Progress in Heterocyclic Chemistry

 
 
Elsevier Science & Techn. (Verlag)
  • 1. Auflage
  • |
  • erschienen am 5. Januar 2021
  • |
  • 674 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-323-90153-6 (ISBN)
 
Progress in Heterocyclic Chemistry, Volume 32, the latest in this annual review series commissioned by the International Society of Heterocyclic Chemistry (ISHC), highlights the previous year's literature on heterocyclic chemistry, along with articles on new developing topics of particular interest to heterocyclic chemists. Chapters highlighted in volume 32 are written by leading researchers in their field, providing a systematic survey of important, original material reported in the literature of heterocyclic chemistry in 2019. As with previous volumes in the series, this release will help academic and industrial chemists and advanced students keep abreast of developments in heterocyclic chemistry.
  • Recognized as the premiere review of heterocyclic chemistry
  • Includes contributions from leading researchers in the field
  • Provides a systematic survey of the important 2019 heterocyclic chemistry literature
  • Presents articles on new and developing topics of interest to heterocyclic chemists
  • Englisch
  • San Diego
  • |
  • Großbritannien
  • 57,78 MB
978-0-323-90153-6 (9780323901536)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Progress in Heterocyclic Chemistry
  • EDITORIAL ADVISORY BOARD MEMBERS PROGRESS IN HETEROCYCLIC CHEMISTRY
  • Progress in Heterocyclic Chemistry
  • Copyright
  • Contents
  • List of contributors
  • Foreword
  • 1 - The stereospecific and enantiospecific synthesis of indole alkaloids which culminated in the ambidextrous Pictet-Spengl ...
  • 1.1 Introduction
  • 1.2 The sarpagine/macroline/ajmaline family of indole alkaloids
  • 1.3 Large-scale access to the tetracyclic core of sarpagine/macroline/ajmaline alkaloids
  • 1.4 Recent examples in the total synthesis of indole and oxindole alkaloids
  • 1.4.1 The total synthesis of dispegatrine by Edwankar et al.
  • 1.4.2 The total synthesis of ervincidine, as well as confirmation of the configuration of the hydroxyl function at C-6 by Rallapa ...
  • 1.4.3 The total synthesis of alstonisine- and chitosenine-type oxindole alkaloids by Fonseca et al.
  • 1.4.4 General strategy for the total synthesis of C-19 methyl-substituted sarpagine/Macroline/ajmaline alkaloids by Edwankar et al.
  • 1.5 Studies toward the improvement and extension of the general strategy to the C-19 methyl family of alkaloids
  • 1.5.1 Shorter access to the common bicyclo[3.3.1] tetracyclic system
  • 1.5.2 Unprecedented stereoselectivity in the asymmetric Pictet-Spengler reaction
  • 1.5.3 The ambidextrous Pictet-Spengler reaction
  • 1.5.4 Applications of the ambidextrous Pictet-Spengler reaction
  • 1.5.5 Improved access to the common pentacyclic intermediates via a cheaper copper-mediated cross-coupling process
  • 1.6 The total synthesis of a series of macroline-type indole alkaloids
  • 1.7 The total synthesis of the sarpagine alkaloids with a C-19(R)-methyl function
  • 1.8 Access to the unnatural enantiomers of alkaloids employing the ambidextrous P-S reaction protocol
  • 1.9 Conclusion
  • Acknowledgments
  • References
  • 2 - Epi-3,6-dithio-2,5-diketopiperazines (ETPs): an overview of synthetic approaches to the ETP core
  • 2.1 Introduction
  • 2.2 Monomeric ETPs
  • 2.2.1 Gliotoxin and dehydrogliotoxin
  • 2.2.2 Sporidesmin
  • 2.2.3 Luteoalbusin
  • 2.2.4 Aranotin
  • 2.2.5 Emethallicin
  • 2.2.6 Epicorazine
  • 2.2.7 Brocazine
  • 2.2.8 Hyalodendrin
  • 2.2.9 Scabrosin
  • 2.2.10 Sirodesmin
  • 2.2.11 Dithiosilvatin
  • 2.2.12 Emestrin
  • 2.2.13 Rostratin
  • 2.2.14 Epicoccin
  • 2.2.15 Glionitrin
  • 2.3 Dimeric ETPs
  • 2.3.1 Chaetocin
  • 2.3.2 Chaetomin
  • 2.3.3 Chetracin
  • 2.3.4 Leptosin
  • 2.3.5 Melinacidin
  • 2.3.6 Verticillin
  • 2.4 Synthetic approaches toward the ETP core and related natural products
  • 2.4.1 Trown's approach
  • 2.4.2 Svokos' approach
  • 2.4.3 Schmid's approach
  • 2.4.4 Hino's approach
  • 2.4.5 Kishi's approach
  • 2.4.5.1 Kishi's synthesis of hyalodendrin
  • 2.4.5.2 Kishi's synthesis of dehydrogliotoxin
  • 2.4.5.3 Kishi's synthesis of gliotoxin
  • 2.4.5.4 Kishi's synthesis of sporidesmin A
  • 2.4.5.5 Kishi's synthesis of sporidesmin B
  • 2.4.6 Ottenheym's approach
  • 2.4.7 Matsunari's approach
  • 2.4.8 Coffen's approach
  • 2.4.9 Rastetter and Williams' approach
  • 2.4.9.1 Rastetter and Williams' synthesis of hyalodendrin
  • 2.4.9.2 Rastetter and Williams' synthesis of aspirochlorine
  • 2.4.10 Olsen's approach
  • 2.4.11 Waring's approach
  • 2.4.12 Danishefsky's approach
  • 2.4.13 Hilton's approach
  • 2.4.13.1 Hilton's synthesis of (±)-hyalodendrin
  • 2.4.14 Bräse's approach
  • 2.4.15 Overman's approach
  • 2.4.15.1 Overman's synthesis of (+)-gliocladine C
  • 2.4.15.2 Overman's synthesis of (+)-leptosin D
  • 2.4.15.3 Overman's synthesis of (+)-T988 C
  • 2.4.15.4 Overman's synthesis of (+)-bionectin A
  • 2.4.16 Movassaghi's approach
  • 2.4.16.1 Movassaghi's synthesis of (+)-11,11-dideoxyverticillin A
  • 2.4.16.2 Movassaghi's synthesis of (+)-chaetocin A
  • 2.4.16.3 Movassaghi's synthesis of (+)-luteoalbusin A
  • 2.4.17 Iwasa's approach
  • 2.4.17.1 Iwasa's synthesis of chaetocin A
  • 2.4.18 Nicolaou's approach
  • 2.4.18.1 Nicolaou's synthesis of 8,8´-epi-ent-rostratin B
  • 2.4.18.2 Nicolaou's synthesis of gliotoxin
  • 2.4.18.3 Nicolaou's synthesis of emethallicin E
  • 2.4.19 Reisman's approach
  • 2.4.19.1 Reisman's synthesis of (-)-acetylaranotin
  • 2.4.20 Clive's approach
  • 2.4.21 Baudoin's approach
  • 2.4.21.1 Baudoin's synthesis of (-)-rostratin A
  • 2.4.22 Fyfe's approach
  • 2.4.22.1 Fyfe's synthesis of (±)-hyalodendrin
  • References
  • 3 - Three-membered ring systems
  • 3.1 Introduction
  • 3.2 Epoxides
  • 3.2.1 Preparation of epoxides
  • 3.2.2 Ring opening of epoxides
  • 3.2.2.1 Applications to three-membered ring synthesis
  • 3.2.2.2 Applications to five-membered ring synthesis
  • 3.2.2.3 Applications to six-membered ring synthesis
  • 3.2.2.4 Applications to bridged ring systems
  • 3.2.2.5 Regioselective ring opening and linear extensions
  • 3.3 Aziridines
  • 3.3.1 Preparation of aziridines
  • 3.3.2 Ring opening of aziridines
  • 3.3.2.1 Application to five-membered ring synthesis
  • 3.3.2.2 Applications to six-membered ring synthesis
  • 3.3.2.3 Applications to seven-membered ring synthesis
  • 3.3.2.4 Regioselective ring opening and linear extensions
  • 3.4 2H-azirines
  • References
  • 4 - Four-membered ring systems
  • 4.1 Introduction
  • 4.2 Azetidines, azetines, and related systems
  • 4.3 Monocyclic 2-azetidinones (ß-lactams)
  • 4.4 Fused ß-lactams and spirocyclic ß-lactams
  • 4.5 Oxetanes, dioxetanes, and 2-oxetanones (ß-lactones)
  • 4.6 Sulfur, silicon, and phosphorus heterocycles-miscellaneous
  • References
  • 5.1 - Five-membered ring systems: thiophenes and selenium/tellurium analogs and benzo analogs
  • 5.1.1 Introduction
  • 5.1.2 Thienyl and Benzo[b]thienyl groups as substituents
  • 5.1.3 Thiophene ring properties
  • 5.1.4 Thiophene ring substitution
  • 5.1.5 Thiophene ring synthesis
  • 5.1.6 Reactions at thiophene side-chains
  • 5.1.7 Thiophene oligomers
  • 5.1.8 Thiophene polymers
  • 5.1.9 Benzo[b]thiophenes-reactions
  • 5.1.10 Benzo[b]thiophenes-ring synthesis
  • 5.1.11 Selenophenes and tellurophenes-reactions
  • 5.1.12 Selenophenes and tellurophenes-ring synthesis
  • References
  • 5.2 - Five-membered ring systems: pyrroles and benzo analogs
  • 5.2.1 Introduction
  • 5.2.2 Synthesis of pyrroles
  • 5.2.2.1 Intramolecular approaches to pyrroles
  • 5.2.2.1.1 Intramolecular type a
  • 5.2.2.1.2 Intramolecular type b
  • 5.2.2.1.3 Intramolecular type c
  • 5.2.2.2 Intermolecular approaches to pyrroles
  • 5.2.2.2.1 Intermolecular type ab
  • 5.2.2.2.2 Intermolecular type ac
  • 5.2.2.2.3 Intermolecular type ad
  • 5.2.2.2.4 Intermolecular type ae
  • 5.2.2.2.5 Intermolecular type bd
  • 5.2.2.2.6 Intermolecular type acd
  • 5.2.2.2.7 Intermolecular type ace
  • 5.2.2.3 Transformations of other heterocycles to pyrroles
  • 5.2.3 Reactions of pyrroles
  • 5.2.3.1 Substitutions at pyrrole nitrogen
  • 5.2.3.2 Substitutions at pyrrole carbon
  • 5.2.3.2.1 Substitution at C2
  • 5.2.3.2.2 Substitution at C3
  • 5.2.3.3 Cycloadditions
  • 5.2.3.4 Functionalization of pyrrole side-chain substituents
  • 5.2.4 Synthesis of indoles
  • 5.2.4.1 Intramolecular approaches to indoles
  • 5.2.4.1.1 Intramolecular type a
  • 5.2.4.1.2 Intramolecular type b
  • 5.2.4.1.3 Intramolecular type c
  • 5.2.4.1.4 Intramolecular type e
  • 5.2.4.2 Intermolecular approaches to indoles
  • 5.2.4.2.1 Intermolecular type ab
  • 5.2.4.2.2 Intermolecular type ac
  • 5.2.4.2.3 Intermolecular type bc
  • 5.2.4.2.4 Intermolecular type ce
  • 5.2.5 Reactions of indoles
  • 5.2.5.1 Substitution at C2/C3
  • 5.2.5.1.1 C2 substitution
  • 5.2.5.1.1.1 Directed C-H functionalization
  • 5.2.5.1.1.2 Innate C-H functionalization
  • 5.2.5.1.2 C2 substitution, ring-forming
  • 5.2.5.1.3 C2-C3 annulation/functionalization
  • 5.2.5.1.4 C3 substitution
  • 5.2.5.1.5 C3 substitution, ring-forming
  • 5.2.5.2 Substitution at nitrogen
  • 5.2.5.3 Functionalization of the benzene ring
  • 5.2.5.3.1 C-H functionalization
  • 5.2.6 Isatins, oxindoles, indoxyls, and spirooxindoles
  • 5.2.7 Carbazoles
  • 5.2.8 Azaindoles
  • 5.2.9 Isoindoles
  • References
  • 5.3 - Five-membered ring systems: furans and benzofurans
  • 5.3.1 Introduction
  • 5.3.2 Furans
  • 5.3.2.1 Furan ring synthesis
  • 5.3.2.2 Reactions
  • 5.3.3 Benzo[b]furans
  • 5.3.3.1 Biological activity
  • 5.3.3.2 Benzo[b]furan ring synthesis
  • 5.3.3.3 Reactions
  • 5.3.4 Benzo[c]furans
  • 5.3.4.1 Ring synthesis
  • 5.3.4.2 Reactions
  • 5.3.5 Dibenzofurans
  • 5.3.5.1 Ring synthesis
  • References
  • 5.4 - Five-membered ring systems: with more than one N atom
  • 5.4.1 Introduction
  • 5.4.2 Pyrazoles and ring-fused derivatives
  • 5.4.3 Imidazoles and ring-fused derivatives
  • 5.4.4 1,2,3-Triazoles and ring-fused derivatives
  • 5.4.5 1,2,4-Triazoles and ring-fused derivatives
  • 5.4.6 Tetrazoles and ring-fused derivatives
  • References
  • 5.5 - Five-membered ring systems: with N and S atom
  • 5.5.1 Introduction
  • 5.5.2 Thiazoles
  • 5.5.2.1 Synthesis of thiazoles
  • 5.5.2.2 Synthesis of thiazolines
  • 5.5.2.3 Synthesis of benzothiazoles
  • 5.5.2.4 Reactions of thiazoles and fused derivatives
  • 5.5.2.5 New thiazole-containing natural products
  • 5.5.2.6 Biologically active thiazoles
  • 5.5.3 Isothiazoles
  • 5.5.4 Thiadiazoles
  • References
  • 5.6 - Five-membered ring systems: with O and S (Se, Te) atoms
  • 5.6.1 1,3-Dioxoles and dioxolanes
  • 5.6.2 1,3-Dithioles and dithiolanes
  • 5.6.3 1,3-Oxathioles and oxathiolanes
  • 5.6.4 1,2-Dioxolanes
  • 5.6.5 1,2-Dithioles and dithiolanes
  • 5.6.6 1,2-Oxathioles and oxathiolanes
  • 5.6.7 Three heteroatoms
  • References
  • 5.7 - Five-membered ring systems with O and N atoms
  • 5.7.1 Isoxazoles
  • 5.7.2 Isoxazolines
  • 5.7.3 Isoxazolidines
  • 5.7.4 Oxazoles
  • 5.7.5 Oxazolines
  • 5.7.6 Oxazolidines
  • 5.7.7 Oxadiazoles
  • References
  • 6.1 - Six-membered ring systems: pyridines and benzo derivatives
  • 6.1.1 Introduction
  • 6.1.2 Pyridines
  • 6.1.2.1 Preparation of pyridines
  • 6.1.2.2 Reactions of pyridines
  • 6.1.3 Quinolines
  • 6.1.3.1 Preparation of quinolines
  • 6.1.3.2 Reactions of quinolines
  • 6.1.4 Isoquinolines
  • 6.1.4.1 Preparation of isoquinolines
  • 6.1.4.2 Reactions of isoquinolines
  • References
  • 6.2 - Six-membered ring systems: diazines and benzo derivatives
  • 6.2.1 Introduction
  • 6.2.2 Pyridazines and benzo derivatives
  • 6.2.2.1 Syntheses
  • 6.2.2.2 Reactions
  • 6.2.2.3 Applications
  • 6.2.3 Pyrimidines and benzo derivatives
  • 6.2.3.1 Syntheses
  • 6.2.3.2 Reactions
  • 6.2.3.3 Applications
  • 6.2.4 Pyrazines and benzo derivatives
  • 6.2.4.1 Syntheses
  • 6.2.4.2 Reactions
  • 6.2.4.3 Applications
  • References
  • 6.3 - Triazines, tetrazines, and fused ring polyaza systems
  • 6.3.1 Introduction
  • 6.3.2 Triazines
  • 6.3.2.1 1,2,3-Triazines or v-triazines
  • 6.3.2.2 1,2,4-Triazines or a-triazines
  • 6.3.2.2.1 Chemistry
  • 6.3.2.2.2 Applications
  • 6.3.2.3 1,3,5-Triazines (s-triazines)
  • 6.3.2.3.1 Chemistry
  • 6.3.2.3.2 Triazines as ligand
  • 6.3.2.3.3 Triazines for materials chemistry
  • 6.3.2.3.4 Triazines for biomedical and related applications
  • 6.3.2.3.5 Triazines for fluorescence and optics-related applications
  • 6.3.2.3.6 Miscellaneous
  • 6.3.3 Tetrazines
  • 6.3.3.1 1,2,3,5-Tetrazines
  • 6.3.3.2 1,2,4,5-Tetrazines
  • 6.3.3.2.1 Synthetic chemistry
  • 6.3.3.2.2 Tetrazines for click chemistry and related applications
  • 6.3.3.2.3 Applications for optics, new dyes, etc.
  • 6.3.3.2.4 Miscellaneous
  • 6.3.4 Fused higher polyazaaromatics
  • 6.3.4.1 [6+5] rings: triazino[6+5]-fused systems, purines, and related heterocycles
  • 6.3.4.1.1 Triazino[6+5]-fused systems
  • 6.3.4.1.2 Purines and related heterocycles
  • 6.3.4.2 Pteridines and related [6+6] rings
  • 6.3.4.3 Triaza and tetrazapyrenes and heptazines (cyamelurates)
  • References
  • 6.4 - Six-membered ring systems: with O and/or S atoms
  • 6.4.1 Introduction
  • 6.4.2 Heterocycles containing one oxygen atom
  • 6.4.2.1 Pyrans
  • 6.4.2.2 [1]Benzopyrans and Dihydro[1]benzopyrans (chromenes and chromans)
  • 6.4.2.3 [2]Benzopyrans and Dihydro[2]benzopyrans
  • 6.4.2.4 Pyranones
  • 6.4.2.5 Coumarins
  • 6.4.2.6 Chromones and chromanones
  • 6.4.2.7 Xanthenes and xanthones
  • 6.4.3 Heterocycles containing one or two sulfur atoms
  • 6.4.3.1 Thiopyrans and analogues
  • 6.4.4 Heterocycles containing two or more oxygen atoms
  • 6.4.4.1 Dioxanes and trioxanes
  • 6.4.5 Heterocycles containing both oxygen and sulfur in the same ring
  • 6.4.5.1 Oxathianes
  • References
  • 7 - Seven-membered rings
  • 7.1 Introduction
  • 7.2 Seven-membered systems containing one heteroatom
  • 7.2.1 Azepanes and derivatives
  • 7.2.2 Benzazepines and derivatives
  • 7.2.3 Fused azepanes and derivatives
  • 7.2.4 Oxepanes and fused derivatives
  • 7.2.5 Thiepines and fused derivatives
  • 7.3 Seven-membered systems containing two heteroatoms
  • 7.3.1 Diazepines and fused diazepines and derivatives
  • 7.3.2 Benzodiazepines and derivatives
  • 7.3.3 Oxazepanes and fused derivatives
  • 7.3.4 Thiazepines and derivatives
  • 7.3.5 Dioxepines, dithiepines, oxathiepines, and derivatives
  • 7.4 Seven-membered systems containing three or more heteroatoms
  • 7.4.1 Three heteroatoms N, O, and/or S
  • 7.4.2 Four or more heteroatoms N, O, and/or S
  • 7.5 Future directions
  • References
  • 8 - Eight-membered and larger rings
  • 8.1 Introduction
  • 8.2 Carbon-oxygen rings
  • 8.3 Carbon-nitrogen rings
  • 8.4 Carbon-sulfur rings
  • 8.5 Carbon-selenium rings
  • 8.6 Carbon-nitrogen-selenium/tellurium rings
  • 8.7 Carbon-nitrogen-oxygen rings
  • 8.8 Carbon-nitrogen-sulfur rings
  • 8.9 Carbon-gallium rings
  • 8.10 Carbon-nitrogen-oxygen-sulfur rings
  • 8.11 Carbon-nitrogen-metal rings
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • V
  • W
  • X
  • Z
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

220,00 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen