Brydson's Plastics Materials

 
 
Butterworth-Heinemann (Verlag)
  • 8. Auflage
  • |
  • erschienen am 27. September 2016
  • |
  • 892 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-37022-6 (ISBN)
 

Brydson's Plastics Materials, Eighth Edition, provides a comprehensive overview of the commercially available plastics materials that bridge the gap between theory and practice. The book enables scientists to understand the commercial implications of their work and provides engineers with essential theory.

Since the previous edition, many developments have taken place in plastics materials, such as the growth in the commercial use of sustainable bioplastics, so this book brings the user fully up-to-date with the latest materials, references, units, and figures that have all been thoroughly updated.

The book remains the authoritiative resource for engineers, suppliers, researchers, materials scientists, and academics in the field of polymers, including current best practice, processing, and material selection information and health and safety guidance, along with discussions of sustainability and the commercial importance of various plastics and additives, including nanofillers and graphene as property modifiers.

With a 50 year history as the principal reference in the field of plastics material, and fully updated by an expert team of polymer scientists and engineers, this book is essential reading for researchers and practitioners in this field.


  • Presents a one-stop-shop for easily accessible information on plastics materials, now updated to include the latest biopolymers, high temperature engineering plastics, thermoplastic elastomers, and more
  • Includes thoroughly revised and reorganised material as contributed by an expert team who make the book relevant to all plastics engineers, materials scientists, and students of polymers
  • Includes the latest guidance on health, safety, and sustainability, including materials safety data sheets, local regulations, and a discussion of recycling issues
  • Englisch
  • Woburn
Elsevier Science
  • 29,47 MB
978-0-323-37022-6 (9780323370226)
0323370225 (0323370225)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Brydson's Plastics Materials
  • Dedication
  • Brydson's Plastics Materials
  • Copyright
  • Contents
  • About the Authors
  • Preface to the Eighth Edition
  • Acknowledgments
  • Abbreviations for Plastics
  • STANDARDS FOR PLASTICS MATERIALS
  • STANDARDS FOR THERMOPLASTIC ELASTOMERS
  • ISO STANDARDS FOR VARIOUS PLASTICS ADDITIVES
  • REFERENCES
  • Standard Test Methods
  • REFERENCES
  • 1 - Plastics Materials: Introduction and Historical Development
  • 1.1 INTRODUCTION
  • 1.2 THE FIRST PLASTICS
  • 1.3 PRE-1900
  • 1.4 1900-1930
  • 1.4.1 Casein
  • 1.4.2 Formaldehyde Resins
  • 1.4.3 Cellulose Acetate
  • 1.5 1930-1940
  • 1.6 1940-1950
  • 1.7 1950-1960
  • 1.8 1960-2000
  • 1.9 RAW MATERIALS FOR PLASTICS
  • 1.10 PLASTICS NOW
  • 1.10.1 Health and Safety and the Environment
  • 1.10.2 Sustainability
  • REFERENCES
  • BIBLIOGRAPHY
  • 2 - The Chemical Nature of Plastics Polymerization
  • 2.1 INTRODUCTION
  • 2.2 LINEAR AND CROSS-LINKED MOLECULES
  • 2.3 COPOLYMERS AND BLENDS
  • 2.3.1 Random Copolymers
  • 2.3.2 Block Copolymers
  • 2.3.3 Alternating Copolymers
  • 2.3.4 Graft Copolymers
  • 2.3.5 Other Methods of Combining Polymers
  • 2.4 MOLAR MASS AND MOLAR MASS DISTRIBUTION
  • 2.4.1 General Information
  • 2.4.2 Measurement of Molar Mass and Molar Mass Distribution
  • 2.5 THE CHEMISTRY OF CHAIN REACTION POLYMERIZATION
  • 2.5.1 Free-Radical Polymerization
  • 2.5.2 Basic Kinetics of Free-Radical Addition Polymerization
  • 2.5.3 Controlled Radical Polymerization
  • 2.5.4 Ionic Polymerization
  • 2.5.5 Ziegler-Natta and Metallocene Polymerization
  • 2.6 STEP REACTION POLYMERIZATION
  • REFERENCES
  • 3 - States of Aggregation in Polymers
  • 3.1 INTRODUCTION
  • 3.2 AMORPHOUS POLYMERS
  • 3.2.1 Physical States in Amorphous Polymers
  • 3.2.2 The Glass Transition Temperature
  • 3.2.3 Sub-Tg Transitions
  • 3.2.4 Physical Aging (Struik, 1978)
  • 3.2.5 Orientation in Amorphous Polymers
  • 3.3 CRYSTALLINE POLYMERS
  • 3.3.1 Introduction
  • 3.3.2 Crystallinity in Polymers
  • 3.3.2.1 Single Crystals
  • 3.3.2.2 Reexamination of Crystalline Structure in Bulk Polymers (Bassett, 1981)
  • 3.3.3 Physical States in Crystalline Polymers
  • 3.3.4 Temperature Dependence of Crystallization Rate
  • 3.3.5 Orientation in Crystalline Polymers
  • 3.3.6 Liquid Crystal Polymers
  • 3.4 CROSS-LINKED STRUCTURES
  • 3.5 IMPACT MODIFICATION OF PLASTICS
  • 3.5.1 Copolymers
  • 3.5.2 Plasticizers
  • 3.5.3 Polymer Blends
  • 3.5.4 Hard Fillers, Pigments, and Foams
  • 3.5.5 Core-Shell Elastomer Impact Modifier Particles
  • 3.6 SUMMARY
  • REFERENCES
  • BIBLIOGRAPHY
  • 4 - Relation of Structure to Thermal and Mechanical Properties
  • 4.1 INTRODUCTION
  • 4.2 FACTORS AFFECTING THE GLASS TRANSITION TEMPERATURE
  • 4.2.1 General Considerations
  • 4.2.2 Effect of Molar Mass
  • 4.2.3 Effect of Copolymerization
  • 4.2.4 Effect of Cross-Linking
  • 4.2.5 Effect of Liquids
  • 4.3 FACTORS AFFECTING THE ABILITY TO CRYSTALLIZE
  • 4.4 FACTORS AFFECTING THE CRYSTALLINE MELTING POINT
  • 4.5 TRANSITION TEMPERATURES IN COPOLYMERS
  • 4.6 THERMODYNAMIC TREATMENT OF MELTING TEMPERATURE
  • 4.7 SOME INDIVIDUAL PROPERTIES
  • 4.7.1 Melt Viscosity
  • 4.7.2 Yield Strength and Modulus
  • 4.7.3 Density
  • 4.7.4 Toughness
  • REFERENCES
  • BIBLIOGRAPHY
  • 5 - Relation of Structure to Chemical Properties
  • 5.1 INTRODUCTION
  • 5.2 CHEMICAL BONDS
  • 5.3 POLYMER SOLUBILITY
  • 5.3.1 Solubility Parameters
  • 5.3.1.1 Amorphous Nonpolar Polymers and Amorphous Nonpolar Solvents
  • 5.3.1.2 Crystalline Nonpolar Polymers and Amorphous Solvents
  • 5.3.1.3 Amorphous Nonpolar Polymers and Crystallizing Solvents
  • 5.3.1.4 Amorphous Polar Polymers and Solvents
  • 5.3.1.5 Crystalline Polar Polymers and Solvents
  • 5.3.1.6 Vulcanized Rubber and Thermosetting Plastics
  • 5.3.2 Plasticizers
  • 5.3.3 Other Additives
  • 5.3.4 Determination of Solubility Parameter
  • 5.3.4.1 From Heat of Vaporization Data
  • 5.3.4.2 By Swelling of Cross-Linked Polymers
  • 5.3.4.3 From Structural Formulae
  • 5.3.5 Thermodynamics and Solubility
  • 5.4 CHEMICAL REACTIVITY
  • 5.5 EFFECTS OF THERMAL, PHOTOCHEMICAL, AND HIGH-ENERGY RADIATION
  • 5.6 AGING AND WEATHERING
  • 5.7 DIFFUSION AND PERMEABILITY
  • 5.7.1 Introduction
  • 5.7.2 Diffusion through a Film
  • 5.7.3 Effect of Polymer and Diffusant Structure
  • 5.8 FIRE AND PLASTICS
  • 5.8.1 Introduction
  • 5.8.2 Fire Testing
  • 5.8.2.1 Limiting Oxygen Index
  • 5.8.2.2 Flammability Tests
  • 5.8.2.3 Cone Calorimeter
  • REFERENCES
  • BIBLIOGRAPHY
  • 6 - Relation of Structure to Electrical and Optical Properties
  • 6.1 ELECTRICAL PROPERTIES
  • 6.1.1 Introduction
  • 6.1.2 Dielectric Constant, Power Factor, and Structure
  • 6.1.3 Some Quantitative Relationships for Dielectrics
  • 6.1.4 Electronic Applications of Polymers
  • 6.1.5 Electrically Conductive Polymers
  • 6.1.5.1 Conduction Mechanism and Doping
  • 6.1.5.1.1 Applications of ICPs
  • 6.2 OPTICAL PROPERTIES
  • 6.2.1 Refractive Index
  • 6.2.2 Birefringence
  • 6.2.2.1 Implications of Birefringence in Plastics
  • 6.2.2.2 Measurement of Birefringence
  • 6.2.3 Transparency, Haze, and Clarity
  • 6.2.4 Surface Appearance: Gloss and Reflectance
  • 6.2.5 Color
  • 6.2.5.1 Assessment of Color
  • 6.2.5.2 Pigments and Dyes
  • 6.2.5.3 Printability
  • REFERENCES
  • BIBLIOGRAPHY
  • 7 - Additives for Plastics
  • 7.1 INTRODUCTION
  • 7.2 ANTIOXIDANTS
  • 7.2.1 Oxidation of Hydrocarbon Polymers
  • 7.2.2 Antioxidant Classes and Mechanisms of Action
  • 7.2.2.1 Chain-Breaking Antioxidants
  • 7.2.2.2 Preventive Antioxidants
  • 7.2.3 Antioxidants-Thermal Stabilizers
  • 7.2.3.1 Hindered Phenols and Aromatic Amines
  • 7.2.3.2 Phosphite Esters
  • 7.2.3.3 Sulfur-Containing Antioxidants
  • 7.2.4 Antioxidants-Photostabilizers and Photoactivators
  • 7.2.4.1 UV-Absorbers and Screens
  • 7.2.4.2 Hindered Amine Stabilizers
  • 7.2.4.3 Metal Complexes of Dithioc Acids as Photostabilizers
  • 7.2.4.4 Metal Complexes as Photoactivators
  • 7.2.5 Antioxidants-Metal Deactivators
  • 7.2.6 Biological Antioxidants
  • 7.2.7 High Molar Mass and Reactive Antioxidants
  • 7.2.8 Antioxidant Mixtures-Synergism and Antagonism
  • 7.2.9 Stabilizers against Dehydrochlorination
  • 7.3 COLORANTS
  • 7.3.1 Introduction
  • 7.3.2 Production of Color
  • 7.3.2.1 Printing
  • 7.3.2.2 Decorative Films
  • 7.3.3 Additives for Coloration
  • 7.3.3.1 Dyestuffs
  • 7.3.3.2 Pigments
  • 7.3.3.3 Inorganic Pigments
  • 7.3.3.4 Organic Pigments
  • 7.3.3.5 Types of Pigment
  • 7.3.3.6 Special Effect Pigments
  • 7.4 PLASTICIZERS AND SOFTENERS
  • 7.5 LUBRICANTS AND FLOW PROMOTERS
  • 7.6 IMPACT MODIFIERS
  • 7.6.1 Types of Impact Modifiers
  • 7.6.2 Addition of Impact Modifiers
  • 7.7 FIRE RETARDANT ADDITIVES
  • 7.7.1 Terminology
  • 7.7.1.1 Primary and Secondary Flame Retardants (Synergists)
  • 7.7.1.2 Additive and Reactive Flame Retardants
  • 7.7.2 Fire and Flammability Testing
  • 7.7.3 Flame Retardant Mechanisms
  • 7.7.4 Main Flame Retardant Additives
  • 7.7.4.1 Halogen Flame Retardants
  • 7.7.4.2 Antimony Oxides
  • 7.7.4.3 Flame Retardant Fillers
  • 7.7.4.4 Nanoclays
  • 7.7.4.5 Boric Acid and Borates
  • 7.7.4.6 Ammonium Polyphosphates
  • 7.7.4.7 Organic Phosphorus Compounds
  • 7.7.4.8 Expandable Graphite
  • 7.8 BLOWING AGENTS
  • 7.8.1 Physical Blowing Agents (Murphy, 1996)
  • 7.8.2 Chemical Blowing Agents
  • 7.9 OTHER ADDITIVES
  • 7.9.1 Cross-Linking Additives
  • 7.9.2 Surface Modifiers
  • 7.9.3 Compatibilizers for Polymer Blends
  • 7.9.4 Viscosity Modifiers
  • 7.9.5 Biocides
  • 7.9.6 Nucleating and Clarifying Agents
  • 7.9.6.1 Nucleating Agents (Equistar, 2015)
  • 7.9.6.2 Clarifying Agents (Equistar, 2015)
  • REFERENCES
  • BIBLIOGRAPHY
  • 8 - Fillers (Including Fiber Reinforcements)
  • 8.1 INTRODUCTION
  • 8.2 REASONS FOR USING FILLERS
  • 8.3 IMPORTANT CHARACTERISTICS OF PARTICULATE FILLERS FOR PLASTICS APPLICATIONS
  • 8.3.1 Cost
  • 8.3.2 Chemical Composition
  • 8.3.3 Specific Gravity (Density)
  • 8.3.4 Hardness
  • 8.3.5 Morphology (Particle Size and Shape)
  • 8.3.5.1 Particle Size
  • 8.3.5.2 Particle Shape
  • 8.3.5.3 Particle Packing as Measured by Oil Absorption
  • 8.3.6 Thermal Properties
  • 8.3.6.1 Specific Heat
  • 8.3.6.2 Thermal Conductivity and Diffusivity
  • 8.3.6.3 Coefficient of Thermal Expansion
  • 8.3.6.4 Thermal Stability
  • 8.3.7 Electrical Properties
  • 8.3.8 Optical Properties
  • 8.4 PRINCIPAL FILLER TYPES USED IN THERMOPLASTICS AND THERMOSETS
  • 8.4.1 Calcium Carbonate Minerals
  • 8.4.2 Talc
  • 8.4.3 Wood Flour
  • 8.4.4 Aluminum Hydroxide
  • 8.4.5 Wollastonite
  • 8.4.6 Mica
  • 8.4.7 Glass Fibers
  • 8.4.8 Nanofillers
  • 8.4.8.1 Nanoplates
  • 8.4.8.1.1 Effects on Stiffness and Heat Distortion Temperature
  • 8.4.8.1.2 Gas Barrier Properties
  • 8.4.8.1.3 Fire Retardancy
  • 8.4.8.2 Nanofibers
  • 8.5 THE USE OF SURFACE MODIFIERS
  • 8.5.1 General Principles
  • 8.5.2 Methods of Using Surface Modifiers
  • 8.5.3 Coating Level
  • 8.5.4 Identification and Characterization of Surface Modifiers
  • 8.5.5 Surface Modifier Types
  • 8.5.5.1 Carboxylic Acids and Related Compounds
  • 8.5.5.2 Unsaturated Carboxylic Acids
  • 8.5.5.3 Acid Functional Saturated Polymers
  • 8.5.5.4 Organosilicon Compounds
  • 8.5.5.5 Other Organometallic Coupling Agents (Organotitanates and Zirconates)
  • 8.6 EXAMPLES OF FILLER USE IN PLASTICS
  • 8.6.1 Principal Differences Affecting Polymer Response to Fillers
  • 8.6.1.1 Crystallinity
  • 8.6.1.2 The Glass Transition Temperature, Tg
  • 8.6.1.3 Immobilized Polymer at Particle Surface
  • 8.6.1.4 Use of Plasticizers
  • 8.6.1.5 Presence of Other Inclusions, Especially Impact Modifiers
  • 8.6.2 Applications
  • 8.6.2.1 Thermoplastics
  • 8.6.2.2 Thermosets
  • 8.6.3 Processing
  • 8.6.4 Effects on Composite Properties
  • 8.6.4.1 Strength
  • 8.6.4.2 Modulus (Stiffness)
  • 8.6.4.3 Heat Distortion Temperature
  • 8.6.4.4 Thermal Stability (Heat Aging)
  • 8.6.4.5 Toughness (Impact Resistance)
  • 8.6.4.5.1 Acting as Flaws
  • 8.6.4.5.2 Multiple Voiding
  • 8.6.4.5.3 Crack Pinning
  • 8.6.4.5.4 Alteration of Polymer Microstructure
  • 8.6.4.6 Creep
  • 8.6.4.7 Electrical Conductivity
  • 8.6.4.8 Thermal Properties
  • 8.6.4.8.1 Conductivity
  • 8.6.4.8.2 Specific Heat Capacity
  • 8.6.4.8.3 Coefficient of Thermal Expansion
  • 8.6.4.9 Hardness
  • 8.6.4.10 Friction
  • 8.6.4.11 Scratch Resistance
  • 8.6.4.12 Wear and Abrasion
  • 8.6.4.13 Barrier Properties and Permeability
  • 8.6.4.14 Optical Properties
  • 8.6.4.14.1 Color and Refractive Index
  • 8.6.4.14.2 Gloss (See Section 6.2.4)
  • 8.6.4.15 Flame Retardancy
  • 8.7 SUSTAINABILITY AND RECYCLING ISSUES AFFECTING FILLERS AND COMPOSITES
  • 8.7.1 Sustainability and Fillers
  • 8.7.1.1 Fillers from Renewable Resources
  • 8.7.1.2 Recycling
  • 8.7.1.2.1 Using Waste from Other Industries
  • 8.7.1.2.2 Recovery and Recycling of Particulate Fillers Already Used in Polymers
  • 8.7.1.2.3 Recycling in the Form of a Filled Polymer
  • 8.7.1.3 Use of Particulate Fillers to Improve Sustainability
  • REFERENCES
  • 9 - Processing, Design, and Performance of Plastics Products
  • 9.1 INTRODUCTION
  • 9.1.1 Plastics Products
  • 9.1.2 Processing Route of Thermoplastics
  • 9.1.3 Relevant Factors in Processing
  • 9.1.4 Design and Processing
  • 9.2 MAIN PROCESSING TECHNIQUES
  • 9.2.1 Melt Processing of Thermoplastics
  • 9.2.1.1 Thermal Properties Influencing Polymer Melting
  • 9.2.1.2 Thermal Properties Affecting Cooling
  • 9.2.1.3 Flow Properties
  • 9.2.1.4 Elastic Effects in Polymer Melts
  • 9.2.2 Screw Extrusion
  • 9.2.3 Production of Continuous Articles
  • 9.2.4 Molding Techniques
  • 9.2.5 Injection Molding
  • 9.2.5.1 The Injection-Molding Machine
  • 9.2.5.2 The Variables of the Process
  • 9.2.5.3 Flow in an Injection Mold
  • 9.2.5.4 The Injection Mold
  • 9.2.5.5 Types of Molds
  • 9.2.5.6 Hybrid Molds
  • 9.2.5.7 Structural Foams
  • 9.2.6 Rotational Molding
  • 9.3 MORPHOLOGY AND PROCESSING
  • 9.3.1 Orientation and Anisotropy
  • 9.3.1.1 Semicrystalline Materials
  • 9.3.1.2 Amorphous Materials
  • 9.3.1.3 Reinforced Thermoplastics
  • 9.3.2 Shrinkage
  • 9.3.3 Distortion
  • 9.3.4 Weld Lines
  • 9.3.5 Residual Stresses
  • 9.3.6 Voids
  • 9.4 TIME-DEPENDENT PROPERTIES
  • 9.4.1 Stress-Strain-Time Behavior
  • 9.4.2 Creep Curves
  • 9.4.3 Recovery from Deformation
  • 9.5 STIFFNESS
  • 9.5.1 Practical Assessment of Long-Term Behavior
  • 9.5.2 Assessing Stiffness
  • 9.5.3 Stiffness of Large Area Plastics Parts
  • 9.5.3.1 An Example of Application
  • 9.6 TOUGHNESS
  • 9.6.1 Assessment of Impact Resistance (Vincent, 1971)
  • 9.6.2 Morphology and Impact Resistance
  • 9.7 FRICTION
  • 9.7.1 Solid Friction
  • 9.7.2 Friction in Injection Molds
  • 9.8 CONCLUDING REMARKS
  • REFERENCES
  • BIBLIOGRAPHY
  • 10 - Polyethylene
  • 10.1 INTRODUCTION
  • 10.2 PREPARATION OF MONOMER
  • 10.3 POLYMERIZATION
  • 10.3.1 High-Pressure Polymerization
  • 10.3.2 Ziegler Processes
  • 10.3.3 The Phillips Process
  • 10.3.4 Standard Oil Company (Indiana) Process
  • 10.3.5 Processes for Making LLDPE and Metallocene PE
  • 10.4 STRUCTURE AND PROPERTIES OF PE
  • 10.5 PROPERTIES OF PE
  • 10.5.1 Mechanical Properties
  • 10.5.2 Thermal Properties
  • 10.5.3 Chemical Properties
  • 10.5.4 Electrical Properties
  • 10.5.5 Properties of LLDPE and VLDPE
  • 10.5.6 Properties of Metallocene-Catalyzed PEs
  • 10.6 ADDITIVES
  • 10.7 PROCESSING
  • 10.8 PES OF LOW AND HIGH MOLAR MASS
  • 10.9 CROSS-LINKED PE
  • 10.10 ORIENTED PE
  • 10.11 OTHER COPOLYMERS OF ETHYLENE
  • 10.11.1 Ethylene-Vinyl Acetate Copolymers
  • 10.11.2 Ethylene-Ethyl Acrylate Copolymers
  • 10.11.3 Ionomers
  • 10.11.4 Ethylene-Carbon Monoxide Copolymer (Polyketone)
  • 10.12 APPLICATIONS
  • 10.12.1 LDPE Applications
  • 10.12.2 LLDPE Applications
  • 10.12.3 HDPE Applications
  • 10.12.4 HMWPE and UHMWPE Applications
  • 10.12.5 PE for Molding Applications
  • 10.12.6 PE as Dielectric Material
  • REFERENCES
  • 11 - Polypropylene and Other Polyolefins
  • 11.1 POLYPROPYLENE
  • 11.1.1 Monomer Sources and Preparation
  • 11.1.1.1 Propene (Propylene)
  • 11.1.1.2 Polymerization Diluents
  • 11.1.2 Polymerization-Catalysts and Processes
  • 11.1.2.1 ZN Catalysts
  • 11.1.2.2 Metallocene Catalysts
  • 11.1.2.3 Polymerization Process
  • 11.1.2.4 Process Technologies
  • 11.1.2.4.1 Slurry- and Bulk (Liquid Phase) Processes
  • 11.1.2.4.2 Gas-Phase Processes
  • 11.1.2.4.3 Hybrid Processes
  • 11.1.2.4.4 Product Finishing
  • 11.1.3 General Structure and Properties
  • 11.1.4 Product Types and Compositions
  • 11.1.5 Modifications
  • 11.1.5.1 Fillers
  • 11.1.5.2 Elastomers
  • 11.1.5.3 Reactive Processing
  • 11.1.6 Additives for PP
  • 11.1.6.1 Antidegradants
  • 11.1.7 Processing and Applications
  • 11.1.7.1 Extrusion
  • 11.1.7.2 Film and Sheet Production
  • 11.1.7.3 Blow Molding
  • 11.1.7.4 Injection Molding
  • 11.1.7.5 PP in Vehicles
  • 11.1.7.6 Foams and Extrusion Coating
  • 11.1.7.7 Fiber Spinning
  • 11.1.8 Future Developments
  • 11.2 POLY(BUT-1-ENE)
  • 11.2.1 Introduction
  • 11.2.2 Structure and Properties
  • 11.2.3 Processing
  • 11.2.4 Applications
  • 11.2.4.1 Piping Applications
  • 11.2.4.2 Packaging
  • 11.2.4.3 Miscellaneous Products
  • 11.2.4.4 Adhesives
  • 11.3 POLY(4-METHYLPENTENE-1)
  • 11.3.1 Introduction
  • 11.3.2 Structure and Properties
  • 11.3.3 Processing
  • 11.3.4 Applications
  • REFERENCES
  • 12 - Plastics Based on Styrene
  • 12.1 INTRODUCTION
  • 12.2 PREPARATION/SOURCE OF MONOMER
  • 12.2.1 Preparation of Ethylbenzene
  • 12.2.2 Dehydrogenation
  • 12.2.3 Styrene Purification
  • 12.3 POLYMERIZATION
  • 12.3.1 Mass Polymerization
  • 12.3.2 Solution Polymerization
  • 12.3.3 Suspension Polymerization
  • 12.4 PROPERTIES AND STRUCTURE OF POLYSTYRENE
  • 12.5 GENERAL PROPERTIES
  • 12.6 GENERAL-PURPOSE HIGH-IMPACT POLYSTYRENE
  • 12.6.1 Applications for GP-HI PS
  • 12.7 STYRENE-ACRYLONITRILE COPOLYMERS
  • 12.8 ACRYLONITRILE BUTADIENE STYRENE
  • 12.8.1 Processing of ABS
  • 12.8.2 Applications of ABS
  • 12.9 RUBBER-MODIFIED SAN AND RELATED COPOLYMERS
  • 12.10 SMA COPOLYMERS
  • 12.11 OTHER STYRENIC POLYMERS
  • 12.12 STEREOREGULAR POLYSTYRENE
  • 12.12.1 Syndiotactic Polystyrene
  • 12.13 PROCESSING OF PLASTICS BASED ON STYRENE
  • 12.14 EXPANDED POLYSTYRENE
  • 12.14.1 Structural Foams
  • 12.15 ORIENTED POLYSTYRENE
  • 12.16 POLYSTYRENE BLENDS WITH POLYPHENYLENE OXIDE
  • 12.16.1 Introduction
  • 12.16.2 Properties of PPO/PS Blends
  • 12.16.3 Processing of Styrenic PPOs
  • 12.17 FUTURE DEVELOPMENTS FOR PLASTICS BASED ON STYRENE
  • REFERENCES
  • BIBLIOGRAPHY
  • 13 - Poly(Vinyl Chloride)
  • 13.1 INTRODUCTION
  • 13.2 SUSTAINABILITY OF PVC
  • 13.2.1 UK Developments (Everard, 2008)
  • 13.2.2 EU Responses
  • 13.2.3 Sustainability Worldwide
  • 13.3 PREPARATION OF VC
  • 13.4 POLYMERIZATION
  • 13.4.1 Suspension Polymerization
  • 13.4.2 Bulk Polymerization
  • 13.4.3 Emulsion and Microsuspension Polymerization
  • 13.5 STRUCTURE OF PVC
  • 13.5.1 Molar Mass
  • 13.5.2 Chemical Defect Structures
  • 13.5.3 Tacticity
  • 13.5.4 Crystallinity and Transition Temperatures in PVC
  • 13.5.4.1 Higher Crystallinity PVC
  • 13.5.5 Polarity of PVC
  • 13.6 MORPHOLOGY OF PVC
  • 13.6.1 Suspension/Mass PVC
  • 13.6.2 Emulsion and Microsuspension PVC
  • 13.7 PVC DEGRADATION
  • 13.8 COMPOUNDING INGREDIENTS
  • 13.8.1 Heat Stabilizers
  • 13.8.1.1 Evaluation of Stabilizers
  • 13.8.1.2 Stabilizers
  • 13.8.1.3 Organotin Compounds
  • 13.8.1.4 Secondary Stabilizers
  • 13.8.2 Antioxidants and UV Stabilizers
  • 13.8.2.1 Antioxidants
  • 13.8.2.2 UV Absorbers
  • 13.8.3 Plasticizers
  • 13.8.3.1 Plasticization of PVC
  • 13.8.3.2 Physical Properties of Plasticizers
  • 13.8.3.3 Compatibility/Miscibility of PVC and Plasticizers
  • 13.8.3.4 Plasticizer Choice and Selection (Patrick, 2013)
  • 13.8.3.5 Plasticizer Types (Patrick, 2013)
  • 13.8.3.5.(a), (b) Phthalate Esters
  • Branched Phthalates.
  • Butylbenzyl Phthalate
  • (b) Specialty Phthalate Esters
  • Links between Structure and Performance of Phthalate Plasticizers
  • (c) Trimellitate Esters
  • (d) Aliphatic Esters
  • (e) Phosphate Esters
  • (f) Secondary Plasticizers
  • (g) Polymeric Plasticizers or Polyesters
  • (h) Phthalate Alternatives
  • 13.8.4 Lubricants (Patrick, 2013)
  • 13.8.5 Fillers (Patrick, 2013)
  • 13.8.5.1 Calcium Carbonate
  • 13.8.5.2 Other Fillers
  • 13.8.5.3 Fire Retardants and Smoke Suppressants
  • 13.8.6 Pigments (Patrick, 2013)
  • 13.8.6.1 Titanium Dioxide
  • 13.8.6.2 Other Inorganic Pigments (See Table 7.3)
  • 13.8.6.3 Organic Pigments
  • 13.8.7 Polymeric Processing Aids and Impact Modifiers
  • 13.8.7.1 Processing Aids
  • 13.8.7.2 Impact Modifiers
  • 13.8.8 Other Additives
  • 13.9 FORMULATIONS
  • 13.9.1 Introduction
  • 13.9.2 Sample Formulations
  • 13.9.3 Comments on Formulations
  • 13.10 PROPERTIES OF PVC COMPOUNDS
  • 13.10.1 Rigid PVC
  • 13.10.2 Flexible PVC
  • 13.11 PROCESSING
  • 13.11.1 Mixing (Titow, 1990)
  • 13.11.1.1 Dry Blending
  • 13.11.1.2 Continuous Melt Mixing
  • 13.11.1.3 Internal Mixers
  • 13.11.2 Unplasticized PVC
  • 13.11.3 Plasticized PVC
  • 13.11.4 Paste PVC (Patrick and Gilbert, 2013)
  • 13.11.4.1 Preparation of Pastes
  • 13.11.4.2 Paste Rheology
  • 13.11.4.3 Processing of Pastes
  • Spreading or Coating
  • Dip and Spray Coating
  • Rotational, Slush, and Dip Molding
  • 13.11.5 PVC Latices and Solutions (Titow, 1990)
  • 13.12 FUSION OF PVC
  • 13.12.1 Gelation and Fusion in Paste PVC
  • 13.13 APPLICATIONS OF PVC
  • 13.13.1 Building and Construction
  • 13.13.2 Health Sector (Svenster, 2015a)
  • 13.13.3 Film and Sheet
  • 13.13.4 Molded Products
  • 13.13.4.1 Injection Molding
  • 13.13.4.2 Blow Molding
  • 13.13.4.3 Paste Molding
  • 13.13.5 Flexible Tubing and Profiles
  • 13.14 PVC COPOLYMERS AND CHLORINATED PVC
  • 13.14.1 Copolymers
  • 13.14.2 Chlorinated PVC
  • 13.15 MODIFICATION OF PVC STRUCTURE
  • 13.15.1 Oriented PVC
  • 13.15.1.1 Applications
  • 13.15.2 Cross-Linked PVC
  • 13.15.2.1 Applications
  • REFERENCES
  • BIBLIOGRAPHY
  • 14 - Fluorine-Containing Polymers
  • 14.1 INTRODUCTION
  • 14.2 PREPARATION AND PROPERTIES OF FLUOROPOLYMERS
  • 14.2.1 Polytetrafluoroethylene
  • 14.2.1.1 Industrial Synthesis of Tetrafluoroethylene
  • 14.2.1.2 Polymerization of Tetrafluoroethylene
  • 14.2.1.3 Structure and Properties of PTFE
  • 14.2.1.4 Modified Polytetrafluoroethylene
  • 14.2.1.5 PTFE Micropowders
  • 14.2.1.6 Industrial Synthesis of Hexafluoropropylene
  • 14.2.1.7 Copolymerization of TFE and HFP
  • 14.2.1.8 Structure and Properties of FEP
  • 14.2.2 Perfluoroalkoxy Resins
  • 14.2.2.1 Industrial Synthesis of Perfluoroalkyl Vinyl Ether Monomers
  • 14.2.2.2 Copolymerization of TFE and Perfluoroalkoxy Vinyl Ethers
  • 14.2.2.3 Structure and Properties of Perfluoroalkoxy Resins
  • 14.2.2.4 Industrial Process for the Production of ETFE
  • 14.2.2.5 Structure and Properties of ETFE
  • 14.2.3 Polychlorotrifluoroethylene
  • 14.2.3.1 Industrial Process for the Production of Monomer CTFE
  • 14.2.3.2 Industrial Process for the Production of PCTFE
  • 14.2.3.3 Structure and Properties of PCTFE
  • 14.2.4 Copolymer of CTFE and Ethylene
  • 14.2.4.1 Industrial Process for the Production of ECTFE
  • 14.2.4.2 Structure and Properties of ECTFE
  • 14.2.5 Polyvinylidene Fluoride
  • 14.2.5.1 Industrial Synthesis of Vinylidene Fluoride Monomer
  • 14.2.5.2 Industrial Process for Production of Polyvinylidene Fluoride
  • 14.2.5.3 Structure and Properties of Polyvinylidene Fluoride
  • 14.2.6 Poly(Vinyl Fluoride)
  • 14.2.6.1 Industrial Synthesis of Poly(Vinyl Fluoride)
  • 14.2.6.2 Polymerization of Vinyl Fluoride
  • 14.2.6.3 Structure and Properties of Vinyl Fluoride
  • 14.2.7 Terpolymers of TFE, HFP, and VDF
  • 14.2.7.1 Industrial Process for Production of THV Terpolymers
  • 14.2.8 Fluorinated Thermoplastic Elastomers
  • 14.2.9 Miscellaneous Fluoropolymers
  • 14.2.9.1 Amorphous Perfluoropolymers
  • 14.2.9.2 Perfluorinated Ionomers
  • 14.2.9.3 Fluorinated Acrylates
  • 14.3 PROCESSING OF FLUOROPOLYMERS (DROBNY, 2009D
  • EBNESAJJAD, 2015A,B)
  • 14.3.1 Processing of Polytetrafluoroethylene
  • 14.3.1.1 Processing of Granular Resins
  • 14.3.1.2 Processing of Fine Powders
  • 14.3.1.3 Processing of Aqueous PTFE Dispersions (Drobny, 2009e)
  • 14.3.1.4 Processing of Modified PTFE
  • 14.3.2 Processing of Melt-Processable Fluoropolymers
  • 14.3.2.1 Processing of Melt-Processable Perfluoropolymers
  • 14.3.2.2 Processing of Other Melt-Processable Fluoropolymers
  • 14.3.3 Processing of Polyvinyl Fluoride (Dohany and Humphrey, 1989)
  • 14.3.4 Processing of Amorphous Perfluoropolymers
  • 14.4 APPLICATIONS OF FLUOROPOLYMERS
  • 14.4.1 Applications of PTFE
  • 14.4.1.1 Applications of Aqueous PTFE Dispersions
  • 14.4.1.2 Applications of Modified PTFE
  • 14.4.1.3 Applications of PTFE Micropowders
  • 14.4.2 Applications of FEP
  • 14.4.3 Applications of Perfluoroalkoxy Resins
  • 14.4.4 Applications of ETFE
  • 14.4.5 Applications of PCTFE
  • 14.4.6 Applications of ECTFE
  • 14.4.7 Applications of Polyvinylidene Fluoride
  • 14.4.8 Applications of Polyvinyl Fluoride
  • 14.4.9 Applications of THV Fluoroplastics
  • 14.4.10 Application of Fluorinated Thermoplastic Elastomers (Ebnesajjad, 2013)
  • 14.4.11 Application of Miscellaneous Fluoropolymers
  • 14.4.11.1 Applications of Amorphous Perfluoropolymers
  • 14.4.11.2 Applications of Perfluorinated Ionomers
  • 14.4.11.3 Application of Fluorinated Acrylates
  • 14.5 SAFETY AND HYGIENE
  • 14.5.1 Thermal Behavior of Fluoroplastics
  • 14.6 RECYCLING OF FLUOROPOLYMERS
  • 14.7 RECENT TRENDS
  • APPENDIX 14.1: TYPICAL APPLICATIONS FOR FLUOROPLASTICS
  • REFERENCES
  • 15 - Miscellaneous Vinyl Thermoplastics
  • 15.1 INTRODUCTION
  • 15.2 VINYLIDENE CHLORIDE POLYMERS AND COPOLYMERS
  • 15.2.1 Production of Monomer
  • 15.2.2 Production of PVDC
  • 15.2.2.1 Suspension Polymerization
  • 15.2.2.2 Emulsion Polymerization
  • 15.2.3 Additives for PVDC Copolymers
  • 15.2.4 Properties of Vinylidene Chloride Copolymers
  • 15.2.4.1 Barrier Properties
  • 15.2.5 Applications of Vinylidene Chloride Copolymers (Wessling et al., 1997)
  • 15.2.5.1 Molding Resins
  • 15.2.5.2 Extrusion Resins
  • Filaments
  • Films
  • Tubing and Pipe Liners
  • 15.2.5.3 Multilayer Film
  • 15.2.5.4 Rigid Barrier Containers
  • 15.2.5.5 Lacquer Resins
  • 15.2.5.6 Latex
  • 15.2.5.7 Foams
  • 15.3 POLY(VINYL ACETATE)
  • 15.3.1 Preparation of Vinyl Acetate Monomer
  • 15.3.2 Polymerization
  • 15.3.3 Properties and Applications
  • 15.4 POLY(VINYL ALCOHOL)
  • 15.4.1 Structure and Properties
  • 15.4.2 Applications
  • 15.5 POLY(VINYL ACETALS)
  • 15.5.1 Poly(vinyl formal)
  • 15.5.2 Poly(vinyl butyral)
  • 15.6 ETHYLENE VINYL ALCOHOL COPOLYMERS
  • 15.6.1 Structure and Properties
  • 15.6.2 Applications
  • 15.7 OTHER VINYL POLYMERS
  • 15.7.1 Poly(vinyl cinnamate)
  • 15.7.2 Poly(vinyl carbazole)
  • REFERENCES
  • BIBLIOGRAPHY
  • 16 - Acrylic Plastics
  • 16.1 INTRODUCTION
  • 16.2 POLY(METHYL METHACRYLATE)
  • 16.2.1 Preparation of Monomer
  • 16.2.2 Polymerization
  • 16.2.2.1 Polymerization in Bulk
  • 16.2.2.2 Suspension Polymerization
  • 16.2.3 Structures and Properties
  • 16.2.4 General Properties of Poly(Methyl Methacrylate)
  • 16.2.5 Additives
  • 16.2.6 Processing
  • 16.2.7 Recycling
  • 16.2.8 Applications
  • 16.3 METHYL METHACRYLATE POLYMERS WITH ENHANCED IMPACT RESISTANCE AND SOFTENING POINT
  • 16.4 ACRYLIC ADHESIVES
  • 16.5 HYDROPHILIC POLYMERS
  • 16.6 POLY(METHACRYLIMIDE)
  • 16.7 OTHER ACRYLIC POLYMERS
  • REFERENCES
  • 17 - Polycarbonates
  • 17.1 INTRODUCTION
  • 17.1.1 General Introduction
  • 17.1.2 Health Issues
  • 17.2 FORMATION OF REACTANTS FOR POLYCARBONATE PRODUCTION
  • 17.3 POLYCARBONATE PRODUCTION
  • 17.3.1 Production
  • 17.3.1.1 Interfacial Polymerization
  • 17.3.1.2 Melt Processing with Organic Carbonates
  • 17.3.1.3 Oxidative Carbonylation
  • 17.4 CHEMICAL MODIFICATIONS
  • 17.4.1 End Groups
  • 17.4.2 Branching
  • 17.4.3 Copolymerization
  • 17.4.3.1 With Siloxanes
  • 17.4.3.2 With Dicarboxylic Acids and Dicarboxylic Acid Chlorides
  • 17.4.3.3 With Hydroquinone
  • 17.4.4 Biodegradable Polycarbonates
  • 17.5 BASIC PROPERTIES OF THE POLYMER
  • 17.5.1 Introduction
  • 17.5.2 Molar Mass
  • 17.5.3 Structure of Polycarbonate
  • 17.5.4 Transition Temperatures
  • 17.5.5 Structure-Property Relationships
  • 17.6 COMPOUNDING
  • 17.6.1 Compounding Techniques
  • 17.6.2 Compounding Ingredients
  • 17.6.2.1 UV Stabilizers
  • 17.6.2.2 Antioxidants
  • 17.6.2.3 Flame Retardants
  • 17.6.2.4 Dyes and Pigments
  • 17.6.2.5 Foaming Agents
  • 17.6.2.6 Nanocomposites
  • 17.6.2.6.1 Nanosilica
  • 17.6.2.6.2 Carbon Nanotubes
  • 17.6.3 Reinforcing Fillers
  • 17.7 COMPARISON OF PROPERTIES WITH ENGINEERING THERMOPLASTICS
  • 17.7.1 Physical Properties
  • 17.7.2 Mechanical Properties
  • 17.7.3 Thermal Properties
  • 17.7.4 Chemical Properties
  • 17.7.5 Electrical Properties
  • 17.7.6 Optical Properties
  • 17.8 PROCESSING
  • 17.8.1 Injection Molding
  • 17.8.2 Extrusion
  • 17.8.3 Blow Molding
  • 17.8.3.1 Extrusion Blow Molding
  • 17.8.3.2 Injection Blow Molding
  • 17.8.4 Thermoforming
  • 17.9 APPLICATIONS
  • 17.9.1 Optical/Lighting
  • 17.9.1.1 Packaging
  • 17.9.1.2 Building and Construction
  • 17.9.1.3 Automotive Applications
  • 17.9.1.4 Electrotechnical
  • 17.9.1.5 Appliances
  • 17.9.1.6 Safety applications
  • 17.9.1.7 Other
  • 17.9.1.8 Foams
  • 17.10 POLYCARBONATE BLENDS
  • 17.10.1 Polycarbonate/Acrylonitrile-Butadiene-Styrene
  • 17.10.1.1 Introduction
  • 17.10.1.2 Applications
  • 17.10.2 Polycarbonate/Polybutylene Terephthalate
  • 17.10.2.1 Introduction
  • 17.10.2.2 Applications
  • 17.10.3 Polycarbonate/Polyethylene Terephthalate
  • 17.10.3.1 Introduction
  • 17.10.3.2 Applications
  • 17.10.4 Polycarbonate/Polymethyl Methacrylate
  • REFERENCES
  • BIBLIOGRAPHY
  • 18 - Aliphatic Polyamides
  • 18.1 INTRODUCTION
  • 18.2 INTERMEDIATES FOR ALIPHATIC POLYAMIDES
  • 18.2.1 Adipic Acid
  • 18.2.2 Hexamethylenediamine
  • 18.2.3 Sebacic Acid and Azelaic Acid
  • 18.2.4 Caprolactam
  • 18.2.5 ?-Aminoundecanoic Acid
  • 18.2.6 Lauryl Lactam (Laurolactam, Dodecanelactam)
  • 18.3 POLYMERIZATION OF ALIPHATIC POLYAMIDES
  • 18.3.1 Polyamides 46, 66, 610, and 612
  • 18.3.2 Polyamide 6
  • 18.3.3 Polyamide 11
  • 18.3.4 Polyamide 12
  • 18.3.5 Copolymers
  • 18.4 STRUCTURE OF ALIPHATIC POLYAMIDES
  • 18.5 PROPERTIES OF ALIPHATIC POLYAMIDES
  • 18.5.1 Introduction
  • 18.5.2 Transition Temperatures and Crystallinity
  • 18.5.3 Chemical Resistance
  • 18.5.4 General Properties
  • 18.5.5 Frictional Properties
  • 18.5.6 Electrical Properties
  • 18.5.7 Effect of Weathering
  • 18.6 ADDITIVES
  • 18.7 FIBER-FILLED POLYAMIDES
  • 18.7.1 Glass-Filled Polyamides
  • 18.7.2 Aramid-Fiber-Filled Polyamides
  • 18.7.3 Carbon-Fiber-Filled Polyamides and Related Products
  • 18.7.4 Available Grades
  • 18.8 PROCESSING OF POLYAMIDES
  • 18.9 APPLICATIONS OF POLYAMIDES
  • 18.9.1 Automotive Applications
  • 18.9.2 Electrical and Electronic Applications
  • 18.9.3 Consumer Goods and Appliances
  • 18.9.4 Films and Coating
  • 18.9.5 Fibers and Filaments
  • 18.9.6 Extruded Products
  • 18.9.7 Cast Polyamides
  • 18.9.8 Polyamide Reaction Injection Molding
  • 18.9.9 Recycling
  • 18.10 POLYAMIDES OF ENHANCED SOLUBILITY
  • 18.11 OTHER ALIPHATIC POLYAMIDES
  • 18.12 POLYAMIDE BLENDS
  • REFERENCES
  • BIBLIOGRAPHY
  • 19 - Polyacetals
  • 19.1 INTRODUCTION
  • 19.2 PREPARATION OF FORMALDEHYDE
  • 19.3 ACETAL RESINS
  • 19.3.1 Polymerization of Formaldehyde
  • 19.3.2 Structure and Properties of Acetal Resins
  • 19.3.3 Properties of Acetal Resins (Sittig, 1963
  • Linton and Goodman, 1959
  • Linton, 1960)
  • 19.3.4 Processing
  • 19.3.5 Additives
  • 19.3.6 Applications of the Acetal Polymers and Copolymers
  • 19.3.7 Future Developments
  • 19.3.8 Acetal-Polyurethane Alloys
  • 19.4 POLYETHERS FROM GLYCOLS AND ALKYLENE OXIDES
  • REFERENCES
  • BIBLIOGRAPHY
  • 20 - Thermoplastic Polyesters
  • 20.1 INTRODUCTION
  • 20.2 PRODUCTION OF THERMOPLASTIC POLYESTERS
  • 20.3 POLY(ETHYLENE TEREPHTHALATE)
  • 20.3.1 Introduction
  • 20.3.2 Structure of PET
  • 20.3.3 Processing of PET
  • 20.3.4 Applications
  • 20.4 POLY(BUTYLENE TEREPHTHALATE)
  • 20.4.1 Introduction
  • 20.4.2 Structure of PBT
  • 20.4.3 Properties of PBT
  • 20.5 OTHER THERMOPLASTIC POLYESTERS
  • 20.5.1 Poly(1,4-Cyclohexylenedimethylene Terephthalate)
  • 20.5.2 Poly(Ethylene Naphthalate)
  • 20.6 COPOLYESTERS
  • 20.7 NEW-GENERATION COPOLYESTERS
  • 20.7.1 Introduction
  • 20.7.2 Properties of TritanT
  • 20.7.3 Applications
  • REFERENCES
  • 21 - High-Temperature Engineering Thermoplastics
  • 21.1 INTRODUCTION
  • 21.1.1 Chemical Structure of High-Temperature Thermoplastics
  • 21.1.2 General Comparison of High-Temperature Thermoplastics
  • 21.2 POLYPHTHALAMIDES
  • 21.3 SULFONES
  • 21.3.1 General Synthetic Methods
  • 21.3.2 Structure-Property Relationships
  • 21.3.3 Properties
  • 21.3.3.1 Physical Properties
  • 21.3.3.2 Mechanical Properties
  • 21.3.3.3 Thermal Properties
  • 21.3.3.4 Electrical Properties
  • 21.3.3.5 Chemical Properties
  • 21.3.3.6 Resistance to Radiation
  • 21.3.4 Additives
  • 21.3.4.1 UV Stabilizers
  • 21.3.4.2 Antioxidants
  • 21.3.4.3 Optical Brighteners
  • 21.3.4.4 Fire Retardants
  • 21.3.4.5 Reinforcement
  • 21.3.5 Processing
  • 21.3.5.1 Injection Molding
  • 21.3.5.2 Extrusion
  • 21.3.6 Applications
  • 21.3.6.1 Polysulfone
  • 21.3.6.2 Polyether Sulfone
  • 21.3.6.3 Polyphenyl Sulfone
  • 21.4 POLYPHENYLENE SULFIDE
  • 21.4.1 Synthesis
  • 21.4.2 Manufacture
  • 21.4.3 Structure
  • 21.4.4 Properties
  • 21.4.4.1 Physical Properties
  • 21.4.4.2 Mechanical Properties
  • 21.4.4.3 Thermal Properties
  • 21.4.4.4 Electrical Properties
  • 21.4.4.5 Chemical Properties
  • 21.4.5 Additives
  • 21.4.5.1 Antioxidants and UV Stabilizers
  • 21.4.5.2 Electrostatic Dissipative Grades
  • 21.4.5.3 Pigments
  • 21.4.6 Processing
  • 21.4.7 Applications
  • 21.5 IMIDE POLYMERS
  • 21.5.1 Thermoplastic Imide Polymers
  • 21.5.1.1 Synthesis
  • Thermal Imidization
  • Chemical Imidization-Precipitative Process
  • 21.5.1.2 Structure-Property Relationships
  • 21.5.2 Polyamide-imides
  • 21.5.2.1 Synthesis
  • Acid Chloride Route
  • Carboxylic Acid Anhydride Route
  • Di-isocyanate Route
  • Melt Polymerization Route
  • 21.5.2.2 Structure-Property Relationships
  • 21.5.3 Polyetherimides
  • 21.5.3.1 Synthesis
  • Solution Polymerization
  • Melt Polymerization
  • 21.5.3.2 Structure-Property Relationships
  • 21.5.4 Properties
  • 21.5.4.1 Physical Properties
  • 21.5.4.2 Mechanical Properties
  • 21.5.4.3 Thermal Properties
  • 21.5.4.4 Electrical Properties
  • 21.5.4.5 Chemical Properties
  • 21.5.5 Additives
  • 21.5.5.1 Antidegradants
  • 21.5.5.2 Reinforcement
  • 21.5.5.3 Electrical Conductivity
  • 21.5.5.4 Lubricity
  • 21.5.5.5 Blends
  • 21.5.6 Processing
  • 21.5.7 Applications
  • 21.5.7.1 Electrical Applications
  • 21.5.7.2 Mechanical Applications
  • 21.6 POLYARYLETHERKETONES
  • 21.6.1 Synthesis
  • 21.6.2 Structure-Property Relationships
  • 21.6.3 Chemical Modifications
  • 21.6.3.1 Sulfonation
  • 21.6.3.2 Cyclization
  • 21.6.4 Properties
  • 21.6.4.1 Thermal Properties
  • 21.6.4.2 Electrical Properties
  • 21.6.4.3 Chemical Properties
  • 21.6.5 Additives
  • 21.6.5.1 Antioxidants
  • 21.6.5.2 UV Stabilizers
  • 21.6.5.3 Reinforcement
  • 21.6.6 Processing
  • 21.6.6.1 Injection Molding
  • 21.6.6.2 Spinning
  • 21.6.6.3 Film Extrusion
  • 21.6.6.4 Powder Coating
  • 21.6.6.5 Thermoforming
  • 21.6.6.6 Finishing Operations
  • 21.6.7 Applications
  • 21.6.7.1 Wire Coating
  • 21.6.7.2 Electrical/Electronic
  • 21.6.7.3 Medical
  • 21.6.7.4 Mechanical
  • 21.6.7.5 Automotive
  • 21.6.7.6 Food Industry
  • 21.6.7.7 Packaging
  • 21.6.7.8 Adhesive Tape
  • 21.7 POLYBENZIMIDAZOLE
  • 21.7.1 Synthesis
  • 21.7.1.1 Single-stage Process
  • 21.7.1.2 Two-Stage Process
  • 21.7.2 Production
  • 21.7.2.1 First Stage
  • 21.7.2.2 Second Stage
  • 21.7.3 Chemical Modifications
  • 21.7.3.1 Copolymers (Ward, 1988)
  • 21.7.3.2 Substitution of the Imidazole Hydrogen
  • 21.7.3.3 Cross-linking
  • 21.7.4 Structure
  • 21.7.5 Properties
  • 21.7.5.1 Mechanical Properties
  • 21.7.5.2 Thermal Properties
  • 21.7.5.3 Chemical Properties
  • 21.7.5.4 Resistance to Radiation
  • 21.7.6 Additives
  • 21.7.6.1 Antioxidants/UV Stabilizers
  • 21.7.6.2 Reinforcement
  • 21.7.6.3 Nanoparticles
  • 21.7.6.4 Other Additives
  • 21.7.7 Processing
  • 21.7.7.1 Compression Molding/Sintering
  • 21.7.7.2 Solution Spinning
  • 21.7.8 Applications
  • 21.7.8.1 Components (Quadrant)
  • 21.7.8.2 Protective Apparel (Fibers)
  • Firefighter Gear
  • Protective Gloves
  • Other
  • 21.8 LIQUID CRYSTAL POLYMERS
  • 21.8.1 Liquid Crystals
  • 21.8.1.1 Thermotropic LCs
  • 21.8.2 Liquid Crystal Polymers
  • 21.8.2.1 Lyotropic LCPs
  • 21.8.2.2 Thermotropic LCPs
  • 21.8.2.3 Structure of Thermotropic LCPs
  • Introduction of Flexible Aliphatic Links
  • Introduction of Asymmetric Aromatic Molecules
  • Isophthalic Acid
  • Naphthalene
  • Introduction of Biphenyls
  • Introduction of Substituted Aromatic Rings
  • 21.8.3 Synthesis
  • 21.8.4 Properties
  • 21.8.4.1 Physical Properties
  • 21.8.4.2 Mechanical Properties
  • 21.8.4.3 Thermal Properties
  • 21.8.4.4 Electrical Properties
  • 21.8.4.5 Chemical Properties
  • 21.8.5 Additives
  • 21.8.6 Processing
  • 21.8.7 Applications
  • 21.8.7.1 Electrical/Electronic
  • 21.8.7.2 Telecom
  • 21.8.7.3 Medical
  • 21.8.7.4 Kitchenware
  • REFERENCES
  • BIBLIOGRAPHY
  • 22 - Cellulose Plastics
  • 22.1 NATURE AND OCCURRENCE OF CELLULOSE
  • 22.2 CELLULOSE ESTERS
  • 22.2.1 Cellulose Nitrate
  • 22.2.1.1 Production of Cellulose Nitrate
  • 22.2.1.2 Properties and Applications of Cellulose Nitrate
  • 22.2.2 Cellulose Acetate
  • 22.2.2.1 Preparation
  • 22.2.2.2 Compounding of CA
  • 22.2.2.3 Properties of CA Plastics
  • 22.2.2.4 Biodegradable CA Compounds
  • 22.2.3 Other Cellulose Esters
  • 22.2.3.1 Applications of Cellulose Esters
  • 22.3 CELLULOSE ETHERS
  • 22.3.1 Ethyl Cellulose
  • 22.3.2 Miscellaneous Ethers
  • 22.4 REGENERATED CELLULOSE
  • REFERENCES
  • BIBLIOGRAPHY
  • 23 - Bioplastics: New Routes, New Products
  • 23.1 INTRODUCTION: DEFINITIONS AND CLASSIFICATION
  • 23.2 BIOPLASTICS DEVELOPMENT: GENERIC CONSIDERATIONS
  • 23.2.1 Recycling and Life-Cycle Analysis
  • 23.2.2 Blends and Composites: The Importance of Polysaccharides
  • 23.3 BIODEGRADABLE AND COMPOSTABLE PLASTICS
  • 23.3.1 Polylactic Acid (PLA)
  • 23.3.1.1 Introduction
  • 23.3.1.2 PLA Production
  • 23.3.1.3 PLA Properties and Usefulness
  • 23.3.1.4 PLA Modification
  • 23.3.1.5 PLA Degradation
  • 23.3.2 Polyhydroxyalkanoates
  • 23.3.2.1 Introduction
  • 23.3.2.2 Production of PHAs
  • 23.3.2.3 Properties, Degradation and Applications
  • 23.3.2.4 PHA Blends
  • 23.3.3 Poly(Butylene Succinate)
  • 23.4 BIO-BASED INTERMEDIATES IN CONVENTIONAL PLASTICS PRODUCTION
  • 23.5 BIODEGRADATION AND COMPOSTABILITY PRINCIPLES AND TESTING PROCEDURES
  • 23.6 CONCLUSIONS
  • REFERENCES
  • 24 - Thermoplastic Elastomers
  • 24.1 HISTORY
  • 24.2 GENERAL DEFINITION OF THERMOPLASTIC ELASTOMER
  • 24.3 GENERAL DEFINITION OF THERMOPLASTIC ELASTOMER
  • 24.4 COMPARISON OF THERMOPLASTIC ELASTOMERS
  • 24.4.1 Basic TPE Chemistry and Synthesis Routes
  • 24.4.1.1 Styrenic-Based Thermoplastic Elastomers
  • 24.4.1.1.1 Initiation
  • 24.4.1.1.2 Propagation
  • 24.4.1.1.3 Termination
  • 24.4.1.2 Synthesis of Thermoplastic Polyesters
  • 24.4.1.3 Synthesis of Thermoplastic Polyamide Elastomers
  • 24.4.1.4 Polyurethane TPE
  • 24.4.1.5 Ionomers
  • 24.4.1.6 Metallocene-Catalyzed TPE
  • 24.4.1.7 Thermoplastic Vulcanisates or Elastomeric Alloys
  • 24.4.2 Polymer Miscibility
  • 24.4.3 Morphology of Thermoplastic Elastomers
  • 24.4.3.1 Styrenic-Based Block Copolymer TPE
  • 24.4.3.2 Block Copolymer Polyurethane, Polyester, and Polyamide TPE Morphology
  • 24.4.3.3 Mechanically Blended TPE Morphology
  • 24.4.4 Rheology of TPE
  • 24.4.5 Structure-Property Relationships
  • 24.4.5.1 Properties of TPE Materials
  • 24.4.5.2 Comparison Between TPO and TPV Properties
  • 24.4.5.3 Thermoplastic Polyester
  • 24.4.5.4 Thermoplastic Polyurethane
  • 24.4.5.5 Styrenic-Based TPEs
  • 24.4.5.6 Polyether Block Amides
  • 24.4.5.7 Melt Processable Rubber
  • 24.5 PROCESSING OF TPE MATERIALS
  • 24.5.1 Processing SantopreneT TPV
  • 24.5.2 Copolyester-Based TPE
  • 24.5.3 Thermoplastic Polyurethane Elastomers
  • Injection Molding
  • Extrusion
  • 24.5.4 Styrenic-Based TPEs
  • 24.5.5 Polyether Block Amides
  • 24.5.6 Melt Processable Rubber
  • 24.6 MARKETS, APPLICATIONS, AND SUPPLIERS OF TPE MATERIALS
  • 24.6.1 Markets
  • 24.6.2 Applications
  • 24.6.3 Manufacturers/Suppliers
  • REFERENCES
  • 25 - Aldehyde Polymers: Phenolics and Aminoplastics
  • 25.1 INTRODUCTION
  • 25.2 MONOMERS FOR COMMON ALDEHYDE POLYMERS
  • 25.2.1 Phenol
  • 25.2.1.1 Other Phenols
  • 25.2.1.2 Health and Safety Issues
  • 25.2.2 Urea
  • 25.2.2.1 Health and Safety Issues
  • 25.2.3 Melamine
  • 25.2.3.1 Health and Safety Issues
  • 25.2.4 Formaldehyde
  • 25.2.4.1 Health and Safety Issues
  • 25.3 OLIGOMERIZATION OR RESINIFICATION OF ALDEHYDE SYSTEMS
  • 25.3.1 Formaldehyde-Based Polymers
  • 25.3.1.1 PF Novolaks
  • 25.3.1.2 PF Resols
  • 25.3.1.3 PF Cure Reactions
  • 25.3.1.4 PF Resin Manufacture
  • 25.3.2 UF Resin Manufacture and Cross-Linking
  • 25.3.3 MF Resin Manufacture and Cross-Linking
  • 25.4 MOLDING MATERIALS
  • 25.4.1 Formaldehyde-Based Polymers
  • 25.4.2 Urea-Formaldehyde Resins
  • 25.4.3 Melamine-Formaldehyde Resins
  • 25.4.4 Molding and Processing Characteristics
  • 25.4.5 Shaping and Cure of Molding Compositions
  • 25.4.5.1 PF Molding
  • 25.4.5.2 UF Molding
  • 25.4.5.3 MF Molding
  • 25.4.5.4 Melamine-Phenol-Formaldehyde Molding Materials
  • 25.4.6 Properties and Applications of Molded Aldehyde Polymers
  • 25.4.6.1 Formaldehyde-Based Polymers
  • 25.4.6.2 Urea-Formaldehyde Resins
  • 25.4.6.3 Melamine-Formaldehyde Resins
  • 25.5 LAMINATES
  • 25.6 ADHESIVE APPLICATIONS
  • 25.6.1 Urea-Formaldehyde Resins
  • 25.6.2 MF Adhesives
  • 25.7 OTHER APPLICATIONS
  • 25.7.1 Formaldehyde-Based Polymers
  • 25.7.2 Urea-Formaldehyde Resins
  • 25.7.3 Melamine-Formaldehyde Resins
  • 25.7.4 Molecular Structure Property Relationships of PF, UF, and MF Polymers
  • 25.8 OTHER ALDEHYDE-BASED AND -RELATED POLYMERS
  • 25.8.1 Resorcinol-Formaldehyde Polymers
  • 25.8.2 Friedel-Crafts and Related Polymers
  • 25.8.3 Phenolic Resin Fibers
  • 25.8.4 Polybenzoxazines
  • 25.8.5 Aniline-Formaldehyde Polymers (Plastics, 1950)
  • 25.8.6 Thiourea-Based Polymers
  • REFERENCES
  • BIBLIOGRAPHY
  • REVIEWS
  • 26 - Unsaturated Polyester Resins
  • 26.1 INTRODUCTION
  • 26.2 POLYESTER POLYMERS AND RESINS
  • 26.3 UNSATURATED POLYESTERS RESINS FOR LAMINATION
  • 26.3.1 The Choice of Components for Synthesis of the UPE
  • 26.3.2 Synthesis of the Unsaturated Polyester
  • 26.3.2.1 Cis-Trans Isomerization of Maleate to Fumarate during Polycondensation
  • 26.3.3 Unsaturated Polyester Ester Resins
  • 26.3.3.1 Resin Formulation
  • 26.3.3.2 Reactive Diluents
  • 26.3.4 Curing of Polyester Resins
  • 26.3.4.1 Curing Chemistry
  • 26.3.4.1.1 Post Curing
  • 26.3.4.1.2 Exotherms
  • 26.3.5 Resin Microstructure
  • 26.3.6 Mechanical Properties of Cast Resins
  • 26.4 GLASS FIBER POLYESTER COMPOSITES
  • 26.4.1 Fiber Type
  • 26.4.2 Fiber Surface Finish
  • 26.4.2.1 Adhesion Promoter
  • 26.4.2.2 Choice of Silane
  • 26.4.3 Glass Fiber Composite Manufacture
  • 26.4.3.1 Direct Impregnation
  • 26.4.3.1.1 Hand Lay-up
  • 26.4.3.1.2 Spray-up
  • 26.4.3.1.3 Centrifugal Casting
  • 26.4.3.1.4 Pultrusion
  • 26.4.3.1.5 Filament Winding
  • 26.4.3.1.6 Resin Transfer Molding
  • 26.4.3.2 Indirect Impregnation
  • 26.4.3.2.1 Sheet Molding Compounds
  • 26.4.3.2.2 Dough or Bulk Mold Compounds
  • 26.4.4 Low-Profile Additives
  • 26.4.5 Gel Coat Resins
  • 26.4.6 Related Resins
  • 26.4.6.1 Vinyl Ester Resins
  • 26.4.6.1.1 Microstructure of Vinyl Ester Resins
  • 26.4.6.2 Vinyl Urethanes
  • 26.4.6.3 Selection of Resins for Durable Structures
  • 26.4.6.4 Urethane Methacrylates
  • 26.4.7 Water-Extended Resins
  • 26.4.8 Allyl Resins
  • 26.4.8.1 Diallyl Phthalate
  • 26.4.9 Alkyds
  • 26.5 CONCLUSIONS
  • ACKNOWLEDGMENT
  • REFERENCES
  • BIBLIOGRAPHY
  • 27 - Epoxy Resins
  • 27.1 INTRODUCTION
  • 27.2 PREPARATION OF RESINS FROM BISPHENOL A
  • 27.3 CURING OF EPOXY RESINS
  • 27.3.1 Amine Hardeners
  • 27.3.2 Acid Anhydride Hardeners
  • 27.3.3 Miscellaneous Hardener Systems
  • 27.4 MISCELLANEOUS EPOXY RESINS
  • 27.4.1 Miscellaneous Glycidyl Ether Resins
  • 27.4.1.1 Nonglycidyl Ether Epoxies
  • 27.4.1.2 Cyclic Aliphatic Resins
  • 27.4.1.3 Acyclic Aliphatic Resins
  • 27.4.1.4 Nitrogen-Containing Epoxy Resins
  • 27.5 DILUENTS, FLEXIBILIZERS, AND OTHER ADDITIVES
  • 27.6 EPOXY VINYL ESTER RESINS
  • 27.7 TOUGHENED EPOXY RESINS
  • 27.8 FIRE RESISTANCE
  • 27.9 EPOXY NANOCOMPOSITES
  • 27.10 APPLICATIONS
  • 27.10.1 Paints and Surface Coatings
  • 27.10.2 Electrical and Electronic
  • 27.10.3 Composite Materials
  • 27.10.4 Wind Energy
  • 27.10.5 Construction
  • 27.10.6 Adhesives
  • 27.10.7 Other Applications
  • REFERENCES
  • BIBLIOGRAPHY
  • 28 - Isocyanate-Based Polymers: Polyurethanes, Polyureas, Polyisocyanurates, and their Copolymers
  • 28.1 INTRODUCTION
  • 28.2 MARKET STATISTICS
  • 28.3 ISOCYANATES AND THEIR COMMON COREACTANTS: SYNTHESIS, REACTIONS, AND KINETICS
  • 28.3.1 Isocyanates
  • 28.3.1.1 Typical Syntheses of Isocyanates
  • 28.3.1.1.1 Safe Use of Isocyanates
  • 28.3.1.2 Common Isocyanate Reactions With Active Hydrogen Reactants
  • 28.3.1.2.1 Blocked Isocyanates
  • 28.3.1.2.2 Other Reactions
  • 28.4 POLYALCOHOLS-POLYOLS
  • 28.4.1 Polyether Polyols or Polyetherols
  • 28.4.2 Polyester Polyols or Polyesterols
  • 28.4.3 Polycarbonate Polyols
  • 28.4.4 General Properties of Polyols
  • 28.5 OTHER REACTANTS AND ADDITIVES
  • 28.5.1 Chain Extenders
  • 28.5.2 Cross-linking Agents
  • 28.5.3 Catalysts
  • 28.5.4 Blowing Agents and Other Cell-Forming Additives
  • 28.5.5 Surfactants or Emulsifiers
  • 28.5.6 Pigments and Coatings
  • 28.5.7 Fillers and Fiber Reinforcements
  • 28.5.8 Fire Retardants
  • 28.5.9 Release Agents
  • 28.6 REACTION KINETICS, STRUCTURE/PROPERTIES RELATIONSHIPS
  • 28.7 CONVERSION OF ISOCYANATES INTO POLYMERIC PRODUCTS
  • 28.7.1 The Effect of Varying Reaction Conditions
  • 28.7.2 One-Shot versus Two-Shot Synthesis/Processing
  • 28.7.2.1 One Shot
  • 28.7.2.2 Two Shot
  • 28.7.2.3 Comparison of the Properties of Polymers Made by One- or Two-shot Processes
  • 28.7.2.4 Isocyanate Index
  • 28.7.2.5 Hard-Soft Segment Theory: Interpretation of PU Properties
  • 28.7.3 Isocyanate Polymer Processes
  • 28.7.4 Dual-Component Processing
  • 28.7.5 Foamed Isocyanate-Based Polymers
  • 28.7.5.1 Flexible Foams
  • 28.7.5.1.1 Polyetherol One-Shot Foams
  • 28.7.5.1.2 One-Shot Polyesterol Foams
  • 28.7.5.1.3 Polyetherol Prepolymers
  • 28.7.5.1.4 Quasiprepolymer Polyetherol Foams
  • 28.7.5.2 Process Methods for Flexible Foams
  • 28.7.5.3 Properties and Applications of Flexible Foams
  • 28.7.6 Rigid, Semirigid PU Foams and Production
  • 28.7.7 Integral-Skinned Foams
  • the RIM Process
  • 28.7.8 Fibers and Crystalline Materials
  • 28.7.9 Coatings and Adhesives
  • 28.7.10 Polyisocyanurates and Copolymers
  • 28.7.11 Elastomers
  • 28.7.12 Polycarbodiimide Resins
  • 28.7.13 Polyurethane-Acrylic Blends
  • 28.7.14 Miscellaneous Isocyanate-Based Materials
  • REFERENCES
  • BIBLIOGRAPHY
  • TECHNICAL REVIEWS
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

279,65 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok