C-Furanosides

Synthesis and Stereochemistry
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 30. November 2017
  • |
  • 794 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-803789-8 (ISBN)
 

Carbon analogs of carbohydrates, dubbed C-glycosides, have remained an important and interesting class of mimetics, be it in natural product synthesis, for pharmacological applications, as conformational probes, or for biological studies. C-Furanosides: Synthesis and Stereochemistry provides a much-needed overview of synthetic and stereochemical principles for C-furanosides: analogs of a 5-membered ring carbohydrate glycoside (furanoside), in which the anomeric oxygen has been replaced with a carbon.

While our understanding of conformational behavior and of stereoselective synthesis in 6-membered ring compounds is quite good, our ability to predict the conformation of 5-membered ring compounds, or to predict the stereochemical outcome of a given reaction, remains anecdotal. Through a comprehensive review of literature approaches to the different C-furanoside stereoisomers, as well as an interpretation of the outcome in terms of a reasonable number of stereochemical models, C-Furanosides: Synthesis and Stereochemistry enables the reader to determine the best approach to a particular C-glycoside compound, and also hopes to provide a certain level of rationalization and predictability for the synthesis of new systems.

  • Provides a comprehensive review of the growing literature in C-furanosides
  • Enables readers to choose the most convenient approach to access a defined target in natural products synthesis or pharmacology and make reasonable predictions for the stereochemical outcome in unpublished cases
  • Explores the various rational models for stereochemical analysis of furanoside reactivity, with a clear distinction made between physical chemical mechanisms and stereochemical models


Dr. Peter Goekjian has been Professor of Chemistry at Université Claude Bernard-Lyon 1, France, since September 2000. His research interests are carbohydrate chemistry, total synthesis of glycosidic natural products, targeted methodology, and the role of glycosylation in signal transduction and gene expression. He was involved in the early work on the use of C-glycosides as conformational probes in the late 1980s and early 1990s.
  • Englisch
  • Saint Louis
  • |
  • USA
  • 38,58 MB
978-0-12-803789-8 (9780128037898)
weitere Ausgaben werden ermittelt
  • Front Cover
  • C-Furanosides
  • C-Furanosides: Synthesis and Stereochemistry
  • Copyright
  • Contents
  • The Stereochemistry of C-Furanosides
  • 1 C-FURANOSIDES: STEREOCHEMISTRY AND NOMENCLATURE
  • 2 RELATIONSHIPS BETWEEN HEXOSE-STEREOCHEMICAL NOMENCLATURE AND THE C-GLYCOSIDES OF FURANOSE-TYPE FRAMEWORKS
  • 3 STEREOCHEMICAL MODELS FOR THE CONTROL OF THE CONFIGURATION AT C-1
  • 3.1 Stereospecific Approach
  • 3.2 Stereoselective Reactions at the Anomeric Position Under Kinetic Control
  • 3.2.1 Bicyclic Induction
  • 3.2.2 1,3-Induction
  • 3.2.3 1,2-Induction
  • 3.3 Stereoselective Reactions Under Thermodynamic Control
  • REFERENCES
  • A C-Glycosides of Lyxose and Ribose: galacto-, altro- and allo- Configurations
  • A - Introduction
  • REFERENCES
  • A.1 - galacto-C-Furanosides (I, ß-C-Lyxose)
  • DISCONNECTIONS
  • NATURAL OCCURRENCE
  • A.1.1 DISCONNECTION A
  • A.1.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • A.1.1.1.1 Nucleophilic Substitution With Stabilized Enolates
  • A.1.1.1.2 Nucleophilic Substitution With Cyanide
  • A.1.1.1.3 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions
  • A.1.1.1.4 Nucleophilic Substitution With Allylsilanes
  • A.1.1.1.5 Nucleophilic Substitution With Silyl Enol Ethers and Ketene Acetals
  • A.1.2 DISCONNECTION B
  • A.1.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor
  • A.1.2.2 Radical or Transition Metal Catalyzed Reduction of an Anomeric Heteroatomic Moiety
  • A.1.2.3 Hydrogenation of an Exocyclic Enol Ether (exo-Glycal) at the Anomeric Position
  • A.1.2.4 Hydroboration of an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal)
  • A.1.2.5 Radical Addition to an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal)
  • A.1.3 DISCONNECTION C
  • A.1.3.1 Acid-Catalyzed Cyclization of 1,4-Diols
  • A.1.3.2 Intramolecular Reaction Between an Alcohol or Ether and a Sulfonate Leaving Group
  • A.1.3.2.1 With a 4-Toluenesulfonate Leaving Group
  • A.1.3.2.2 With a Methanesulfonate Leaving Group
  • A.1.3.2.3 With a Cyclic Sulfate Leaving Group
  • A.1.3.2.4 With a Trifluoromethanesulfonate Leaving Group
  • A.1.3.3 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • A.1.3.4 Intramolecular Reaction Between an Alcohol and an Epoxide
  • A.1.3.5 Intramolecular Addition of an Alcohol to an Unsaturated Moiety
  • A.1.3.5.1 Electrophilic Additions to Alkenes
  • A.1.3.5.2 oxa-Michael Addition to Electron-Deficient Alkenes
  • A.1.3.5.3 Tandem Olefination-oxa-Michael Additions of Carbohydrate Hemiacetals
  • A.1.3.5.4 Tandem Condensation-oxa-Michael Reactions of Carbohydrate Hemiacetals
  • A.1.4 DISCONNECTION D
  • A.1.4.1 Reduction of a Ketone
  • A.1.4.2 Stereospecific Inversion
  • A.1.5 MISCELLANEOUS
  • A.1.5.1 Diels-Alder Approach
  • A.1.6 CONCLUSION
  • REFERENCES
  • A.2 - d- and l-altro-C-furanosides (II/ent-II, a-C-Lyxose, a-C-Ribose)
  • DISCONNECTIONS
  • NATURAL OCCURRENCE
  • A.2.1 DISCONNECTION A
  • A.2.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • A.2.1.1.1 Nucleophilic Substitution With Alkyl, Alkynyl, and Vinyl Organometallic Reagents
  • A.2.1.1.2 Nucleophilic Substitution of Anomeric Halides With Aryl and Heteroaryl Organometallic Reagents
  • A.2.1.1.3 Friedel-Crafts-Type Reactions
  • A.2.1.1.4 Nucleophilic Substitution With Cyanide
  • A.2.1.1.5 Nucleophilic Substitution of Anomeric Halides With Stabilized Enolates
  • A.2.1.1.6 Nucleophilic Substitution With Enol Silanes
  • A.2.1.1.7 Nucleophilic Substitution With Allylsilane Derivatives
  • A.2.1.1.8 Nucleophilic Substitution With Allylboron Derivatives
  • A.2.1.2 Coupling Between a Radical Anomeric Carbon and a Carbon Donor
  • A.2.1.2.1 Radical Substitution With an Allyltin Derivative
  • A.2.1.2.2 Coupling Between a Radical Anomeric Carbon and an Unsaturated Derivative
  • A.2.1.2.3 Addition of an Anomeric Glycosyl Radical to an Aromatic Moiety
  • A.2.2 DISCONNECTION B
  • A.2.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor
  • A.2.2.2 Samarium Diiodide Reduction of an Anomeric Hemiketal Moiety
  • A.2.2.3 Hydrogenation of an Exocyclic Unsaturated Derivative at the Anomeric Position (exo-Glycal)
  • A.2.3 DISCONNECTION C
  • A.2.3.1 Acid Catalyzed Cyclization of 1,4-Diols
  • A.2.3.2 Intramolecular Reaction Between an Alcohol and a Halogen Leaving Group
  • A.2.3.3 Intramolecular Reaction Between an Alcohol or Ether and a Sulfonate Leaving Group
  • A.2.3.3.1 Selective Activation With a 4-Toluenesulfonate Leaving Group
  • A.2.3.3.2 With a Methanesulfonate Leaving Group
  • A.2.3.3.3 With a Trifluoromethanesulfonate Leaving Group
  • A.2.3.3.4 With an Imidazolylsulfonate or Diethylaminosulfonate Leaving Group
  • A.2.3.3.5 Ring Contractions With Other Heteroelement Leaving Groups
  • A.2.3.4 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • A.2.3.5 Intramolecular Reaction Between an Alcohol and an Epoxide
  • A.2.3.5.1 5-exo-tet Cyclization of Epoxy Alcohols
  • A.2.3.5.2 5-endo-tet Cyclization of Epoxy Alcohols or Ethers
  • A.2.3.6 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety
  • A.2.3.6.1 Intramolecular Electrophilic Additions to Alkenes
  • A.2.3.6.2 Tandem Olefination-oxa-Michael Additions of Carbohydrate Hemiacetals
  • A.2.3.6.3 Tandem Condensation-oxa-Michael Additions of Carbohydrate Hemiacetals
  • A.2.3.6.4 oxa-Michael Additions to Electron-Deficient Alkenes
  • A.2.3.7 Equilibration Processes
  • A.2.4 DISCONNECTION D
  • A.2.5 DISCONNECTION E
  • A.2.6 MISCELLANEOUS
  • A.2.6.1 Transition Metal-Promoted CO Insertions
  • A.2.7 CONCLUSION
  • REFERENCES
  • A.3 - allo-C-Furanosides (VI, ß-C-Ribose)
  • DISCONNECTIONS
  • NATURAL OCCURRENCE
  • A.3.1 DISCONNECTION A
  • A.3.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • A.3.1.1.1 Nucleophilic Substitution With Alkyl, Vinyl, and Alkynyl Organometallic Reagents
  • A.3.1.1.2 Nucleophilic Substitution With Aryl and Heteroaryl Organometallic Reagents
  • A.3.1.1.3 Transition Metal-Catalyzed Substitutions With Aryl and Heteroaryl Organometallic Reagents
  • A.3.1.1.4 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions
  • A.3.1.1.5 Nucleophilic Substitution With Cyanide
  • A.3.1.1.6 Nucleophilic Substitution With Allylsilane Derivatives
  • A.3.1.1.7 Substitution With Allyltin Derivatives
  • A.3.1.1.8 Nucleophilic Substitution With Enol Silanes
  • A.3.1.1.9 Carbene Displacement Reactions
  • A.3.1.2 Coupling Between an Anomeric Carbon Radical and an Alkene
  • A.3.1.3 Coupling Between an Anomeric Radical Carbon and an Aromatic Derivative
  • A.3.1.4 Disconnection A by Other Mechanisms
  • A.3.1.4.1 Samarium Diiodide Activation
  • A.3.1.4.2 [1,2]-Wittig Rearrangement
  • A.3.2 DISCONNECTION B
  • A.3.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor
  • A.3.2.2 Single-Electron Transfer Reduction of Ketofuranose Acetates
  • A.3.2.3 Addition of Radical Species to an Exocyclic Unsaturated Carbon at the Anomeric Position (exo-Glycal)
  • A.3.3 DISCONNECTION C
  • A.3.3.1 Acid-Catalyzed Cyclization of a 1,4-Diol
  • A.3.3.2 Intramolecular Reaction Between an Alcohol and a Halogen Leaving Group
  • A.3.3.3 Intramolecular Reaction Between an Alcohol and a Sulfonate Leaving Group
  • A.3.3.3.1 With a 4-Toluenesulfonate Leaving Group
  • A.3.3.3.2 With a Methanesulfonate Leaving Group
  • A.3.3.3.3 With a Trifluoromethanesulfonate Leaving Group
  • A.3.3.4 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • A.3.3.5 Intramolecular Reaction Between an Alcohol and an Epoxide
  • A.3.3.6 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety
  • A.3.3.6.1 Electrophilic Additions to Alkenes
  • A.3.3.6.2 Oxa-Michael Addition to Electron-Deficient Alkenes
  • A.3.3.6.3 Tandem Wittig-Horner-oxa-Michael Additions With Esters
  • A.3.3.6.4 Tandem Wittig-Horner-oxa-Michael Addition With Ketones
  • A.3.3.6.5 Tandem Wittig-Horner-oxa-Michael Additions With Other Functionalities
  • A.3.3.6.6 Tandem Condensation-oxa-Michael Additions
  • A.3.3.7 Equilibration Processes
  • A.3.4 DISCONNECTION D
  • A.3.4.1 Inversion of Configuration
  • A.3.4.2 Reduction of a Ketone
  • A.3.5 DISCONNECTION E
  • A.3.6 MISCELLANEOUS
  • A.3.6.1 Diels-Alder Approach
  • A.3.6.2 Transition Metal Approaches
  • A.3.7 CONCLUSION
  • REFERENCES
  • A.4 - Lyxose and Ribose C-Glycosides: Other Results and Further Insight Into Stereochemistry
  • A.4.1 DISCONNECTION A
  • A.4.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • A.4.1.1.1 Nucleophilic Substitutions Using Alkyl, Vinyl, and Alkynyl Organometallic Reagents: Further Insight Into the Role of Tight ...
  • A.4.1.1.2 Nucleophilic Substitutions Using Aryl and Heteroaryl Organometallic Reagents: Further Insight Into Thermodynamic Control
  • A.4.1.1.3 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions
  • A.4.1.1.4 Nucleophilic Substitution With Cyanide: Further Insight Into C-2 Participation
  • A.4.1.1.5 Substitution With Allyl Organometallic Reagents: Further Insight Into Woerpel Selectivity and Solvent Effects
  • A.4.1.1.6 Substitution With Silyl Enol Ethers and Ketene Acetals
  • A.4.1.2 Coupling Between a Radical Anomeric Carbon and an Aromatic Derivative: Further Insight Into Additions of Carbohydrate Radic ...
  • A.4.2 DISCONNECTION B
  • A.4.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor: Further Insights Into the Limits of Bicyclic and Woerpel Inductions
  • A.4.2.2 Radical Reduction of an Anomeric Heteroatomic Moiety and Addition of Radical Species to an Exocyclic Unsaturated Carbon in ...
  • A.4.2.3 Hydrogenation of an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal)
  • A.4.3 DISCONNECTION C
  • A.4.3.1 Intramolecular Reaction Between an Alcohol and a Leaving Group: Further Insight Into Stereospecific Substitution
  • A.4.3.1.1 Acid-Catalyzed Cyclization of 1,4-Diols
  • A.4.3.2 Intramolecular Reaction Between an Alcohol and a Halogen Leaving Group
  • A.4.3.3 Intramolecular Reaction Between an Alcohol and a Sulfonate Leaving Group
  • A.4.3.3.1 With a 4-Toluene Sulfonate Leaving Group
  • A.4.3.3.2 With a Methanesulfonate Leaving Group
  • A.4.3.3.3 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • A.4.3.4 Intramolecular Reaction Between an Alcohol and an Epoxide
  • A.4.3.5 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety
  • A.4.3.5.1 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety by Electrophilic Activation: Further Insight Into Kine ...
  • A.4.3.5.2 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety by oxa-Michael Cyclization: Further Insight Into Conju ...
  • A.4.3.5.3 Tandem Wittig-oxa-Michael Additions of Carbohydrate Hemiacetals
  • A.4.3.5.4 Tandem Horner-Emmons-oxa-Michael Additions of Carbohydrate Hemiacetals
  • A.4.3.5.5 Tandem Condensation-oxa-Michael Additions of Carbohydrate Hemiacetals
  • A.4.3.5.6 Equilibration Processes
  • A.4.4 DISCONNECTION D
  • A.4.5 MISCELLANEOUS
  • A.4.5.1 Ring Contractions
  • A.4.5.2 Transition Metal-Promoted Insertions
  • A.4.6 CONCLUSION
  • REFERENCES
  • B C-Glycosides of Arabinose and Xylose: gluco-, ido- and manno- Configurations
  • B - Introduction
  • REFERENCES
  • B.1 - Gluco-C-Furanosides (III/ent-III, ß-C-Arabinose, ß-C-Xylose)
  • DISCONNECTIONS
  • NATURAL OCCURRENCE
  • B.1.1 DISCONNECTION A
  • B.1.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • B.1.1.1.1 Nucleophilic Substitution With Alkyl, Vinyl, and Alkynyl Organometallic Reagents
  • B.1.1.1.2 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions
  • B.1.1.1.3 Nucleophilic Substitution With Cyanide
  • B.1.1.1.4 Substitution With Allylsilanes
  • B.1.1.1.5 Nucleophilic Substitution With Enol Ethers, Vinyl Sulfides, and Ketene Acetals
  • B.1.1.2 Coupling Between a Radical Anomeric Carbon and an Unsaturated Derivative
  • B.1.1.3 Coupling Between an Anomeric Carbene and an Aromatic Derivative
  • B.1.2 DISCONNECTION B
  • B.1.2.1 Reduction of an Anomeric (Hemi)Ketal With a Hydride Donor
  • B.1.2.2 Hydrogenation of an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal)
  • B.1.2.3 Hydroboration of an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal)
  • B.1.2.4 Radical Addition to an Exocyclic Enol Ether at the Anomeric Position
  • B.1.3 DISCONNECTION C
  • B.1.3.1 Intramolecular Reaction Between an Alcohol and a Leaving Group
  • B.1.3.1.1 Acid-Catalyzed Cyclization of a 1,4-Diol
  • B.1.3.1.2 Intramolecular Cyclization Between an Alcohol and a Halogen Leaving Group
  • B.1.3.1.3 Intramolecular Reaction Between an Alcohol or Ether and a Sulfonate Leaving Group
  • B.1.3.1.3.1 With a 4-Toluenesulfonate Leaving Group
  • B.1.3.1.3.2 With a Methanesulfonate Leaving Group
  • B.1.3.1.3.3 With a Cyclic Sulfate Leaving Group
  • B.1.3.1.3.4 With a Trifluoromethanesulfonate Leaving Group
  • B.1.3.1.3.5 With a Chloromethylsulfonate Leaving Groups
  • B.1.3.1.4 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • B.1.3.2 Intramolecular Cyclization Between an Alcohol and an Epoxide
  • B.1.3.2.1 5-exo-tet Cyclization of Epoxy Alcohols
  • B.1.3.2.2 In Situ 5-exo-tet Cyclization of Epoxy Alcohols After Deprotection
  • B.1.3.2.3 5-endo-tet Cyclization of Epoxy Alcohols
  • B.1.3.2.4 Transannular Cyclization of Epoxy Alcohols
  • B.1.3.2.5 5-exo-Cyclization of Aziridines
  • B.1.3.3 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety
  • B.1.3.3.1 Electrophilic Addition to Alkenes
  • B.1.3.3.2 Oxa-Michael Addition to Electron-Deficient Alkenes
  • B.1.3.3.3 Tandem Condensation-oxa-Michael Additions of Unprotected Sugars
  • B.1.3.3.4 Tandem Olefination-oxa-Michael Additions of Carbohydrate Hemiacetals
  • B.1.4 DISCONNECTION D
  • B.1.4.1 Opening of an Epoxide in Positions 3-4
  • B.1.4.2 Inversion of Configuration
  • B.1.5 MISCELLANEOUS
  • B.1.5.1 Hydroboration of Endocyclic Enol Ethers (Glycals)
  • B.1.5.2 Formation of a Ring Carbon Carbon Bond by Radical Cyclization
  • B.1.6 CONCLUSION
  • REFERENCES
  • B.2 - ido-C-Furanosides (V/ent-V, a-C-Xylose)
  • DISCONNECTIONS
  • NATURAL OCCURRENCES
  • B.2.1 DISCONNECTION A
  • B.2.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • B.2.1.1.1 Friedel-Crafts Reactions With Glycosyl Oxocarbenium Ions
  • B.2.1.1.2 Nucleophilic Substitution With Allylsilanes
  • B.2.1.1.3 Nucleophilic Substitution With Silyl Enol Ethers and Ketene Acetals
  • B.2.1.2 Addition of an Anomeric Carbon Radical to an Unsaturated Radical Acceptor
  • B.2.1.3 Substitution at the Anomeric Carbon by a Transition Metal-Catalyzed Reaction
  • B.2.2 DISCONNECTION B
  • B.2.2.1 Reduction of an Anomeric (Hemi)Ketal With a Hydride Donor
  • B.2.2.2 Hydrogenation of an Exocyclic Unsaturated Derivative at the Anomeric Position
  • B.2.3 DISCONNECTION C
  • B.2.3.1 Intramolecular Reaction Between an Alcohol and a Leaving Group
  • B.2.3.1.1 Acid-Catalyzed Cyclization of a 1,4-Diol
  • B.2.3.1.2 Intramolecular Cyclization Between an Alcohol and a Sulfonate Leaving Group
  • B.2.3.1.2.1 With a 4-Toluenesulfonate Leaving Group
  • B.2.3.1.2.2 With a Methanesulfonate Leaving Group
  • B.2.3.1.2.3 With a Trifluoromethanesulfonate Leaving Group
  • B.2.3.1.2.4 With Other Sulfur-Derived Leaving Groups
  • B.2.3.1.3 Intramolecular Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • B.2.3.2 Intramolecular Reaction Between an Alcohol and an Epoxide
  • B.2.3.3 Intramolecular Cyclization of an Alcohol With an Unsaturated Moiety
  • B.2.3.3.1 Electrophilic Addition to Unactivated Alkenes
  • B.2.3.3.2 Conjugate Addition to Electron-Deficient Alkenes
  • B.2.3.3.3 Tandem Knoevenagel-Oxa-Michael Cyclization
  • B.2.3.3.4 Tandem Olefination-Oxa-Michael Cyclization
  • B.2.4 DISCONNECTION D
  • B.2.4.1 Opening of a d-Altro 3,4-Epoxide
  • B.2.4.2 Inversion of Configuration
  • B.2.5 MISCELLANEOUS
  • B.2.5.1 Oxidative Ring Contraction of a d-gulo-glycal
  • B.2.5.2 Equilibration of a C-Pyranoside to a d-ido-C-Furanoside
  • B.2.5.3 [2+2] Photoaddition on a d-glucal Derivative
  • B.2.6 CONCLUSION
  • REFERENCES
  • B.3 - manno-C-Furanosides (VII/ent-VII, a-C-Arabinose)
  • DISCONNECTIONS
  • NATURAL OCCURRENCE
  • B.3.1 DISCONNECTION A
  • B.3.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor
  • B.3.1.1.1 Addition of Alkyl, Vinyl, and Alkynyl Organometallic Reagents
  • B.3.1.1.2 Friedel-Crafts C-Glycosylation
  • B.3.1.1.3 Nucleophilic Substitution With Cyanide
  • B.3.1.1.4 Nucleophilic Substitution With Allylsilanes
  • B.3.1.1.5 Nucleophilic Substitution With a 2-Silyloxypyrrole (Silyl Ketene Acetal)
  • B.3.1.2 Coupling Between a Radical Anomeric Carbon and an Unsaturated Radical Acceptor
  • B.3.2 DISCONNECTION B
  • B.3.2.1 Reduction of an Anomeric Hemiketal With an Hydride Donor
  • B.3.2.2 Single-Electron Transfer Reduction of a Heteroaryl-Substituted Ketose 2-O-Acetate
  • B.3.2.3 Addition of Radical Species to an Exocyclic Unsaturated Carbon at the Anomeric Position
  • B.3.3 DISCONNECTION C
  • B.3.3.1 Intramolecular Reaction Between an Alcohol and a Leaving Group
  • B.3.3.1.1 Acid-Catalyzed Cyclization of a 1,4-Diol
  • B.3.3.1.2 Regiospecific Cyclization by Diazotization of an Amino- Sugar
  • B.3.3.1.3 Intramolecular Reaction Between an Alcohol and a Halogen Leaving Group
  • B.3.3.1.4 Intramolecular Reaction Between an Alcohol and a Sulfonate Leaving Group
  • B.3.3.1.4.1 With a 4-Toluenesulfonate Leaving Group
  • B.3.3.1.4.2 With a Methanesulfonate Leaving Group
  • B.3.3.1.4.3 With a Trifluoromethanesulfonate Leaving Group
  • B.3.3.1.4.4 By Activation of the Alcohol With Diethylaminosulfur Trifluoride
  • B.3.3.1.5 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • B.3.3.2 Intramolecular Reaction Between an Alcohol and an Epoxide
  • B.3.3.3 Oxidative Ring Contraction of Pyranose Glucals
  • B.3.3.4 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety
  • B.3.3.4.1 Electrophilic Addition to Unactivated Alkenes
  • B.3.3.4.2 Conjugate Addition to Electron-Deficient Alkenes
  • B.3.3.4.3 Tandem Olefination-oxa-Michael Cyclization
  • B.3.4 DISCONNECTION D
  • B.3.5 CONCLUSION
  • REFERENCES
  • B.4 - Arabinose and Xylose C-Furanosides: Other Results and Further Insight Into Stereochemistry
  • DISCONNECTIONS
  • B.4.1 DISCONNECTION A
  • B.4.1.1 Coupling Between an Electrophilic Anomeric Carbon and a Nucleophilic Carbon Donor: Further Insight Into Woerpel 1,2- and 1, ...
  • B.4.1.1.1 Nucleophilic Substitutions Using Alkyl, Vinyl, and Alkynyl Organometallic Reagents: Further Insight Into Stereospecific Sub ...
  • B.4.1.1.2 Nucleophilic Substitutions With Stabilized Enolate Anions
  • B.4.1.1.3 Friedel-Crafts Glycosylation Reactions
  • B.4.1.1.4 Nucleophilic Substitutions With Cyanide Ions: Further Insight Into C-2 Participation
  • B.4.1.1.5 Nucleophilic Substitution With Allylsilanes: Further Insight Into Woerpel 1,2- and 1,3-Induction and Into Anchimeric Partic ...
  • B.4.1.2 Addition of an Anomeric Carbon Radical to an Unsaturated Radical Acceptor: Further Insight Into Additions of Carbohydrate R ...
  • B.4.2 DISCONNECTION B
  • B.4.2.1 Reduction of an Anomeric Hemiketal With a Hydride Donor: Further Insight Into C-5 Participation
  • B.4.2.2 Radical Addition to an Exocyclic Enol Ether at the Anomeric Position (exo-Glycal): Further Insight Into Stereoselective Hyd ...
  • B.4.3 DISCONNECTION C
  • B.4.3.1 Intramolecular Reaction Between an Alcohol and a Leaving Group
  • B.4.3.1.1 Acid-Catalyzed Cyclization of 1,4-Diols
  • B.4.3.1.2 Intramolecular Reaction Between an Alcohol or Ether and a Halogen Leaving Group
  • B.4.3.1.3 Intramolecular Reaction Between an Alcohol or Ether and a Sulfonate Leaving Group
  • B.4.3.1.3.1 With a 4-Toluenesulfonate Leaving Group
  • B.4.3.1.3.2 With a Methanesulfonate Leaving Group
  • B.4.3.1.3.3 With a Trifluoromethanesulfonate Leaving Group
  • B.4.3.1.4 Cyclization of a 1,4-Diol by a Mitsunobu-Type Reaction
  • B.4.3.2 Intramolecular Reaction Between an Alcohol and an Epoxide: Upon the Limits of Stereospecific Substitution and 5-exo Cycliza ...
  • B.4.3.3 Intramolecular Reaction Between an Alcohol and an Unsaturated Moiety
  • B.4.3.3.1 Electrophilic Additions to Alkenes: Further Insight Into Kinetic Cyclization of Alkenes
  • B.4.3.3.2 Oxa-Michael Addition to Electron-Deficient Alkenes
  • B.4.3.3.3 Tandem Olefination-oxa-Michael Additions of Carbohydrate Hemiacetals
  • B.4.3.3.4 Tandem Condensation-oxa-Michael Additions of Carbohydrate Hemiacetals
  • B.4.4 EQUILIBRATION PROCESSES
  • B.4.5 MISCELLANEOUS
  • B.4.6 CONCLUSION
  • REFERENCES
  • C - Applications of C-Furanosides
  • INTRODUCTION
  • C.1 PREPARATION OF C-FURANOSIDES
  • C.2 AGRO-INDUSTRY AND FARMING
  • C.2.1 Feed Additives
  • C.2.2 Protection of Rice Plants
  • C.2.3 Pesticides
  • C.2.4 Herbicides
  • C.2.5 Antifungals
  • C.3 LIGANDS FOR ASYMMETRIC CATALYSIS
  • C.4 PERFUMES, AROMAS, AND COSMETICS
  • C.5 IMAGING AND DIAGNOSTICS
  • C.5.1 Positron Emission Tomography
  • C.5.2 DNA Amplification
  • C.5.3 Diagnostic Monoclonal Antibodies
  • C.6 PHARMACEUTICAL INDUSTRY
  • C.6.1 Anthelmintic Activity
  • C.6.2 Antibiotic Activity
  • C.6.3 Antidiabetic Activity
  • C.6.4 Antidiatom Activity
  • C.6.5 Antifungal Activity
  • C.6.6 Antihemolytic Activity
  • C.6.7 Antiinflammatory Activity
  • C.6.8 Antisense RNA Agents
  • C.6.9 Antitumor Activity
  • C.6.10 Antiviral Activity
  • C.6.11 Cardiovascular
  • C.6.12 Enzyme Inhibitors
  • C.6.13 Immunomodulating Activity-Autoimmune Diseases
  • C.6.14 Insecticidal Activity
  • C.6.15 Lysosomal Diseases
  • C.6.16 Neurodegenerative Diseases
  • C.6.17 Unspecified/Multiple Activities
  • C.6.18 Nucleosides-Nucleotides
  • C.6.19 Protein Solubilization
  • C.6.20 Vaccines
  • C.6.21 Vitamin D synthesis
  • C.6.22 Sulfa Derivatives
  • C.7 POLYMERS
  • REFERENCES
  • D - 1H NMR Vicinal Coupling Constants of C-Furanosides
  • INTRODUCTION
  • D.1 1H NMR DATA IN GALACTO-C-FURANOSIDES (I, ß-C-LYXOSE), CORRESPONDING TO CHAPTER A.1
  • D.2 1H NMR DATA IN D- AND L-ALTRO-C-FURANOSIDES (II/ENT-II, a-C-LYXOSE, a-C-RIBOSE), CORRESPONDING TO CHAPTER A.2
  • D.3 COMPARISON BETWEEN 1H NMR DATA IN GALACTO-C-FURANOSIDES (I, ß-C-LYXOSE), CORRESPONDING TO CHAPTER A.1, AND IN D- AND L-ALTR ...
  • D.4 1H NMR DATA IN ALLO-C-FURANOSIDES (VI, ß-C-RIBOSE), CORRESPONDING TO CHAPTER A.3
  • D.5 COMPARISON BETWEEN 1H NMR DATA IN D- AND L-ALTRO-C-FURANOSIDES (II/ENT-II, a-C-LYXOSE, a-C-RIBOSE), CORRESPONDING TO CHAPTE ...
  • D.5.1 Remark Concerning 13C NMR Data in Ribose Series
  • D.6 1H NMR DATA IN D- AND L-GLUCO-C-FURANOSIDES (III/ENT-III, ß-C-ARABINOSE, ß-C-XYLOSE), CORRESPONDING TO CHAPTER B.1
  • D.7 1H NMR DATA IN D- AND L-IDO-C-FURANOSIDES (V/ENT-V, a-C-D-XYLOSE, a-C-L-XYLOSE), CORRESPONDING TO CHAPTER B.2
  • D.8 COMPARISON BETWEEN 1H NMR DATA IN D- AND L-GLUCO-C-FURANOSIDES (III/ENT-III, ß-C-ARABINOSE, ß-C-XYLOSE), CORRESPONDING TO C ...
  • D.9 1H NMR DATA IN D- AND L-MANNO-C-FURANOSIDES (VII/ENT-VII, a-C-ARABINOSE), CORRESPONDING TO CHAPTER B.3
  • D.10 COMPARISON BETWEEN 1H NMR DATA IN GALACTO-C-FURANOSIDES (I, ß-C-LYXOSE), CORRESPONDING TO CHAPTER A.1, AND IN D- AND L-GLUC ...
  • D.11 COMPARISON BETWEEN 1H NMR DATA IN D- AND L-ALTRO-C-FURANOSIDES (II/ENT-II, a-C-LYXOSE, a-C-RIBOSE), CORRESPONDING TO CHAPTE ...
  • D.12 CONCLUSION AND SUMMARY OF EXPECTED COUPLING CONSTANTS
  • REFERENCES
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Z
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

196,35 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen