Abbildung von: The Standard Model - Princeton University Press

The Standard Model

From Fundamental Symmetries to Experimental Tests
Princeton University Press
Erschienen am 26. September 2023
328 Seiten
E-Book
PDF mit Adobe-DRM
978-0-691-23911-8 (ISBN)
72,99 €inkl. 7% MwSt.
Systemvoraussetzungen
für PDF mit Adobe-DRM
E-Book Einzellizenz
Als Download verfügbar

An authoritative, hands-on introduction to the foundational theory and experimental tests of particle physics

The Standard Model is an elegant and extremely successful theory that formulates the laws of fundamental interactions among elementary particles. This incisive textbook introduces students to the physics of the Standard Model while providing an essential overview of modern particle physics, with a unique emphasis on symmetry principles as the starting point for constructing models. The Standard Model equips students with an in-depth understanding of this impressively predictive theory and an appreciation of its beauty, and prepares them to interpret future experimental results.

  • Describes symmetry principles of growing complexity, including Abelian symmetries and their application in QED, the theory of electromagnetic interactions, non-Abelian symmetries and their application in QCD, the theory of strong interactions, and spontaneously broken symmetries and their application in the theory of weak interactions
  • Derives the Lagrangian that implements these symmetry principles and extracts the phenomenology that follows from it, such as elementary particles and accidental symmetries
  • Explains how the Standard Model has been experimentally tested, emphasizing electroweak precision measurements, flavor-changing neutral current processes, neutrino oscillations, and cosmology
  • Demonstrates how to extend the model to address experimental and observational puzzles, such as neutrino masses, dark matter, and the baryon asymmetry of the universe
  • Features a wealth of problems drawing from the latest research
  • Ideal for a one-semester graduate course and an invaluable resource for practitioners
  • Online solutions manual (available only to instructors)
Sprache
Englisch
Verlagsort
Princeton
USA
Verlagsgruppe
Kind World Publishing
Editions-Typ
Schulbuch-Ausgabe
Produkt-Hinweis
Fixed format
Illustrationen
16 b/w illus.
ISBN-13
978-0-691-23911-8 (9780691239118)
Schlagworte
Schweitzer Klassifikation
DNB DDC Sachgruppen
Dewey Decimal Classfication (DDC)
BISAC Klassifikation
Yuval Grossman and Yossi Nir
  • Cover
  • Contents
  • Preface
  • 1. Lagrangians
  • 1.1 Introduction
  • 1.2 Examples of Simple Lagrangians
  • 1.2.1 Scalars
  • 1.2.2 Fermions
  • 1.2.3 Fermions and Scalars
  • 1.3 Symmetries
  • 1.4 Model Building
  • Appendix
  • 1.A Discrete Spacetime Symmetries: C, P, and T
  • 1.A.1 C and P
  • 1.A.2 CP Violation and Complex Couplings
  • Problems
  • 2. Abelian Symmetries
  • 2.1 Global Symmetries
  • 2.1.1 Global Discrete Symmetries
  • 2.1.2 Global Continuous Symmetries
  • 2.1.3 Charge
  • 2.1.4 Product Groups and Accidental Symmetries
  • 2.1.5 Symmetries and Fermion Masses
  • 2.2 Local Symmetries
  • 2.2.1 Introducing Local Symmetries
  • 2.2.2 Charge
  • 2.3 Summary
  • Problems
  • 3. QED
  • 3.1 QED with One Fermion
  • 3.1.1 Defining QED
  • 3.1.2 The Lagrangian
  • 3.1.3 The Spectrum
  • 3.1.4 The Interactions
  • 3.1.5 Parameter Counting
  • 3.2 QED with More Fermions
  • 3.2.1 Two Dirac Fermions
  • 3.2.2 Accidental Symmetries
  • 3.2.3 Even More Fields
  • 3.3 Experimental Tests of QED
  • Problems
  • 4. Non-Abelian Symmetries
  • 4.1 Introduction
  • 4.2 Global Symmetries
  • 4.2.1 Scalars and SO(N
  • 4.2.2 Vectorial Fermions and U(N)
  • 4.2.3 Chiral Fermions and U(N)×U(N)
  • 4.3 Local Symmetries
  • 4.4 Running Coupling Constants
  • 4.5 Summary
  • Problems
  • 5. QCD
  • 5.1 Defining QCD
  • 5.2 The Lagrangian
  • 5.3 The Spectrum
  • 5.4 The Interactions
  • 5.5 The Parameters
  • 5.6 Confinement
  • 5.7 Accidental Symmetries
  • 5.8 Combining QCD with QED
  • Problems
  • 6. Spontaneous Symmetry Breaking
  • 6.1 Introduction
  • 6.2 Global Discrete Symmetries: Z2
  • 6.3 Global Abelian Continuous Symmetries: U(1)
  • 6.4 Global Non-Abelian Continuous Symmetries: SO(3)
  • 6.5 Fermion Masses
  • 6.6 Local Symmetries: The Higgs Mechanism
  • 6.7 Summary
  • Problems
  • 7. The Leptonic Standard Model
  • 7.1 Defining the LSM
  • 7.2 The Lagrangian
  • 7.2.1 Lkin and the Gauge Symmetry
  • 7.2.2 L?
  • 7.2.3 LYuk
  • 7.2.4 Lf and SSB
  • 7.2.5 Summary
  • 7.3 The Spectrum
  • 7.3.1 Scalars: Back to Lf
  • 7.3.2 Vector Bosons: Back to Lkin(f)
  • 7.3.3 Fermions: Back to LYuk
  • 7.3.4 Summary
  • 7.4 The Interactions
  • 7.4.1 The Higgs Boson
  • 7.4.2 QED: Electromagnetic Interactions
  • 7.4.3 Neutral Current Weak Interactions
  • 7.4.4 Charged Current Weak Interactions
  • 7.4.5 The Fermi Constant
  • 7.4.6 Gauge Boson Self-interactions
  • 7.4.7 Summary
  • 7.5 Global Symmetries and Parameters
  • 7.5.1 Accidental Symmetries
  • 7.5.2 The Interaction Basis and the Mass Basis
  • 7.5.3 Parameter Counting
  • 7.5.4 The LSM Parameters
  • 7.6 Low-Energy Tests
  • 7.6.1 Charged Current Neutrino-Electron Scattering
  • 7.6.2 Neutral Current Neutrino-Electron Scattering
  • Problems
  • 8. The Standard Model
  • 8.1 Defining the Standard Model
  • 8.2 The Lagrangian
  • 8.2.1 Lkin and the Gauge Symmetry
  • 8.2.2 L?
  • 8.2.3 Lf and SSB
  • 8.2.4 LYuk
  • 8.2.5 Summary
  • 8.3 The Spectrum
  • 8.3.1 Bosons
  • 8.3.2 Fermions
  • 8.3.3 The CKM Matrix
  • 8.3.4 Summary
  • 8.4 The Interactions
  • 8.4.1 Electromagnetic (QED) and Strong (QCD) Interactions
  • 8.4.2 The Higgs Boson Interactions
  • 8.4.3 Neutral Current Weak Interactions
  • 8.4.4 Charged Current Weak Interactions
  • 8.4.5 Gauge Boson Self-interactions
  • 8.4.6 Summary
  • 8.5 Global Symmetries and Parameters
  • 8.5.1 Accidental Symmetries
  • 8.5.2 The Standard Model Parameters
  • 8.5.3 "A Standard Model" versus "the Standard Model"
  • 8.5.4 Discrete Symmetries: P, C, and CP
  • Appendix
  • 8.A Anomalies and Nonperturbative Effects
  • 8.A.1 The Strong CP Parameter
  • 8.A.2 Anomalies
  • Problems
  • 9. Flavor Physics
  • 9.1 Introduction
  • 9.2 The CKM Matrix
  • 9.2.1 The Standard Parameterization
  • 9.2.2 The Wolfenstein Parameterization
  • 9.2.3 CP Violation
  • 9.2.4 Unitarity Triangles
  • 9.3 Tree-Level Determination of the CKM Parameters
  • 9.4 No FCNC at Tree Level
  • 9.4.1 Photon- and Gluon-Mediated FCNC
  • 9.4.2 Z-Mediated FCNC
  • 9.4.3 Higgs-Mediated FCNC
  • Problems
  • 10. QCD at Low Energies
  • 10.1 Introduction
  • 10.2 Hadronic Properties
  • 10.2.1 General Properties
  • 10.2.2 The Quark Model
  • 10.2.3 Hadron Masses
  • 10.2.4 Hadron Lifetimes
  • 10.3 Combining QCD with Weak Interactions
  • 10.3.1 Factorization
  • 10.3.2 The Decay Constant
  • 10.3.3 Form Factors
  • 10.4 The Approximate Symmetries of QCD
  • 10.4.1 Isospin Symmetry
  • 10.4.2 Heavy Quark Symmetry
  • 10.5 Hadrons in High-Energy QCD
  • 10.5.1 Quark-Hadron Duality
  • 10.5.2 Jets
  • 10.5.3 Parton Distribution Functions
  • Appendix
  • 10.A Names and Quantum Numbers for Hadrons
  • 10.B Extracting |Vud|
  • 10.C Extracting |Vcb|
  • Problems
  • 11. Beyond the Standard Model
  • 11.1 Introduction
  • 11.2 Experimental and Observational Problems
  • 11.3 Theoretical Considerations
  • 11.4 The BSM Scale
  • 11.5 The SMEFT
  • 11.6 Examples of SMEFT Operators
  • 11.6.1 Baryon Number Violation
  • 11.6.2 Higgs Decays
  • Problems
  • 12. Electroweak Precision Measurements
  • 12.1 Introduction
  • 12.2 The Weak Mixing Angle
  • 12.2.1 The Weak Mixing Angle at One Loop
  • 12.2.2 The Weak Mixing Angle within the Standard Model
  • 12.3 Custodial Symmetry
  • 12.4 Probing BSM
  • 12.4.1 Nonrenormalizable Operators and the q2 Expansion
  • 12.4.2 The S, T, and U Parameters
  • 12.4.3 The Four-Generation Standard Model
  • Problems
  • 13. Flavor-Changing Neutral Currents
  • 13.1 Introduction
  • 13.2 CKM and GIM Suppression in FCNC Decays
  • 13.2.1 Examples: Kp?? and Bp??
  • 13.3 CKM and GIM Suppression in Neutral Meson Mixing
  • 13.3.1 Examples: ?mK, ?mB, and ?mBs
  • 13.3.2 CP Suppression
  • 13.3.3 Summary
  • 13.4 Testing the CKM Sector
  • 13.5 Probing BSM
  • 13.5.1 New Physics Contributions to B0 -B0 Mixing
  • 13.5.2 Probing the SMEFT
  • Appendix
  • 13.A Neutral Meson Mixing and Oscillation
  • 13.A.1 Introduction
  • 13.A.2 Flavor Mixing
  • 13.A.3 Flavor Oscillation
  • 13.A.4 Standard Model Calculations of the Mixing Amplitude
  • 13.B CP Violation
  • 13.B.1 Notations and Formalism
  • 13.B.2 CP Violation in Decay
  • 13.B.3 CP Violation in Mixing
  • 13.B.4 CP Violation in Interference of Decays with and without Mixing
  • 13.C Standard Model Calculations of CP Violation
  • 13.C.1 Extracting ? from BDK
  • 13.C.2 Extracting ß from BD+D-
  • 13.C.3 CP Violation from K Decays
  • Problems
  • 14. Neutrinos
  • 14.1 Introduction
  • 14.2 The ?SM
  • 14.2.1 Defining the ?SM and the Lagrangian
  • 14.2.2 The Neutrino Spectrum
  • 14.2.3 The Neutrino Interactions
  • 14.2.4 Global Symmetries and Parameters
  • 14.2.5 The PMNS Matrix
  • 14.2.6 Testing the ?SM
  • 14.2.7 The Scale ?
  • 14.3 The NSM: The Standard Model with Singlet Fermions
  • 14.3.1 Defining the NSM
  • 14.3.2 The NSM Lagrangian
  • 14.3.3 The NSM Spectrum
  • 14.3.4 The NSM Interactions
  • 14.3.5 The Low-Energy Limit of the NSM
  • 14.3.6 The Case of mN « v: Sterile Neutrinos
  • 14.4 Open Questions
  • Appendix
  • 14.A Neutrino Oscillations
  • 14.A.1 Neutrino Oscillations in a Vacuum
  • 14.A.2 The MSW Effect
  • 14.B Direct Probes of Neutrino Masses
  • 14.B.1 Kinematic Tests
  • 14.B.2 Neutrinoless Double-Beta (0?2ß) Decay
  • Problems
  • 15. Cosmological Tests
  • 15.1 The Interplay of Particle Physics and Cosmology
  • 15.2 Dark Matter
  • 15.2.1 The Observational Evidence
  • 15.2.2 Neutrinos Cannot Be the Dark Matter
  • 15.2.3 The ?SM
  • 15.3 Baryogenesis
  • 15.3.1 The Observational Evidence
  • 15.3.2 Sakharov Conditions
  • 15.3.3 Leptogenesis
  • 15.4 Open Questions
  • Appendix
  • 15.A Introduction to Cosmology
  • 15.A.1 The Dynamical Metric
  • 15.A.2 Thermodynamics in the Universe
  • 15.A.3 Observables
  • Problems
  • What's Next?
  • Appendix: Lie Groups
  • A.1 Groups
  • A.2 Representations
  • A.3 Lie Groups and Lie Algebras
  • A.4 Roots and Weights
  • A.5 SU(2)
  • A.6 SU(3)
  • A.7 Classification and Dynkin Diagrams
  • A.8 Naming Representations
  • A.9 Combining Representations
  • Problems
  • Bibliography
  • Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

  • Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).
  • Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions oder die App PocketBook (siehe E-Book Hilfe).
  • E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist.
Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten. 

Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer  E-Book Hilfe.