Like Particle Via Self-Reassembly Activity
  • 15.5 Delivery of DNA into Cells by Virus-Like Particles Produced by DNA-Mediated Capsid Reassembly
  • 15.6 Encapsulation of Bioactive Foreign Proteins into Virus-Like Particles and Their Delivery into Cells
  • 15.7 Genetic or Chemical Modification of the Surface of Virus-Like Particles
  • 15.8 VP1 Pentamer Coating of Artificial Beads
  • 15.9 Use of Virus-Like Particle-Encapsulated Magnetite as an Magnetic Resonance Imaging Contrast Agent
  • 15.10 Construction of Vaccines by Using Virus-Like Particles
  • 15.11 Future Applications of Virus-Like Particle in Vaccine Therapy
  • 15.12 Conclusions
  • Acknowledgments
  • References
  • 16 Layer-by-Layer coated drug-core nanoparticles as versatile delivery platforms
  • 16.1 Introduction
  • 16.2 Drug Candidates for LbL Nanoencapsulation
  • 16.3 Preparation of Drug Nanocore Templates
  • 16.3.1 Top-Down Approaches
  • 16.3.1.1 Sonication-assisted disintegration
  • 16.3.1.2 Wet media milling
  • 16.3.2 Bottom-Up Approaches
  • 16.3.2.1 Nanoprecipitation from organic solvents
  • 16.3.2.2 Nanoprecipitation through pH change
  • 16.3.2.3 Solvent evaporation/emulsification
  • 16.3.2.4 Spray drying
  • 16.3.3 Comparison Between Top-Down and Bottom-Up Approaches
  • 16.4 Layer-by-Layer Coating Materials
  • 16.4.1 Polyelectrolytes
  • 16.4.2 Advanced Functional Coatings
  • 16.4.3 Outermost Layer Functionalization
  • 16.5 Layer-by-Layer Coating Procedure
  • 16.5.1 Intermediate Washings
  • 16.5.2 Washless Procedures
  • 16.6 Controlled Drug Release
  • 16.6.1 Natural Permeability of the LbL Shells
  • 16.6.1.1 Number of layers
  • 16.6.1.2 Deposition conditions
  • 16.6.2 Stimuli-Responsive Permeability of the LbL Shells
  • 16.6.2.1 pH
  • 16.6.2.2 Temperature
  • 16.7 Stability Enhancement
  • 16.7.1 Chemical Stability
  • 16.7.2 Colloidal Stability
  • 16.8 In Vitro Studies
  • 16.9 In Vivo Studies
  • 16.10 Conclusions and Future Perspectives
  • Acknowledgements
  • Abbreviations
  • References
  • 17 Effect of a-dextrin nanoparticles on the structure of iodine complexes with polypeptides and alkali metal halogenides, a...
  • 17.1 Introduction
  • 17.2 Molecular Iodine Complexes With Bioorganic Ligand and Lithium Halogenides and Their Mechanism Anti-Human Immunodeficie...
  • 17.3 The Structure of Complex Iodine Compounds in Aqueous Solutions Containing Alkali Metal Halogenides and Amino Acid
  • 17.4 The Effect of the Amphoteric Properties of Amino Acids in the Zwitterionic Form on Iodine-Triiodide Equilibrium in Aqu...
  • 17.5 UV Spectroscopy Research of Interaction LiCl(I)-I2-a-Dextrin-Peptide With Nucleotide Triplet AGA
  • 17.6 Inhibition of Human Immunodeficiency Virus-1 Integrase Active Catalytic Center by Molecular Iodine Complexes With Bioo...
  • 17.7 The Effects of Anticancer Activity of Drug-Containing Complexes of Molecular Iodine With a-Dextrins, Polypeptides, and...
  • 17.8 Conclusion
  • Acknowledgment
  • References
  • 18 Nanocarriers for the delivery of temozolomide in the treatment of glioblastoma: A review
  • 18.1 Introduction
  • 18.2 Glioblastoma
  • 18.3 Current Therapies for Glioblastoma and Their Challenges
  • 18.4 Temozolomide as Therapeutic Agent
  • 18.4.1 Pharmacological Activity of Temozolomide and Metabolites
  • 18.4.2 Challenge and Limitation of Temozolomide
  • 18.5 Nanosystems for Brain Drug Delivery
  • 18.6 Nanosystems for the Delivery of Temozolomide
  • 18.6.1 Polymeric Nanocarriers
  • 18.6.2 Lipid-Based Nanocarriers
  • 18.6.3 Other Nanocarriers
  • 18.7 Conclusion
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

214,20 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen