Modern Synthesis Processes and Reactivity of Fluorinated Compounds

Progress in Fluorine Science
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 4. November 2016
  • |
  • 760 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-803790-4 (ISBN)
 

Modern Synthesis Processes and Reactivity of Fluorinated Compounds focuses on the exceptional character of fluorine and fluorinated compounds. This comprehensive work explores examples taken from all classes of fluorine chemistry and illustrates the extreme reactivity of fluorinating media and the peculiar synthesis routes to fluorinated materials.

The book provides advanced and updated information on the latest synthesis routes to fluorocompounds and the involved reaction mechanisms. Special attention is given to the unique reactivity of fluorine and fluorinated media, along with the correlation of those properties to valuable applications of fluorinated compounds.

  • Contains quality content edited, and contributed, by leading scholars in the field
  • Presents applied guidance on the preparation of original fluorinated compounds, potentially transferable from the lab scale to industrial applications
  • Provides practical synthesis information for a wide audience interested in fluorine compounds in many branches of chemistry, materials science, and physics
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 36,11 MB
978-0-12-803790-4 (9780128037904)
0128037903 (0128037903)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Modern Synthesis Processes and Reactivity of Fluorinated Compounds
  • Progress in Fluorine Science Series
  • Modern Synthesis Processes and Reactivity of Fluorinated Compounds: Progress in Fluorine Science Series
  • Copyright
  • Contents
  • List of Contributors
  • Foreword
  • 1 - The Cosmic Origin of Fluorine: An Astronomer's View on Fluorine Synthesis
  • 1. The Cosmic Origin of the Elements
  • 2. The Cosmic Origin of Fluorine
  • 2.1 Theoretical Ideas
  • 2.2 Observations
  • 2.3 What the Future Holds
  • References
  • 2 - The Fluorine Atom in Health Care and Agrochemical Applications: A Contribution to Life Science
  • 1. Introduction
  • 1.1 The History of Fluorine in Pharmaceutical Applications
  • 1.2 The History of Fluorine in Agrochemical Applications
  • 2. Methods to Introduce Fluorine Into Organic Molecules
  • 2.1 Fluorinating Agents
  • 2.2 Use of Anhydrous HF
  • 2.3 Indirect Fluorination: Use of a Building Block Containing a Fluorinated Group
  • 3. Use of Trifluoromethyl Group in Pharmaceuticals and Agrochemistry
  • 3.1 Synthesis of Trifluoroacetyl Chloride and Trifluoroacetic Acid
  • 3.2 Some Active Agrochemical Ingredients Based on Aliphatic Trifluoromethylated Building Blocks
  • 3.3 Some Active Pharmaceutical Ingredients Based on Aliphatic Trifluoromethylated Building Blocks
  • 4. Use of Difluoromethyl Group in Pharmaceuticals and Agrochemistry
  • 4.1 Synthesis Strategy to Obtain CF2 Groups in Active Ingredients
  • 4.2 Examples of Active Ingredients Containing the CF2 Group
  • 4.3 Use of Difluoromethanesulfonyl Chloride
  • References
  • 3 - Industrial Syntheses of Hydrohaloolefins and Related Products
  • 1. Introduction
  • 2. Hydrofluoroolefins
  • 2.1 CHFCF2, 1,1,2-Trifluoroethylene or HFO-1123
  • 2.2 E,Z-CF3CHHF, 1,3,3,3-Tetrafluoropropene or HFO-1234ze
  • 2.3 CF3CFCH2, 2,3,3,3-Tetrafluoro-1-propene or HFO-1234yf
  • 2.3.1 Hexafluoropropene Route
  • 2.3.2 Tetrafluoroethylene (CF2CF2) Routes
  • 2.3.3 Tetrafluoroethylene-Chloroform Route
  • 2.3.4 1230xa (CCl2CClCH2Cl) Route
  • 2.3.5 240db (CCl3CClHCH2Cl) Route
  • 2.3.6 1243zf (CF3CHCH2) Route
  • 2.3.7 114a (CF2ClCF2Cl) and Formaldehyde Route
  • 2.3.8 Thermal Pyrolysis Processes
  • 2.4 CF3CFCHF, 1,2,3,3,3-Pentafluoro-1-propene or HFO-1225ye
  • 2.4.1 Hexafluoropropene Route
  • 2.4.2 Tetrafluoroethylene Routes
  • 2.4.3 Tetrafluoroethylene-CFC-12 (CCl2F2) Route
  • 2.5 CF3CHCH2, 3,3,3-Trifluoropropene or HFO-1243zf
  • 2.6 Z-CF3CHCHCF3, 1,1,1,4,4,4-Hexafluoro-2-butene, Z-1336mzz
  • 2.7 E-CF3CHCHCF3, (E)-1,1,1,4,4,4-Hexafluorobut-2-ene, E-1336mzz
  • 3. Other Hydrofluoroolefins
  • 4. Hydrochlorofluoroolefins
  • 4.1 E-CF3CHCHCl, E-3,3,3-Trifluoro-1-chloropropene, E-1233zd
  • 4.2 Z-CF3CHCHCl, E-3,3,3-Trifluoro-1-chloropropene, E-1233zd
  • 4.3 CF3CClCH2, 3,3,3-Trifluoro-2-chloro-1-propene, HFCO-1233xf
  • 4.3.1 1230xa (CCl2CClCH2Cl) Route
  • 4.3.2 2,3,3,3-Tetrachloropropene (CCl3CClCH2) 1230xf Route
  • 4.3.3 240db 1,1,1,2,3-Pentachloropropane Route
  • 4.3.4 3,3,3-Trifluoropropene (CF3CHCH2) 1243zf Route
  • 4.4 CF3CFCl2, 2,3,3,3-Tetrachloro-1,1-dichloro-1-propene, HCFO-1214ya
  • 4.4.1 TFE-HCFC-21 (CHCl2F) Route
  • 4.4.2 Other Synthetic Routes to 1214ya
  • 5. Conclusion
  • References
  • 4 - Electrochemical Fluorination: A Powerful Tool for the Preparation of Organofluorine Compounds
  • 1. Introduction and Historical Overview
  • 2. Technical Aspects of the Electrochemical Fluorination (Simons Process)
  • 2.1 Cell Construction and General Requirements for the Electrochemical Fluorination Process
  • 2.2 Requirements for Starting Materials for the Electrochemical Fluorination (Simons) Process
  • 2.3 Practical Recommendation for the Fluorination of Organic Compounds by the Electrochemical Fluorination Process
  • 3. Mechanism of Electrochemical Fluorination (Simons Process)
  • 4. Carbon Chain Isomerization During Electrochemical Fluorination (Simons Process)
  • 5. Electrochemical Fluorination of the Elementorganic Compounds
  • 5.1 Electrochemical Fluorination of the Compounds With CS Bond and Follow-Up Chemistry
  • 5.2 Electrochemical Fluorination of the Compounds with SN Bond and Follow-Up Chemistry
  • 5.3 Electrochemical Fluorination of the Compounds With CP Bond and Follow-Up Chemistry
  • Acknowledgments
  • References
  • 5 - Once Upon a Time Was the Langlois' Reagent: a "Sleeping Beauty"
  • 1. Introduction
  • 2. Origin of the Trifluoromethanesulfinate Salts and Their First Uses
  • 3. Rebirth of the "Langlois' Reagent"
  • 4. Conclusions
  • Acknowledgments
  • References
  • 6 - Toward CF3S Group: From Trifluoromethylation of Sulfides to Direct Trifluoromethylthiolation
  • 1. Introduction
  • 2. Indirect Methods
  • 2.1 Preparation Involving Halogen Exchange Reaction
  • 2.2 Trifluoromethylation of Sulfur Compounds
  • 2.2.1 Trifluoromethylation of Thiols or Disulfides Involving Radical or SET Mechanisms
  • 2.2.1.1 Trifluoroiodomethane as Trifluoromethylating Reagent
  • 2.2.1.2 Bromotrifluoromethane as Trifluoromethylating Reagent
  • 2.2.1.3 Miscellaneous Trifluoromethylating Reagent
  • 2.2.2 Nucleophilic Trifluoromethylation
  • 2.2.2.1 Bromotrifluoromethane and Trifluoroiodomethane as Trifluoromethylating Reagents
  • 2.2.2.2 Trifluoromethyltrimethylsilane (Ruppert-Prakash Reagent)
  • 2.2.2.3 Fluoroform and Fluoral Hemiaminals
  • 2.2.2.4 Trifluoromethanesulfinamides and Trifluoromethylsulfones
  • 2.2.2.5 Miscellaneous Reagents
  • 2.2.3 Electrophilic Trifluoromethylation
  • 2.2.3.1 Aryl Trifluoromethyl Sulfonium Salts (Umemoto's Reagents)
  • 2.2.3.2 Hypervalent Trifluoromethyl-Iodine(III) Reagents (Togni's Reagents)
  • 3. Direct Preparation: Trifluoromethylthiolation
  • 3.1 Nucleophilic Trifluoromethylthiolation
  • 3.1.1 Trifluoromethylthiosilver(I)
  • 3.1.2 Trifluoromethylthiocopper(I)
  • 3.1.3 Ammonium or Cesium Trifluoromethylthiolate
  • 3.1.4 Difluorothiophosgene
  • 3.1.5 CF3- Anion/Elemental Sulfur
  • 3.1.6 Bis(trifluoromethyl)disulfide and O-Octadecyl-S-trifluorothiolcarbonate
  • 3.1.7 From an Electrophilic Reagent: Umpolung Reactivity of Trifluoromethanesulfenamides
  • 3.2 Electrophilic Trifluoromethylthiolation
  • 3.2.1 Trifluoromethanesulfenyl Chloride and bis-Trifluoromethyl Disulfide
  • 3.2.2 Trifluoromethanesulfenamides (Billard's Reagents)
  • 3.2.3 N-Trifluoromethylthiophtalimide (Munavalli's Reagent) and N-Trifluoromethylsuccinimide
  • 3.2.4 Trifluoromethylsulfenates (Shen's Reagent)
  • 3.2.5 N-Trifluoromethylthiosaccharin (Shen's Reagent)
  • 3.2.6 Trifluoromethanesulfonyl Hypervalent Iodonium Ylide (Shibata's Reagent)
  • 3.2.7 From CF3SAg
  • 3.3 Radical Trifluoromethylthiolation
  • 3.3.1 Historical Reagents: Trifluoromethanethiol and Trifluoromethanesulfenyl Chloride
  • 3.3.2 Trifluoromethylthiosilver(I)
  • 3.3.3 Electrophilic Reagents in Radical Pathways
  • 4. Conclusions
  • References
  • 7 - Nucleophilic Di- and Trifluoromethylation of CO and CN Bonds
  • 1. Introduction
  • 2. Trifluoromethylation Reactions
  • 2.1 Silicon Reagents
  • 2.2 Derivatives of Trifluoroacetic Acid and Trifluoroacetaldehyde
  • 2.3 Miscellaneous Reagents
  • 3. Difluoromethylation Reactions
  • 3.1 Silicon Reagents
  • 3.2 Miscellaneous Reagents
  • 4. Conclusion
  • Acknowledgments
  • References
  • 8 - Oxidative Trifluoromethylation and Trifluoromethylthiolation
  • 1. Introduction
  • 2. Oxidative Trifluoromethylation
  • 2.1 Oxidative Trifluoromethylation for the Formation of C(sp)CF3 Bond
  • 2.2 Oxidative Trifluoromethylation for the Formation of C(sp2)CF3 Bond
  • 2.3 Oxidative Trifluoromethylation for the Formation of C(sp3)CF3 Bond
  • 2.4 Oxidative Trifluoromethylation for the Formation of X(P, O, N)CF3 Bond
  • 3. Oxidative Trifluoromethylthiolation
  • 4. Other Oxidative Fluoroalkylations
  • 5. Conclusion
  • References
  • 9 - Catalytic Enantioselective Fluorination
  • 1. Introduction
  • 2. Electrophilic Fluorination Methods
  • 2.1 Fluorination of Metal Enolates
  • 2.2 Tertiary Amine Catalysis
  • 2.3 Enamine Catalysis
  • 2.3.1 Linear Aldehydes
  • 2.3.2 Branched Aldehydes
  • 2.3.3 Ketones
  • 2.3.4 Other Substrates
  • 2.4 Miscellaneous Organocatalysis Catalysts
  • 2.5 Chiral Anion Phase Transfer Catalysis
  • 2.6 Metal-Catalyzed Fluorinations Not Involving Enolates
  • 3. Nucleophilic Fluorination
  • 3.1 Ring Opening of Strained Heterocycles
  • 3.2 Metal-Catalyzed Allylic Substitution
  • 4. Conclusions and Outlook
  • References
  • 10 - Development of Electrophilic Trifluoromethylating Reagents
  • 1. Introduction
  • 2. Historical Background
  • 3. Electrophilic Trifluoromethylating Reagents
  • 3.1 Sulfonium, Selenonium, and Telluronium Salts
  • 3.2 Oxonium Salts
  • 3.3 Iodine(III) Compounds
  • 4. Conclusion85
  • References
  • 11 - New Nucleophilic Fluoroalkylations
  • 1. Introduction
  • 2. Nucleophilic Trifluoroalkylation Reactions
  • 2.1 Nucleophilic Metal-Free Trifluoromethylation Reactions
  • 2.1.1 (Trifluoromethyl)Trimethylsilane as a Nucleophilic Trifluoromethyl Source
  • 2.1.2 CF3H as a Trifluoromethyl Source
  • 2.1.3 Sulfur-Derived Trifluoromethylating Reagents
  • 2.1.4 Trifluoromethylations Using Phosphonate-, Hexafluoroacetone-, Trifluoroacetaldehyde, and Zinc-Based Reagents
  • 2.2 Metal-Assisted Nucleophilic Trifluoromethylation Reactions
  • 2.2.1 Copper-Mediated Trifluoromethylations
  • 2.2.2 Palladium-Catalyzed Trifluoromethylations
  • 2.2.3 Silver-Mediated Trifluoromethylations
  • 2.3 Other Perfluoroalkylation Reactions
  • 3. Difluoroalkylation Reactions
  • 3.1 Nucleophilic Metal-Free Difluoromethylation and Difluoromethylenation Reactions
  • 3.2 Transition Metal-Assisted Nucleophilic Difluoromethylation Reactions
  • 3.3 Difluoroolefination Reaction
  • 4. Nucleophilic Monofluoroalkylation Reactions
  • 4.1 Nucleophilic Metal-Free Assisted Monofluoromethylation and Monofluoromethylenation Reactions
  • 4.2 Transition Metal-Mediated Monofluoromethylation and Monofluoromethylenation Reactions
  • 4.3 Monofluoroolefination Reaction
  • References
  • 12 - Continuous Flow Selective Direct Fluorination Using Fluorine Gas
  • 1. Introduction
  • 2. Continuous Flow Processes Using Fluorine Gas
  • 2.1 Durham Continuous Flow Direct Fluorination Equipment
  • 2.1.1 Single-Channel Flow Reactors for Direct Fluorination
  • 2.1.2 Multi-Channel Flow Reactors for Direct Fluorination
  • 3. Selective Direct Fluorination by Continuous Flow Processes
  • 3.1 Fluorination of Aromatic Systems
  • 3.2 Fluorination of 1,3-Dicarbonyl Systems
  • 3.3 Fluorination of Aniline Derivatives
  • 4. Conclusions
  • References
  • 13 - Synthesis of Fluorinated Nitrogen-Containing Compounds Through Superelectrophilic Activation in Superacid HF/SbF5*
  • 1. Introduction
  • 1.1 HF/SbF5 Superacid Solutions
  • 1.2 Superelectrophilic Activation in Superacid
  • 1.3 Fluorinated Nitrogen-Containing Compounds: A Superfamily for Medicinal Chemistry SAR Studies
  • 2. Hydrofluorination of CC Double Bond in Superacid HF/SbF5
  • 2.1 Hydrofluorination of Unsaturated Amines
  • 2.2 Hydrofluorination of Unsaturated Chlorinated Amines
  • 2.3 Application to a Difluorinated Anticancer Agent Synthesis
  • 2.4 Anti-Markovnikov Hydrofluorination of Unsaturated Amine
  • 3. Hydrofluorination of CC Triple Bond in Superacid HF/SbF5
  • 3.1 Hydrofluorination of Propargylic Amines
  • 3.2 Hydrofluorination of Ynamides
  • 3.2.1 Synthesis of Fluoroenamides
  • 3.2.2 Fluoroenamides: Ureido Derivative Isosters?
  • 3.2.3 Extension to Cascade Reaction
  • 4. Cyclization and Cyclization/Fluorination in Superacid HF/SbF5
  • 4.1 Selective Hydrofluorination or Cyclization of N-Allylic Derivatives in HF/SbF5
  • 4.2 Cyclization/Fluorination of N-Allylic Derivatives in HF/SbF5
  • 5. Halofluorination of Unsaturated Nitrogen-Containing Substrates in Superacid HF/SbF5
  • 6. Exploitation of Superacid-Catalyzed Hydrofluorination of Unsaturated Amines in Superacid HF/SbF5 for Bioorganic Studies
  • 7. Conclusion
  • References
  • 14 - Visible Light-Induced (Per)fluoroalkylation by Photoredox Catalysis
  • 1. Introduction
  • 2. (Per)fluoroalkylation Reactions Using Photoredox-Induced Monofunctionalization
  • 2.1 (Per)fluoroalkylation of Enol and Enamine Derivatives
  • 2.2 (Per)fluoroalkylation of Arenes and Heteroarenes
  • 2.3 (Per)fluoroalkylation of Alkenes and Alkynes
  • 3. (Per)fluoroalkylation Using Photoredox-Induced Difunctionalization of Unsaturated Systems
  • 3.1 Oxy(per)fluoroalkylation of Alkenes and Alkynes
  • 3.2 Amino- and Azido(per)fluoroalkylation of Alkenes
  • 3.3 Carbo(per)fluoroalkylation Reactions
  • 3.3.1 Carbo(per)fluoroalkylation of Alkenes and Alkynes
  • 3.3.2 Carbo(per)fluoroalkylation of Isocyanides
  • 3.4 Halo(per)fluoroalkylation of Alkenes and Alkynes
  • 3.5 Trifluoromethylchlorosulfonylation of Alkenes
  • 3.6 Hydro(per)fluoroalkylation of Alkenes and Alkynes
  • 4. Conclusion
  • References
  • 15 - Synthesis of Side Chain Fluorinated Amino Acids and Their Effects on the Properties of Peptides and Proteins
  • 1. Introduction
  • 2. Synthesis of Fluorinated Aliphatic a-Amino Acids
  • 2.1 Synthesis of Fluorinated Derivatives of Aminobutyric Acid-MfeGly, DfeGly, TfeGly, and DfpGly
  • 2.2 Synthesis of Fluorinated Derivatives of Leucine, Isoleucine, and Valine
  • 3. Fluorinated Amino Acids in Peptides
  • 3.1 Hydrophobicity
  • 3.2 Helix Propensity
  • 3.3 Fluorinated Amino Acids in Helical Model Systems
  • 3.4 Fluorinated Amino Acids in Amyloid Formation
  • 3.5 Proteolytic Stability of Fluorinated Peptides
  • 3.6 Site-Specific Incorporation of Fluorinated Amino Acids Into Basic Pancreatic Trypsin Inhibitor
  • 4. Summary and Prospects
  • Acknowledgments
  • References
  • 16 - Ionic Liquids and Polymers for Battery and Fuel Cells
  • 1. Introduction
  • 2. Fluorinated Compounds in Lithium-Ion Battery
  • 2.1 Fluorinated Solvents for Liquid Electrolyte
  • 2.2 Fluorinated Ionic Liquid for Liquid Electrolytes
  • 2.2.1 Electrolyte Properties
  • 2.2.2 Ionic Liquid as Lithium-Ion Battery Electrolyte
  • 2.3 Polymeric Ionic Liquid
  • 2.4 Fluorinated Polymer as Separator
  • 2.4.1 Blend Polymers
  • 2.4.2 Composite Membranes
  • 2.4.3 Multilayer Structure
  • 3. Aromatic Ionomers Bearing Perfluorosulfonic Acid Side Chains
  • 3.1 Ionomer Synthesis
  • 3.1.1 Postfunctionalization of an Aromatic Polymer
  • 3.1.2 Postfunctionalization of a Halogenated Aromatic Polymer
  • 3.1.2.1 Bottom-Up Synthesis
  • 3.2 Membrane Manufacturing
  • 3.2.1 Morphology
  • 3.3 Stability
  • 3.3.1 Thermal Stability
  • 3.3.2 Thermal Transitions
  • 3.3.3 Mechanical Properties
  • 3.3.4 Oxidative Stability
  • 3.4 Conductivity and Fuel Cell Tests
  • References
  • 17 - Strategic Incorporation of Fluorine for Drug Discovery and Development
  • 1. Introduction
  • 2. Case Study 1: Incorporation of Fluorine Increased the Binding Affinity of a Drug to Its Protein Target
  • 2.1 Anacetrapib: a Drug for the Treatment of Hypercholesterolemia
  • 2.1.1 Significance of the Introduction of a 3,5-Di(trifluoromethyl)phenyl Group12
  • 2.1.2 Synthesis of Anacetrapib14
  • 2.2 Idalopirdine: a Drug for the Treatment of Alzheimer Disease
  • 2.2.1 Significance of Fluorine Introduction19
  • 2.2.2 Synthesis of Idalopirdin20
  • 2.3 Rociletinib: a Drug for the Treatment of Non-Small Cell Lung Cancer
  • 2.3.1 Significance of Fluorine Introduction22
  • 2.3.2 Synthesis of Rociletinib22
  • 3. Case Study 2: Incorporation of Fluorine Increased Potency In Vitro
  • 3.1 Ledipasvir: a Drug for the Treatment of Hepatitis C Virus Genotype 1 Infection
  • 3.1.1 Significance of Fluorine Incorporation27
  • 3.1.2 Synthesis of Ledipasvir27
  • 4. Case Study 3: Incorporation of Fluorine Increased Both In Vitro and In Vivo Potency
  • 4.1 Canagliflozin: a Drug for the Treatment of Diabetes
  • 4.1.1 Significance of the Introduction of a 4-Fluorophenyl Group43
  • 4.1.2 Synthesis of Canagliflozin43
  • 4.2 Ranirestat: a Drug for the Treatment of Diabetic Neuropathy
  • 4.2.1 Significance of the Introduction of a 4-Bromo-2-fluorobenzyl Group56
  • 4.2.2 Synthesis of Ranirestat56-58
  • 4.2.2.1 First Synthesis of Ranirestat (Dainippon Synthesis)56
  • 4.2.2.2 Second and Enantioselective Synthesis of Ranirestat (Shibasaki Synthesis)57
  • 4.2.2.3 Third and Enantioselective Synthesis of Ranirestat (Trost Synthesis)58
  • 5. Case Study 4: Use of a 18F-Positron Emission Tomographic Tracer Replaced an Expensive 11C-Positron Emission Tomographic Tra ...
  • 5.1 18F-Florbetaben: an Amyloid-ß Positron Emission Tomographic Tracer for the Diagnosis of Alzheimer Disease
  • 5.2 Automated Synthesis of 18F-Florbetaben
  • 6. Conclusions
  • References
  • 18 - Telomerization Reaction of 3,3,3-Trifluoropropene
  • 1. Introduction
  • 2. Telomerization of 3,3,3-Trifluoropropene
  • 2.1 Homotelomers of 3,3,3-Trifluoropropene
  • 2.1.1 Telomerization of 3,3,3-Trifluoropropene With Perfluorinated Telogens
  • 2.1.2 Telomerization of 3,3,3-Trifluoropropene With Diethyl Hydrogenophosphonate
  • 2.1.3 Synthesis of Fluorinated Telechelic Diols Based on 3,3,3-Trifluropropene Telomers
  • 2.2 Cotelomers of 3,3,3-Trifluoropropene
  • 2.2.1 Stepwise and Direct Radical Cotelomerization of 3,3,3-Trifluoropropene With Vinylidene Fluoride in the Presence of 1-Iodoperfluoroalkanes
  • 2.2.1.1 Stepwise Cotelomerization of 3,3,3-Trifluoropropene and Vinylidene Fluoride
  • 2.2.2 Radical Cotelomerization of 3,3,3-Trifluoropropene and 1,1,3,3,3-Pentafluoropropylene
  • 3. Synthesis of Surfactants Based on 3,3,3-Trifluoropropene
  • 3.1 Introduction and Current Issues on Fluorinated Surfactants
  • 3.2 Chemical Modifications of 3,3,3-Trifluoropropene Telomers
  • 3.3 Controlled Radical Copolymerization (or Reversible Deactivation Radical Copolymerization) of Vinylidene Fluoride With 3,3,3 ...
  • 3.3.1 Synthesis of Diblock Cooligomers by Copolymerization of 3,3,3-Trifluoropropene and Vinylidene Fluoride Copolymer Followed b ...
  • 3.3.2 Synthesis of Diblock by First the Preparation of Poly(Vinyl Acetate) Homopolymer via MADIX Followed by a Chain Extension wi ...
  • 3.3.3 Evaluation of the Surfactant Properties
  • 4. Conclusions
  • Acknowledgments
  • References
  • Graphical Abstract
  • 19 - High Oxidation States in Transition Metal Fluorides
  • 1. Introduction
  • 2. 3d Elements
  • 2.1 Scandium
  • 2.2 Titanium
  • 2.3 Vanadium
  • 2.4 Chromium
  • 2.5 Manganese
  • 2.6 Iron
  • 2.7 Cobalt
  • 2.8 Nickel
  • 2.9 Copper
  • 2.10 Zinc
  • 3. 4d Metals
  • 3.1 Yttrium
  • 3.2 Zirconium
  • 3.3 Niobium
  • 3.4 Molybdenum
  • 3.5 Technetium
  • 3.6 Ruthenium
  • 3.7 Rhodium
  • 3.8 Palladium
  • 3.9 Silver
  • 3.10 Cadmium
  • 4. 5d Elements
  • 4.1 Lanthanum
  • 4.2 Hafnium
  • 4.3 Tantalum
  • 4.4 Tungsten
  • 4.5 Rhenium
  • 4.6 Osmium
  • 4.7 Iridium
  • 4.8 Platinum
  • 4.9 Gold
  • 4.10 Mercury
  • 5. Outlook
  • Acknowledgments
  • References
  • 20 - Photochemical Syntheses of Fluorides in Liquid Anhydrous Hydrogen Fluoride
  • 1. Introduction
  • 2. Requirements of Photochemical Syntheses With Elemental F2 in Anhydrous HF
  • 2.1 Caution
  • 2.2 Reaction Vessels and Ultraviolet Lamps
  • 2.3 How to Perform Synthesis
  • 3. Reaction Mechanism
  • 4. Examples of F2 Fluorinations in Liquid Anhydrous HF at Ambient Temperature
  • 4.1 Fluorides of the Transition Metal Elements
  • 4.1.1 Titanium, Zirconium, and Hafnium
  • 4.1.2 Vanadium, Niobium, and Tantalum
  • 4.1.3 Chromium, Molybdenum, and Tungsten
  • 4.1.4 Manganese and Rhenium
  • 4.1.5 Iron, Ruthenium, and Osmium
  • 4.1.6 Cobalt, Rhodium, and Iridium
  • 4.1.7 Nickel, Palladium, and Platinum
  • 4.1.8 Copper, Silver, and Gold
  • 4.1.9 Zinc, Cadmium, and Mercury
  • 4.1.10 Scandium, Yttrium, Lanthanum to Lutetium
  • 4.2 Fluorides of the Main Group Elements
  • 4.2.1 Dioxygenyl Salts
  • 4.2.2 Xenon
  • 4.2.3 The Rest of the Main Group Elements
  • 5. Conclusions
  • Acknowledgments
  • References
  • 21 - Sol-Gel Synthesis of Metal Fluorides: Reactivity and Mechanisms
  • 1. Introduction
  • 2. The Principle Chemistry of the Fluorolytic Sol-Gel Synthesis
  • 2.1 The Chemical Pathway
  • 2.2 The Reaction Parameters
  • 2.2.1 Metal Precursors
  • 2.2.1.1 Metal Acetates
  • 2.2.1.2 Metal Alkoxides
  • 2.2.1.3 Magnesium Ethoxide
  • 2.2.2 Impact of Solvents
  • 2.2.3 Impact of Sol Concentration and Reaction Temperature
  • 3. Mechanistic Aspects of Fluorolytic Sol-Gel Synthesis as Seen by Nuclear Magnetic Resonance Methods
  • 3.1 Sol-Gel Synthesis of Nanoscaled Aluminum Fluoride
  • 3.2 Sol-Gel Synthesis of Nanoscaled Alkaline Earth Metal Fluorides MgF2, CaF2, and SrF2
  • 4. Applications
  • 4.1 Antireflective Coatings
  • 4.2 Up- and Downconversion Materials
  • 4.3 Ceramics
  • 4.4 Inorganic-Organic Nanocomposites
  • Acknowledgments
  • References
  • 22 - Solution-Based Synthesis of Nano-Sized TiO2 Anatase in Fluorinating Media
  • 1. Introduction
  • 2. General Interests of Fluorinating Media
  • 2.1 Phase Selectivity
  • 2.2 Surface Engineering
  • 2.3 Lattice Doping/Substitution
  • 3. Evidences for the Stabilization of Fluoride in Anatase Featuring Cationic Vacancies
  • 3.1 General Considerations on Hydrolysis and Fluorolysis Reactions
  • 3.2 Reactivity of Titanium Alkoxide Toward HF Under Solvothermal Conditions
  • 3.3 Structural/Compositional Features and New Substitution-Mediated Mechanism
  • 4. Conclusion
  • References
  • 23 - Ionic Liquid Materials Based on Fluoroanions
  • 1. Introduction
  • 2. Syntheses and Structures of Ionic Liquids Based on Fluorohydrogenate Anions
  • 3. Properties of Ionic Liquids Based on Fluorohydrogenate Anions
  • 4. Syntheses of Ionic Liquids Based on Fluorocomplex and Oxofluorocomplex Anions
  • 5. Structures and Properties of Ionic Liquids Based on Fluorocomplex Anions
  • 6. Conclusions
  • References
  • 24 - Reactivity of Surface Fluorinated TiO2 and TiAl Particles
  • 1. Surface Fluorination of TiO2 Particles
  • 1.1 Introduction
  • 1.2 Experimental Details
  • 1.3 Characterization of Fluorinated TiO2 Samples
  • 1.4 Dispersion Stability of Fluorinated TiO2 Samples
  • 1.5 Photocatalytic Activity of Fluorinated TiO2 Samples
  • 2. Surface Fluorination of TiAl Alloy Particles
  • 2.1 Introduction
  • 2.2 Experimental Details
  • 2.3 Characterization of Fluorinated TiAl Samples
  • 2.4 Oxidation Resistance of TiAl Samples
  • 3. Conclusions
  • References
  • 25 - Chemical and Electrochemical Stability of Copper in Molten KF-2HF
  • 1. Introduction
  • 2. Experimental Section
  • 2.1 Electrochemical Experiments
  • 2.2 Corrosion Rate Evaluation
  • 2.3 Physicochemical Characterization
  • 3. Results
  • 3.1 Oxidation, Reduction, and Precipitation of Copper Compounds in Molten Salt KF-2HF
  • 3.2 Behavior of Metallic Copper in Molten KF-2HF at Open Circuit Voltage
  • 3.3 Behavior of Copper Polarized at 6V in Molten KF-2HF
  • 3.4 Evolving Fluorine Influence During 6V Anodic Polarization of Copper in KF-2HF
  • 4. Conclusions
  • Acknowledgments
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

196,35 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok