Renewable Integrated Power System Stability and Control

Wiley-IEEE Press
  • 1. Auflage
  • |
  • erschienen am 24. März 2021
  • |
  • 320 Seiten
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
978-1-119-68977-5 (ISBN)
Discover new challenges and hot topics in the field of penetrated power grids in this brand-new interdisciplinary resource

Renewable Integrated Power System Stability and Control delivers a comprehensive exploration of penetrated grid dynamic analysis and new trends in power system modeling and dynamic equivalencing. The book summarizes long-term academic research outcomes and contributions and exploits the authors' extensive practical experiences in power system dynamics and stability to offer readers an insightful analysis of modern power grid infrastructure.

In addition to the basic principles of penetrated power system modeling, model reduction, and model derivation, the book discusses inertia challenge requirements and control levels, as well as recent advances in visualization of virtual synchronous generators and their associated effects on system performance. The physical constraints and engineering considerations of advanced control schemes are deliberated at length.

Renewable Integrated Power System Stability and Control also considers robust and adaptive control strategies using real-time simulations and experimental studies. Readers will benefit from the inclusion of:
* A thorough introduction to power systems, including time horizon studies, structure, power generation options, energy storage systems, and microgrids
* An exploration of renewable integrated power grid modeling, including basic principles, host grid modeling, and grid-connected MG equivalent models
* A study of virtual inertia, including grid stability enhancement, simulations, and experimental results
* A discussion of renewable integrated power grid stability and control, including small signal stability assessment and the frequency point of view

Perfect for engineers and operators in power grids, as well as academics studying the technology, Renewable Integrated Power System Stability and Control will also earn a place in the libraries of students in Electrical Engineering programs at the undergraduate and postgraduate levels who wish to improve their understanding of power system operation and control.
1. Auflage
  • Englisch
John Wiley & Sons
  • 25,53 MB
978-1-119-68977-5 (9781119689775)
weitere Ausgaben werden ermittelt
Hêmin Golpîra, PhD, is Assistant Professor at the Department of Electrical and Computer Engineering at the University of Kurdistan. He was formerly Associate Fellow at the University of Wisconsin-Madison. He received his doctorate in Electrical Engineering from Tarbiat Modares University.

Arturo Román Messina is part of The Center for Research and Advanced Studies of the National Polytechnic Institute of Mexico. He is on the editorial boards of Electric Power Systems Research, IEEE Transactions on Power Systems, Electric Power Components and Systems Journal, and the International Journal on Power System Optimization.

Hassan Bevrani, PhD, is Full Professor and Vice Chancellor for Research at the University of Kurdistan. He received his doctorate in Electrical Engineering from Osaka University in Japan in 2004.


The term power system stability and control is used to define the application of control theorems and relevant technologies to analyze and enhance the power system functions during normal and abnormal operations. Power system stability and control refers to keep desired performance and stabilizing power system following various disturbances, such as short circuits, loss of generation, and load.

The capacity of installed inverter-based distributed generators (DGs) and renewable energy sources (RESs) individually or through the microgrids (MGs) in power systems is rapidly growing, and a high penetration level is targeted for the next few decades. In most countries including developing countries, significant targets are considered for using the distributed microsources and MGs in their power systems for near future. The increase of DGs/RESs in power systems has a significant impact on CO2 reduction; however, recent studies have shown that relatively high DGs/RESs integration will have some negative impacts on power system dynamics, frequency and voltage regulation, as well as other control and operational issues. Decreasing system inertia and highly variable dynamic nature of DGs/RESs/MGs are known as the main reasons. These impacts may increase for the dynamically weak power systems at the penetration rates that are expected over the next several years.

In this chapter, a brief discussion on the power system stability and control in modern renewable integrated power systems and the current state of this topic are given. Data-driven wide-area power system monitoring and control is emphasized, and the significance of measurement-based dynamic modeling and parameter estimation is shown.

1.1 Power System Stability and Control

Power system stability and control was first recognized as an important problem in 1920s [1]. Over the years, numerous modeling/simulation programs, synthesis/analysis methodologies, and protection schemes have been developed. Power grid control must provide the ability of an electric power to regain a state of operating equilibrium after being subjected to a physical disturbance, with most system variables, i.e., frequency, voltage, and angle, bounded so that practically the entire system remains intact. Thus, the main control loops are known as frequency control, voltage control, and rotor angle (power oscillation damping) control [2].

In many power systems, advanced measurement devices such as phasor measurement units (PMUs) and modern communication devices are already being installed. Using these facilities, the parameters of existing power system controllers can be adjusted by an online data-driven control mechanism [3]. The PMU data after filtering are used to estimate some important parameters in the system (scheduling parameters). These parameters are then used in the control tuning algorithm that will adapt the controller parameters in frequency control, voltage control, and power oscillation control. Therefore, the controller's parameters are adapted according to the current status of the system.

One of the important steps of reliable and performant control system design is defining the performance specifications. It depends on the features of the controller design method, the constraints on the controller structure, the achievable performance that is limited by the physical constraints, the industrial standards on the limit of the variables, the limits of the actuators, etc. Finding the control specifications and making them compatible with the controller design approach require a deeper understanding of the physical system to be controlled.

The characteristics of three main control loops, i.e., frequency control, voltage control, and angle control, should be studied to enable the definition of achievable performance specifications and designing an effective control system.

  • Frequency control: Since the frequency generated in an electric network is proportional to the rotation speed of the generator, the problem of frequency control may be directly translated into a speed control problem of the turbine generator unit. This is initially overcome by adding a governing mechanism that senses the machine speed and adjusts the input valve to change the mechanical power output to track the load change and to restore frequency to nominal value. Depending on the frequency deviation range, different frequency control loops, i.e., primary, secondary, and tertiary, may be required to maintain power system frequency stability [4].

    The secondary frequency control which is also known as load frequency control (LFC) initializes a centralized and automatic control task using the assigned spinning reserve. The LFC is the main component of an automatic generation control (AGC) system [5]. In large power systems, this control loop is activated in the time frame of few seconds to minutes after a disturbance. In a modern AGC system, based on the received area control error (ACE) signal, an online tuning algorithm must adjust the LFC parameters to restore the frequency and tie-line powers to the specified values.

  • Voltage control: The generators are usually operated at a constant voltage by using an automatic voltage regulator (AVR) which controls the excitation of the machine via the electric field exciter system. The exciter system supplies the field winding of the synchronous machine with direct current to generate required flux in the rotor. A system enters a state of voltage instability when a disturbance changes the system condition to make a progressive fall or rise of voltages of some buses. Loss of load in an area, tripping transmission lines, and other protected equipment are possible results of voltage instability. Like frequency control, the voltage control is also characterized via several control loops in different system levels. The AVR loop which regulated the voltage of generator terminals is located on lower system levels and responds typically in a time scale of a second or less.
  • Angle control: Rotor angle stability is the ability of the power system to maintain synchronization after being subjected to a disturbance. Angle stability refers to damping of power oscillations inside subsystems and between subsystems on an interconnected grid during variation beyond specified threshold levels. The risk of losing angle stability can be significantly reduced by using proper control devices inserted into the power grid to find a smooth shape for the system dynamic response.

    The power oscillation damping has been mainly guaranteed by power system stabilizers (PSSs). A PSS is a controller, which, beside the turbine-governing system, performs an additional supplementary control loop to the AVR system of a generating unit. Depending on the type of PSS, the input signal could be the rotor speed/frequency deviation, the generator active power deviation, or a combination feedback of rotor speed/frequency and active power changes. This signal to be passed through a combination of a lead-lag compensators. The PSS output signal is amplified to provide an effective output signal.

    In order to damp the inter-area oscillations, which have smaller oscillation frequency than the local oscillatory modes, a wide-area control (WAC) system is required. The WAC system is a centralized controller that uses the PMU signals and produces auxiliary control signals for the PSSs.

  • Virtual synchronous generator: Additional flexibility may be required from various control levels so that the system operator can continue to balance supply and demand on the modern power grids in the presence of DGs/RESs/MGs. The contribution of DGs/RESs in regulation task refers to the ability of these grids to regulate their power output, by an appropriate control action. This can be regarded as adding virtual inertia to the grid and considered as a solution. Virtual inertia emulation requires the inverter to be able to store or release an amount of energy depending on the grid frequency's deviation from its nominal value, analogous to the inertia of a conventional generator. This setup, which is known as virtual synchronous generator (VSG), will then operate to emulate desirable dynamics, such as inertia and damping properties, by flexible shaping of its output active and reactive powers as conceptually shown in Figure 1.1.

This VSG provides a promising solution to improve power grid stability and performance in the presence of a high penetration of DGs/RESs/MGs. The VSG is not only applicable for improving of frequency regulation and oscillations damping, particularly during the transient state following a disturbance, but also it is useful to support the voltage stability. The VSG system can use the available DGs/RESs, as primary sources to participate in power oscillation damping by adjusting their active and reactive power generations. The VSG is more discussed in Chapter 4.

1.2 Current State of Power System Stability and Control

Power system stability and control can take different forms, which are influenced by the type of instability phenomena. A survey on the basics of power system controls, literature, and achievements is given in [6, 7].

PMUs are sophisticated digital recording devices that communicate global positioning system (GPS) synchronized high sampling rate dynamic power system's data to the central control and monitoring stations. The recorded data by PMUs provide valuable information about the dynamic of the power system that can be used for...

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)


Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.

Download (sofort verfügbar)

92,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen