Oligomerization in Health and Disease

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 7. Mai 2013
  • |
  • 656 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-386950-0 (ISBN)
 
This special volume of Progress in Molecular Biology and Translational Science focuses on oligomerization in health and disease.

Key features:

* Contributions from leading authorities * Informs and updates on all the latest developments in the field

1877-1173
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 25,28 MB
978-0-12-386950-0 (9780123869500)
0123869501 (0123869501)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Oligomerization in Health and Disease
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Section I: Structural, Physicochemical, and Evolutionary Aspects of Protein Oligomerization
  • Chapter One: Evolutionary, Physicochemical, and Functional Mechanisms of Protein Homooligomerization
  • 1. Functional Roles of Homooligomers in a Cell
  • 2. Experimental Characterization and Computational Prediction
  • 3. Physicochemical Properties of Homooligomeric Interfaces
  • 4. Evolutionary Mechanisms to Form Homooligomers
  • 4.1. Domain swapping
  • 4.2. Structural oligomerization motifs
  • 4.3. Amino acid substitutions
  • 4.4. Insertions and deletions
  • 5. Regulation of Protein Activity Through Oligomerization
  • 6. Oligomerization, Protein Aggregation, and Related Diseases
  • 7. Conclusions
  • Acknowledgment
  • References
  • Chapter Two: Structural, Evolutionary, and Assembly Principles of Protein Oligomerization
  • 1. Introduction: From a Crystal to a Quaternary Structure
  • 1.1. Increase in structural data over time
  • 1.2. The crystalline lattice and the problem of nonbiological contacts
  • 1.3. Distinguishing biological from nonbiological protein contacts
  • 1.4. Inferring biological assemblies
  • 2. Homomer Morphology
  • 2.1. Size of homomers
  • 2.2. Symmetry types
  • 2.3. Emergence of symmetric structures
  • 2.4. Classification of homomers to facilitate their study
  • 3. Interfaces in Homomers
  • 3.1. Defining the protein surface and the interface
  • 3.2. Interface properties: Focusing on the amino acid composition
  • 4. Creating Interfaces in Homomers
  • 4.1. Are point mutations likely to create new interfaces?
  • 4.2. Molecular mechanisms associated to changes in oligomeric state
  • 5. Evolution of Homomer Geometry and Diversity Through Gene Duplication
  • 5.1. Probable oligomeric state transitions
  • 5.2. Evolution through gene duplication
  • 6. Assembly of Homomers
  • 6.1. Assembling into dimers
  • 6.2. Assembling into higher-order oligomers
  • 6.3. When assembly recapitulates evolution
  • 7. Conclusion
  • Acknowledgments
  • References
  • Chapter Three: Physicochemical Principles of Protein Aggregation
  • 1. Introduction
  • 2. Linear Polymers
  • 3. Helical Polymers
  • 4. Time Evolution of Linear and Helical Polymers
  • 5. Time Evolution of Fibrils
  • 6. The Aggregation Rate
  • 7. Intrinsic Determinants of Protein Aggregation
  • 8. Prediction of Aggregation Rates
  • 9. Prediction of Aggregation-Prone Regions in Native States of Proteins
  • 10. Life on the Edge-The Role of Protein Concentration in Promoting Aggregation
  • 11. Conclusions
  • References
  • Chapter Four: Structural Aspects of Amyloid Formation
  • 1. Introduction
  • 2. Structural Properties of Amyloid Fibrils
  • 2.1. Actual structures
  • 2.2. Methods for the structural analysis of amyloid fibrils
  • 3. Structural Properties of Amyloid Precursors
  • 3.1. Amyloid precursors
  • 3.2. Methods for the structural characterization of flexible proteins
  • 3.3. Structural studies of amyloid precursors
  • 4. Conclusions
  • References
  • Section II: Oligomerization in Seven-Transmembrane Receptors
  • Chapter Five: Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers
  • 1. Introduction
  • 1.1. G protein-coupled receptors
  • 1.2. GPCR dimerization/oligomerization
  • 1.3. Role of GPCR dimerization/oligomerization in ontogeny
  • 1.4. Effects of ligand binding on GPCR dimerization/oligomerization
  • 1.5. Role of GPCR dimerization/oligomerization in the GEF activity
  • 1.6. Effects of GPCR dimerization/oligomerization in G protein-independent signaling, protein scaffolding, and trafficking
  • 2. Insights from In Vitro Experiments into the GPCR Regions Involved in Receptor-Receptor Interaction
  • 3. Computational Modeling of GPCR Dimerization/Oligomerization: Sequence-Based Methods
  • 4. Computational Modeling of GPCR Dimerization/Oligomerization: Structure-Based Predictions
  • 4.1. The FiPD-based approach to predict the quaternary structures of membrane proteins
  • 4.2. Application of the FiPD-based approach to selected GPCRs
  • 5. Graph Theory-Based Investigation of the Structural Communication in GPCR Dimers
  • 6. Conclusions
  • Acknowledgments
  • References
  • Chapter Six: Challenges in the Development of Heteromer-GPCR-Based Drugs
  • 1. Introduction
  • 2. GPCR Heteromers as Therapeutic Targets
  • 3. Biased Signaling
  • 4. Allosteric Modulators
  • 5. Dual Versus Bivalent Drugs
  • 6. Screening
  • 6.1. Direct binding-based approach
  • 6.2. Indirect signaling-based approach
  • 7. Conclusions
  • Acknowledgments
  • References
  • Chapter Seven: Di/Oligomerization of GPCRs-Mechanisms and Functional Significance
  • 1. Introduction
  • 2. Dimers in Living Cells
  • 3. Operational Dimers
  • 3.1. Core dimerization
  • 3.2. Dimerization through extracellular domains
  • 3.3. Positive and negative cooperativity (allosteric regulation)
  • 3.4. Intermolecular cooperation
  • 4. Pharmacological Diversity of Dimerization
  • 5. In Vivo Evidence of Dimerization
  • 6. Dimerization in Health and Disease
  • 6.1. Targeting dimers
  • 6.2. Deorphanization of receptors
  • 7. Conclusion
  • References
  • Further Reading
  • Chapter Eight: G Protein-Coupled Receptor Heterocomplexes in Neuropsychiatric Disorders
  • 1. Introduction
  • 2. Structure of GPCR Heteromers
  • 3. Role of GPCR Heterocomplexes in Neuropsychiatric Disorders
  • 4. Adenosine and Dopamine Receptors
  • 4.1. Adenosine A1 and dopamine D1 receptors
  • 4.2. Adenosine A2A and dopamine D2 receptors
  • 4.3. Adenosine A2A, dopamine D2, and mGlu5 receptors
  • 4.4. Adenosine A2A, dopamine D2, and cannabinoid CB1 receptors
  • 4.5. Serotonin and glutamate receptors
  • 5. Conclusion
  • Acknowledgment
  • References
  • Chapter Nine: Disease-Specific Heteromerization of G-Protein-Coupled Receptors That Target Drugs of Abuse
  • 1. Introduction
  • 1.1. Opioid receptors
  • 1.2. Cannabinoid receptors
  • 1.3. Dopamine receptors
  • 2. Receptor Heteromerization
  • 2.1. Methods to study GPCR heteromerization
  • 2.1.1. Techniques to study GPCR heteromerization in vitro
  • 2.1.2. Techniques to study GPCR heteromerization in vivo
  • 2.2. Opioid receptor heteromerization
  • 2.3. Cannabinoid receptor heteromerization
  • 2.4. Dopamine receptor heteromerization
  • 3. Heteromers in Disease
  • 4. Conclusions
  • Acknowledgments
  • References
  • Section III: Oligomerization in Ion Channels
  • Chapter Ten: Social Networking Among Voltage-Activated Potassium Channels
  • 1. Introduction
  • 1.1. The concept of social networking as it pertains to voltage-activated potassium channels in cells
  • 1.2. Getting together to regulate K+ flux
  • 1.3. The early life of a Kv channel-Establishing an intimate social circle
  • 1.4. What motivates the social networking?
  • 2. Kv Channel Oligomerization: Gathering, Traveling, and Settling Down Together
  • 2.1. Getting together in the right place
  • 2.2. Partnering up with ß subunits
  • 2.3. CaM joins the gang
  • 2.4. Kv channel macrocomplexes: Influencing and being influenced by the larger social network
  • 2.5. Is it possible to change Kv channel partnerships in the plasma membrane?
  • 3. The Dark Side of Kv Channel Social Networking
  • 4. Responding to the Environment: Kv Channel Oligomers as Signal Transducers
  • 5. Diversity Within the Social Circle
  • 6. Drugs in the Neighborhood
  • 7. Conclusions
  • References
  • Chapter Eleven: Oligomerization of the Mitochondrial Protein VDAC1: From Structure to Function and Cancer Therapy
  • 1. Overview
  • 2. Mitochondria and Apoptosis
  • 3. Bax-, Bak-Mediated Apoptosis Involves Their Oligomerization
  • 4. VDAC1 as a Gatekeeper of Mitochondrial Function
  • 4.1. VDAC isoforms, structure, and channel activity
  • 4.1.1. VDAC isoforms and functions
  • 4.1.2. VDAC1 membrane topology and molecular structure
  • 4.1.2.1. VDAC1 structure and the N-terminal domain function
  • 4.1.2.2. VDAC1 oligomeric structure
  • 4.1.3. Channel activity of VDAC1
  • 5. VDAC1 and Apoptosis: Structure-Function
  • 5.1. Proposed mechanisms of VDAC1-mediated apoptosis
  • 6. VDAC1 and Cyto c Release
  • 6.1. VDAC1 oligomerization and the release of Cyto c
  • 6.2. VDAC1 N-terminal and the release of Cyto c
  • 6.3. Signaling mechanisms for induction of VDAC1 oligomerization
  • 7. VDAC1 Overexpression Leads to Oligomerization and Induction of Cell Death
  • 7.1. Overexpression of VDAC from different sources resulted in apoptotic cell death
  • 7.2. VDAC1 expression in cancers is enhanced by proapoptotic drugs
  • 7.3. Proposed mechanism for cell death induction by VDAC1 overexpression
  • 8. VDAC1, Bax, and Bak Hetero-Oligomers Mediate Cyto c Release
  • 9. Prospective
  • Acknowledgment
  • References
  • Chapter Twelve: Consequences of Dimerization of the Voltage-Gated Proton Channel
  • 1. Introduction
  • 2. Dimerization of Membrane Proteins
  • 3. Evidence that Proton Channels Exist as Dimers
  • 3.1. Not all HV1 are likely to be dimers
  • 4. Comparison of the Properties of Monomeric and Dimeric Constructs of HV1
  • 4.1. What does ``cooperative gating´´ mean for ion channels?
  • 4.2. What is gating charge and how is it measured?
  • 4.3. Evidence that gating of the two protomers in HV1 is ``cooperative´´ (not independent)
  • 4.4. Activation kinetics differs between monomer and dimer
  • 5. Proposals for the HV1 Dimer Interface
  • 6. Physiological Consequences of Dimerization of HV1
  • 6.1. Does the enhanced gating mode in phagocytes reflect dimer-to-monomer conversion of HV1?
  • 6.2. Might the differences in properties of monomeric and dimeric constructs provide clues to the functional importance o ...
  • 7. Conclusions
  • Acknowledgments
  • References
  • Chapter Thirteen: Receptor Heteromeric Assembly-How It Works and Why It Matters: The Case of Ionotropic Glutamate Receptors
  • 1. Introduction
  • 2. Ionotropic Glutamate Receptors Mediate Excitatory Neurotransmission
  • 3. Glutamate-Gated Ion Channels Assemble into Tetramers
  • 4. The iGluR Assembly Pathway
  • 4.1. Initiating subunit assembly: The NTD
  • 4.1.1. The NTD dimer interface in ``preferential´´ versus ``obligatory´´ assemblies
  • 4.1.2. Related interfaces in different receptor families
  • 4.2. Tetramerization of iGluRs: The LBD sector
  • 4.3. Subunit reequilibration
  • 4.4. Tetramerization of iGluR: The transmembrane domain
  • 4.4.1. Assembly determinants in the TMD
  • 4.4.2. Molecular determinants of heteromerization in related tetrameric ion channels
  • 5. Conclusion
  • Acknowledgments
  • References
  • Section IV: Oligomerization in Enzymes
  • Chapter Fourteen: The Structural Basis for the Allosteric Regulation of Ribonucleotide Reductase
  • 1. Introduction
  • 2. Ribonucleotide Reductase
  • 2.1. Allosteric regulation
  • 2.2. The C- and S-sites of Saccharomyces cerevisiae RR and Homo sapiens RR (hRRM1)
  • 2.3. The role of Loop 1 and Loop 2 in allosteric regulation of RR1
  • 2.4. ATP and dATP binding at the A-site (ATP cone)
  • 2.5. Subunit oligomerization and allosteric regulation of RR
  • 2.6. The X-ray structure of the dATP-induced hexamer of Class 1 RNR
  • 2.7. The oligomeric state of hRR in the presence of nonnatural ligand
  • 3. Targeting Large Subunit of RR
  • 4. Conclusions
  • Acknowledgments
  • References
  • Chapter Fifteen: Oligomerization of Dynamin Superfamily Proteins in Health and Disease
  • 1. Structure and Function of Dynamin Superfamily Proteins
  • 1.1. Introduction
  • 1.2. Dynamins
  • 1.3. Dynamin-like proteins
  • 1.4. Myxovirus resistance proteins
  • 1.5. Dynamin-related mitochondrial fusion proteins
  • 1.6. Guanylate binding proteins
  • 1.7. Atlastins
  • 1.8. EH domain containing proteins
  • 1.9. Bacterial dynamins
  • 2. Structural and Mechanistic Insights into Dynamin Oligomerization
  • 2.1. The stalk mediates oligomerization of dynamin
  • 2.2. Regulatory interactions of the stalk
  • 2.3. G domain dimerization links neighboring helical turns
  • 2.4. Right- versus left-handed dynamin helix
  • 2.5. Scission model
  • 3. Structural Insights into Disease-Inducing Mutations in Dynamin
  • 4. Outlook
  • Acknowledgments
  • References
  • Chapter Sixteen: Multimerization of the Dnmt3a DNA Methyltransferase and Its Functional Implications
  • 1. Introduction to Dnmt3 Enzymes and DNA Methylation
  • 2. Interaction of Dnmt3a and 3L Leads to Stimulation of the Catalytic Activity
  • 3. Dnmt3a and 3L Form a Heterotetrameric Complex Containing Two Active Sites
  • 4. Dnmt3a Forms Long Linear Oligomers and Shows Binding to Parallel DNA Molecules
  • 5. Multimeric Complexes Containing Dnmt3a and Dnmt3b are Formed as Well
  • 6. Dnmt3L Disrupts Oligomerization of Dnmt3a
  • 7. Oligomerization of Dnmt3a and Dnmt3a/3L Complexes on DNA
  • 8. Conclusion
  • References
  • Chapter Seventeen: Oligomerization in Endoplasmic Reticulum Stress Signaling
  • 1. Introduction
  • 2. Endoplasmic Reticulum Stress Signaling: The Unfolded Protein Response
  • 2.1. General overview
  • 2.2. ATF6
  • 2.3. PERK
  • 3. IRE1 Structure, Signaling, and Interacting Partners
  • 3.1. IRE1 structure and activation in the yeast Saccharomyces cerevisiae
  • 3.2. IRE1 structure and activation in human
  • 4. The UPRosome
  • 4.1. Upstream components influencing the activity of IRE1a
  • 4.1.1. BiP, a master regulator
  • 4.1.2. TLR signaling leads to IRE1a activation in macrophages
  • 4.1.3. PTP-1B potentiates IRE1a signaling upon ER stress
  • 4.1.4. BAX and BAK positively regulate IRE1a activation
  • 4.1.5. Hsp90 and Cdc37 regulate the kinase domain of IRE1a
  • 4.1.6. Hsp72 enhances IRE1a/XBP1 signaling
  • 4.2. IRE1a downstream interaction partners and signals
  • 4.2.1. JNK pathway activation through TRAF2/ASK1
  • 4.2.2. XBP1 mRNA splicing as a primary response of IRE1a activation
  • 4.2.3. IRE1-dependent decay of mRNA
  • 5. Manipulating Protein Oligomerization in UPR Signaling and Novel Therapeutic Strategies
  • 6. Conclusion
  • Acknowledgments
  • References
  • Section V: Oligomerization in Regulatory Proteins
  • Chapter Eighteen: Toll-IL-1-Receptor-Containing Adaptor Molecule-1: A Signaling Adaptor Linking Innate Immunity to Adapti ...
  • 1. Introduction
  • 2. TLR3-TICAM-1 Pathway
  • 2.1. Expression and localization of TLR3
  • 2.2. Recognition of dsRNA
  • 2.3. Mechanism of dsRNA uptake
  • 3. TLR4-TICAM-1 Pathway
  • 4. TICAM-1 Signaling
  • 4.1. Structure of TICAM-1
  • 4.2. TICAM-1 oligomerization and signaling
  • 4.3. Induction of apoptosis/necroptosis
  • 4.4. Induction of type I and III IFNs and proinflammatory cytokines
  • 4.5. Induction of adaptive immunity
  • 5. TICAM-1 and Host Defense
  • 5.1. Role of TLR3-TICAM-1 in virus infection
  • 5.2. Antiviral cellular immunity induced by the TLR3-TICAM-1 pathway
  • 5.3. TLR3-TICAM-1 pathway in antitumor immunity
  • 6. Concluding Remarks
  • Acknowledgments
  • References
  • Chapter Nineteen: Assembly of Gamma-Tubulin Ring Complexes: Implications for Cell Biology and Disease
  • 1. Introduction
  • 2. Composition of Gamma-Tubulin Complexes
  • 3. Structure of Gamma-Tubulin Complex Components
  • 4. Assembly of Gamma-Tubulin Complexes In Vitro and In Vivo
  • 5. Mechanisms of Gamma-Tubulin-Dependent Nucleation of Microtubules
  • 6. Gamma-Tubulin Complexes in Disease
  • 7. Conclusions
  • References
  • Chapter Twenty: Chemokine Oligomerization in Cell Signaling and Migration
  • 1. Introduction
  • 1.1. The chemokine superfamily
  • 1.2. Chemokine-mediated cell migration
  • 2. Functional Effects of Chemokine Oligomerization
  • 3. Chemokine Structure
  • 3.1. Tertiary structure
  • 3.2. Dimer structures
  • 3.3. Higher-order quaternary structures
  • 4. Chemokine Oligomerization and GAG Binding
  • 5. Structural Methods for Oligomers and GAG Interactions
  • 5.1. NMR of protein-protein complexes
  • 5.2. NMR of GAG-protein complexes
  • 5.3. Global structure of oligomers from SAXS
  • 5.4. MS analysis of chemokine oligomerization
  • 5.4.1. ``Native spray´´ analysis
  • 5.4.2. Hydroxyl radical protein footprinting analysis
  • 6. Conclusions
  • Acknowledgments
  • References
  • Chapter Twenty-One: Oligomerization of Rab/Effector Complexes in the Regulation of Vesicle Trafficking
  • 1. Introduction
  • 2. Membrane Trafficking by Rab GTPases
  • 3. Structural Basis for Rab/Effector Recognition
  • 3.1. Structures of Rab3 and Rab27 complexes
  • 3.2. Structures of Rab4 and Rab22 in complex with Rabenosyn-5
  • 3.3. Structure of Rab5 in complex with EEA1
  • 3.4. Structure of Rab5 in complex with Rabaptin-5
  • 3.5. Structure of Rab6 in complex with GCC185
  • 3.6. Structure of Rab6 in complex with DENND5
  • 3.7. Structure of Rab7 in complex with RILP
  • 3.8. Structure of Rab8 in complex with OCRL1
  • 3.9. Structures of Rab11 in complex with FIPs
  • 4. Modes of Rab/Effector Oligomerization
  • 4.1. Heterotetrameric assemblies
  • 4.2. Monovalent a-helical RBDs
  • 4.3. Nonhelical RBDs
  • 5. Thermodynamics of Rab/Effector Binding
  • 6. Rabs and Disease
  • 6.1. Rab27 and Griscelli disease
  • 6.2. Subversion of Rab GTPases by pathogens
  • 6.3. Rabs associated with cancer and neurodegeneration
  • 6.4. Rab/effector oligomers and drug design
  • 7. Conclusions
  • References
  • Index
  • Color Plate

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

153,51 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok