Polyimides

Fundamentals and Applications
 
 
CRC Press
  • erschienen am 6. Februar 2018
  • |
  • 912 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-1-351-42365-6 (ISBN)
 
Provides coverage on the full range of topics associated with polyimides, including structure, polymer fundamentals, and product areas. The text addresses both basic and applied aspects of the subject. It details the synthesis of polyimides, polyamideimides, and flourinated polyimides, explains the molecular design of photosensitive polyimides, and more.
weitere Ausgaben werden ermittelt
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Contents
  • Preface
  • Contributors
  • Introduction
  • 1. History of the Invention and Developmentof the Polyimides
  • References
  • Synthesis
  • 2. Synthesis of Polyimides
  • I. Introduction
  • II. Two-Step Method Via Poly(amic acid)s
  • A. Formation of Poly(amic acid)s
  • B. Reactivity of Monomers
  • C. Effect of Solvents
  • D. Side Reactions and Effect of Other Factors
  • E. Thermal lmidization of Poly(amic acid)
  • F. Chemical lmidization and Polyisoimides
  • G. Mechanism of Chemical lmidization
  • III. One-Step Method
  • A. High-Temperature Solution Polymerization
  • B. Low-Temperature Solution Polymerization
  • C. Tetracarboxylic Acids with Diamines
  • IV. Diesters of Tetracarboxylic Acids with Diamines
  • V. Polyisoimides as Precursors
  • VI. Ester Derivatives of Poly(amic acid)s
  • A. Alkyl Esters of Poly(amic acid)s
  • B. Silyl Esters of Poly(amic acid)s
  • VII. Polymerization via Nucleophilic Substitution Reaction
  • VIII. Polymerization by Exchange Reaction
  • A. Polymerization by Trans-lmidization Reaction
  • B. Polymerization by Ether Exchange Reaction
  • IX. Polymerization of Dianhydrides and Diisocyanates
  • X. Polymerization by Cycloaddition Reaction
  • XI. Polymerization by C-C Coupling Reaction
  • XII. Conclusion
  • References
  • 3. Synthesis of Polyamideimides
  • I. Introduction
  • II. Fundamentals of Polyamldelmlde Synthesis from Trimellitic Acid and Its Derivatives
  • A. Diamine Route
  • 1. Low-Temperature Solution Method
  • 2. Interfacial Method
  • B. Diisocyanate Route
  • C. Direct Polycondensation Method
  • D. Miscellaneous Methods
  • 1. N-Silylated Diamine Route
  • 2. Thioanhydride Route
  • III. Synthesis of Polyamideimides from Tricarboxylic Acids via Amide-Imide-Forming Reaction
  • IV. Synthesis of Polyamideimides from Imide-Containing Monomers via Amide-Forming Reaction
  • A. From Imide-Containing Dicarboxylic Acids
  • B. From Imide-Containing Diamines
  • C. From Imide-Containing Bis-N-Hydroxymethyl Compounds
  • V. Synthesis of Polyamideimides from Amide-Containing Monomers via Imide-Forming Reaction
  • A. From Amide-Containing Diamines
  • B. From Dihydrazides
  • VI. Conclusion
  • References
  • 4. Synthesis of Fluorinated Polyimides
  • I. Introduction
  • II. Fluorinated Polyimides for Electronics
  • A. Fluorinated Polyimides with a Pendant Fluorinated Group
  • B. Fluorinated Polyimides Prepared from Bis(trifluoromethyl)diaminobiphenyl
  • C. Fluorinated Polyimides Prepared from Perfluoro Aromatic Diamines
  • D. Fluorinated Polyimides Prepared from Benzotrifluoride-Based Diamines
  • E. Fluorinated Polyimides Prepared from O-Substituted Diamines
  • F. Fluorinated Polyimides Prepared from (Mono- or Bistrifluoromethyl)benzenetetracarboxylic Dianhydrides
  • G. Fluorinated Polyimides Prepared from Rigid Fluorinated Dianhydrides
  • H. Fluorinated Polyimides Prepared from 2,2'-Bis(fluoroalkoxy)benzidines
  • I. Fluorinated Polyimides Prepared from a Diamine Based on Trifluoroacetophenone
  • III. Fluorinated Polyimides for Opto-Electronics
  • A. Fluorinated Polyimides with Hexafluoroisopropylidene Groups as an Optical Waveguide Material
  • B. Fluorinated Polyimides from Bis(trifluoromethyl)diaminobiphenyl as an Optical Material
  • C. Perfluorinated Polyimides
  • IV. Summary
  • References
  • 5. Photosensitive Polyimides: Molecular Design and Synthesis
  • I. Introduction
  • II. Negative-Imaging Photosensitive Polyimides
  • A. Systems with Relatively Unrestricted Polymer Structure
  • 1. Ester-Bond-Type Photosensitive Polyimides
  • 2. Ionic-Bond-Type Photosensitive Polyimide
  • 3. Photosensitive Polyimides with Acrylic Monomers
  • 4. Photosensitive Polyimides with Photosensitizers
  • B. Structurally Restricted Systems
  • 1. Systems Having Photosensitive Groups in the Main Chain
  • 2. Systems Linking the Polymerizing Group in a Side Chain
  • III. Positive-Imaging Photosensitive Polyimides
  • A. Systems with Relatively Unrestricted Polymer Structure
  • 1. Self-sensitizing Type
  • 2. Photosensitive Poly(amic acid) with Photosensitizers
  • 3. System Using Chemical-Amplification Process
  • B. Structurally Restricted Systems
  • 1. Soluble Polyimides with NQD in the Side Chain
  • 2. Soluble Polyimides Using the Chemical Amplification Mechanism
  • 3. System Containing a Photosensitizer
  • 4. Soluble Polyimides with the Photodegradable Main Chain
  • IV. Other Photosensitive Heat-Resistant Resins
  • V. Conclusion
  • References
  • 6. Chemistry and Kinetics of Polyimide Formation
  • I. Introduction
  • II. Idealized Condensation Polymerization
  • III. Amic Acid Formation
  • A. Amic Acid Formation with Equally Reactive Functional Groups
  • 1. Dianhydride and Diamine Systems
  • 2. Di(Acid-Ester) or Tetraacid and Diamine Systems
  • 3. Catalysis
  • 4. Solvent Effects
  • 5. Equilibrium Considerations
  • 6. Side Reactions
  • 7. Amic Acid Molecular Weight
  • 8. Relative Rate Constant Values
  • B. Amic Acid Formation with Unequal Reactivity of Functional Groups
  • IV. Imide Formation
  • A. Thermal lmidization with Equally Reactive Functional Groups
  • 1. Catalysis and Solvent Effects
  • 2. Equilibrium Considerations
  • 3. Side Reactions
  • 4. Polyimide Molecular Weight
  • 5. Chain Length Effects
  • 6. Concurrent Amic Acid and lmide Formation (One-Step Synthesis)
  • B. Thermal lmidization with Unequal Reactivity of Functional Groups
  • C. Concurrent Amic Acid and lmide Formation with Unequal Functional Group Reactivity
  • D. Chemical lmidization with Equally Reactive Functional Groups
  • 1. Synthetic Methods
  • 2. Kinetics of Chemical lmidization
  • 3. Mechanism of Chemical lmidization
  • V. Conclusion
  • References
  • 7. Vapor Phase Deposition of Polyimides
  • I. Introduction
  • II. Deposition Systems
  • A. Reactors
  • B. Flux Calibration
  • C. Deposition Parameters
  • III. Properties of VPD Polylmlde Films
  • IV. Curing Studies
  • A. Mechanism of the PMDAIODA Solid State Reaction
  • B. Spectral Characterization of Vapor Phase Deposited Polyimide Films
  • C. Influence of the PMDA/ODA Ratio on the Properties of a Polyimide Film
  • V. Interface Studies
  • A. Polyimide Films on Metals
  • B. Metals on Vapor Deposited Polyimide Films
  • VI. Summary and Outlook
  • Acknowledgments
  • References
  • Bulk Properties and Modifications
  • 8. Thermal Curing in Polyimide Films and Coatings
  • I. Introduction
  • II. Processes for Making Films and Coatings
  • A. Substrate Preparation
  • B. Adhesion Promoters
  • C. Solution Deposition
  • 1. Spin Coating
  • 2. Applicator Blade Coating (Casting)
  • D. Drying
  • E. Curing
  • F. Film Preparation
  • III. Structure Development
  • A. Concepts
  • B. Morphology
  • C. Characterization Techniques
  • IV. Process Conditions
  • A. Film Thickness
  • B. Backbone Chemistry
  • C. Cure Temperature
  • 1. PMDA/ODA, BPDA/PPD, and BTDA/ODA-MPD
  • 2. Property Anisotropy: In-plane vs. Out-of-Plane CTE
  • D. Heating Rate
  • E. Molecular Weight
  • F. Precursor Chemistry (Conventional Polyimides)
  • G. Copolyimides and Blends
  • H. Photosensitive Polyimides
  • I. Solvents
  • V. Conclusions
  • Acknowledgments
  • References
  • 9. Infrared Curing of Polyimides
  • I. Introduction
  • II. Curing of Polyimides
  • III. Heat Transfer
  • IV. Infrared "Character
  • V. Infrared Curing of Polyimides
  • VI. Processes Used in Infrared Curing
  • A. Coating Poly(amic acid)
  • B. lnfrared Curing
  • VII. Methods of Testing Infrared Cured Polyimides
  • A. Percentage lmidization and Densification
  • B. Tensile Properties
  • C. Resistance to Strong Base
  • D. Wide-Angle X-Ray Diffraction
  • VIII. Advantages of Infrared Curing
  • IX. Applications for Infrared Curing of Polyimides
  • X. Conclusion
  • References
  • 10. Sorption and Diffusion of Water Vapor in Polyimide Films
  • I. Introduction
  • II. Measurement Methods
  • III. General Features of Water-Vapor Sorption and Diffusion in Polymers
  • A. Type 1
  • B. Type 2
  • C. Type 3
  • D. Type 4
  • E. Type 5
  • IV. Water Vapor Sorption and Diffusion Properties of Polyimides
  • A. Water Vapor Activity Dependence of Sorption and Diffusion
  • B. Temperature Dependence
  • C. Effects of Molecular Structures
  • V. Effects of Water Vapor Sorption and Diffusion on Applications
  • A. Membrane Separation
  • B. Microelectronics
  • VI. Conclusion
  • References
  • 11. Charge Transfer in Aromatic Polyimides
  • I. Introduction
  • II. General Charge Transfer Theory
  • A. lnterrnolecular Charge Transfer
  • B. Intramolecular Charge Transfer
  • III. Does Charge Transfer Occur in Polyimides?
  • A. Model Compounds
  • 1. Intermolecular Charge Transfer
  • 2. Intramolecular Charge Transfer
  • B. Charge Transfer in Polyimides
  • 1. Intermolecular Charge Transfer
  • 2. Intramolecular Charge Transfer
  • IV. Fluorescence
  • A. Model Compounds
  • B. Fluorescence of Polymers
  • V. Photoconductivity
  • A. Model Compounds
  • B. Polymers
  • 1. Doped
  • 2. Virgin Polyimides
  • VI. Ordering in Polyimides and Charge Transfer
  • A. "Preferred Layer" Packing
  • B. "Mixed Layer" Packing
  • C. Probing Order in Polyimides
  • VII. Conclusions
  • Acknowledgment
  • References
  • 12. Dielectric Properties of Polyimides and Factors Influencing Such Properties
  • I. Introduction
  • II. Sample Preparation and Characterization
  • III. Elevated Temperature/Humidity Environmental Stress Studies on PMDA-ODA PI
  • A. Dielectric Behavior
  • B. Summary of Observed Chemical Changes and Analysis
  • IV. Dielectric Behavior and Surface Chemical Modification of PMDA-ODA PI Exposed to CF4/O2 Plasmas
  • A. Dielectric Measurements
  • B. Surface Analysis
  • C. Discussion
  • V. Dielectric Behavior and Surface Chemical Modification of BTDA-ODA-MPD and 6FDA/ODA PIs Exposed to CF4/O2 Plasmas
  • A. Dielectric Measurements
  • B. Chemical Analysis
  • C. Discussion
  • VI. Conclusion
  • References
  • 13. Degradation and Stability of Polyimides
  • I. Introduction
  • II. Techniques For Assessing Polylmlde Stability and Degradation Mechanisms
  • III. Effects of Structure on Stability
  • IV. Effects of End-Groups on Polyimide Stability
  • V. Environmental Effects
  • VI. Mechanism of Thermal and Thermooxidative Degradation
  • VII. Stabilization of Polyimides
  • VIII. Radiation-Induced Degradation
  • IX. Conclusions
  • References
  • Surface Characterization, Modification, and Adhesion Aspects
  • 14. Surface Characterization of Polyimides
  • I. Introduction
  • II. Ion and Electron Spectroscopies
  • A. Ion Spectroscopies
  • 1. Ion Scattering Spectroscopy
  • 2. Rutherford Backscattering Spectroscopy
  • 3. Secondary Ion Mass Spectroscopy
  • B. Electron Spectroscopies
  • III. Vibrational Spectroscopies
  • A. Reflection Techniques
  • B. Transmission Techniques
  • C. High-Resolution Electron Energy Loss Spectroscopy
  • IV. Miscellaneous Methods
  • A. Extended X-Ray Absorption Fine Structure-Related Methods
  • B. Nuclear Magnetic Resonance
  • C. Contact Angle Measurements
  • D. Scanning Tunneling Microscopy
  • V. Conclusions
  • References
  • 15. Plasma Surface Modification and Etching of Polyimides
  • I. Introduction
  • II. Plasmas and Plasma System Configurations
  • A. Plasmas
  • B. Plasma System Configurations
  • C. Plasma Characteristics
  • 1. Electrical Potentials
  • 2. Gas Phase Species
  • III. Surface Analytical Techniques
  • IV. Modification
  • A. Relationship Among Surface Composition, Wetting, and Practical Adhesion
  • B. Effect of Plasma Constituents on Polymer Surface Properties
  • 1. Neutral/Polymer Interactions
  • 2. Ion-Induced Modification
  • 3. Photon-Polymer Interactions
  • 4. Electron Bombardment
  • C. Treatment in Plasmas Using Different Gases
  • 1. Water Vapor
  • 2. Nitrogen and Ammonia
  • 3. Fluorine-Containing Gases
  • 4. Noble Gas Plasmas
  • 5. Nitrogen Addition to Oxygen
  • D. Other Factors Influencing Rate of Modification
  • 1 . Temperature Effects
  • 2. Film Preparation Techniques and Polymer Structure
  • E. Degradation in Wettability and Adhesion with Time, Temperature, and Humidity
  • 1. Loss of Hydrophilicity
  • 2. Adhesion Degradation
  • F. Modification of Electrical Properties
  • V. Etching
  • A. Oxygen Plasmas
  • B. Oxygen and Fluorine-Containing Gases
  • C. Other Factors Influencing Rate of Etching
  • 1. Loading Effect
  • 2. Temperature Effect
  • 3. Ion-Assisted Etching
  • D. Kinetic Models
  • VI. Conclusions
  • Acknowledgments
  • References
  • 16. Laser Ablation of Polyimides
  • I. Introduction
  • II. General Considerations
  • A. LaserITarget Interaction
  • B. Wavelength Considerations
  • C. Temporal Considerations
  • III. Laser Characteristics
  • A. Excimer Lasers
  • B. Solid-State Lasers
  • IV. Ablation Rate Studies
  • A. Experimental Data
  • B. Analysis
  • V. Absorption Dynamics
  • A. "Blow-Off" Theory Limitations
  • B. Saturable Absorption Theory
  • VI. Material Ejection
  • A. Ejection Velocities
  • B. Ejection Onset
  • VII. Ablation Products
  • VIII. Etch Morphology
  • A. General Features
  • B. Cone Formation
  • C. Ripple Formation
  • D. Interference Patterning
  • IX. Near-Threshold Effects
  • A. Single-Pulse Ablation Measurements
  • B. Incubation
  • C. Induced Electrical Conduction
  • X. Conclusions
  • References
  • 17. Ion Beam Modification of Polyimides
  • I. Introduction
  • II. Radiation Effect on Polymers
  • A. Linear Energy Transfer Effects
  • B. Primary Processes and Mechanisms
  • C. Ionizing Radiation vs. Energetic Particles
  • III. Properties of Ion-Bombarded Polyimides
  • A. Composition
  • B. Microstructure
  • C. Optical Density
  • D. Electrical Properties
  • 1. Conduction Mechanisms
  • 2. Carrier Concentration and Mobility
  • 3. Saturation Behavior
  • 4. Degradation
  • 5. Temperature Effect
  • 6. Property Relationship
  • E. Mechanical Properties
  • 1. Cross-Links and Hardness
  • 2. Hardness Measurement
  • 3. Hardness of Bombarded Kapton
  • 4. Wear
  • IV. Conclusions
  • Acknowledgments
  • References
  • 18. Wet Chemical Modification of Polyimide Surfaces: Chemistry and Application
  • I. Introduction
  • II. Chemical Modification of Polymer Surfaces
  • A. Requirements of Wet Process
  • B. Surface Chemistry vs. Solution Chemistry
  • III. Surface Modification of Polyimides
  • A. PMDA-ODA Chemistry
  • B. Organic Chemical Reactions at the Modified Surfaces
  • C. Fluorinated Polyimide
  • 1. Contact Angles
  • 2. Reorientation of Modified Surfaces
  • 3. XPS
  • 4. ERIR
  • IV. Adhesion
  • A. Polyimide/Polyimide Adhesion
  • B. Locus of Failure
  • C. Relationship Between Modification Depth and Adhesion Strength
  • D. Morphology Modification for Adhesion Improvement
  • V. Metallization at Polyimide Surface
  • A. Redox Chemistry
  • B. Ion Exchange
  • C. Others
  • VI. Conclusion
  • Acknowledgments
  • References
  • 19. Tribological Behavior of Polyimides
  • I. Introduction
  • II. Earlier Developments in the Tribology of PIs
  • III. Recent Developments in PI Tribology
  • A. PIs in Adhesive Wear Mode
  • 1. Studies on Addition-Type PIS and Composites
  • 2. Studies on Thermoplastic PI and Composites
  • B. PIS in Abrasive Wear Mode
  • C. Pis in Fretting Wear Mode
  • D. PIS in Erosive Wear Mode
  • IV. Wear Models for Composites
  • V. Conclusions
  • Acknowledgment
  • References
  • 20. Adhesion of Polyimides to Various Substrates
  • I. Introduction
  • II. Adhesion Theories and Adhesion Measurement
  • A. Adhesion Theories
  • 1. Mechanical Interlocking
  • 2. Theories Based on Surface Energetics, Wetting, and Adsorption
  • 3. Diffusion Theory
  • 4. Acid-Base Theory
  • 5. Chemical Bonding
  • 6. Weak Boundary Layer Mechanism
  • B. Adhesion Measurement
  • 1. 90 Degree Peel Test
  • 2. Edge Delamination Test
  • 3. Indentation Test
  • III. Characterization of Metal, Ceramic, and Polyimide Surfaces
  • A. Metal and Ceramic Surfaces
  • B. Polyimide Surfaces
  • IV. Interfacial Interactions Between Polyimides-on-Metals, -Ceramics, and -Polyimides
  • A. Polylmldes on Metals and Ceramics
  • 1. Polyimide Films Applied from Solution
  • 2. Polyimide Films Applied via Chemical Vapor Deposition
  • B. Polyimides on Polyimides
  • V. Interfacial Interactions with Adhesion Promoters
  • A. ?-APS Solution Chemistry
  • B. Aminosilane Bonding to Inorganic and Organic Surfaces
  • C. ?-APS Reactions with PAA and PAE
  • VI. Polyimide Adhesion to Various Surfaces with and Without Adhesion Promotion
  • VII. Summary
  • Acknowledgments
  • References
  • 21. Adhesion of Metal Films to Polyimides
  • I. Introduction
  • II. Methods for Testing Adhesion and Evaluation of Other Film Properties
  • A. Mechanical Testing
  • 1. Blister Test
  • 2. Stretch Deformation Test
  • 3. Peel Test
  • 4. Critique of Adhesion Testing
  • B. Spectroscopic Methods
  • 1. X-Ray Photoelectron Spectroscopy
  • 2. Ultraviolet Photoelectron Spectroscopy
  • 3. Near-Edge X-Ray Absorption Fine Structure (NEXAFS) Spectroscopy
  • 4. Auger Electron Spectroscopy
  • 5. Vibrational Spectroscopies
  • 6. Rutherford Backscattering and Medium Energy Ion Scattering
  • C. Microscopy
  • 1. Scanning Electron Microscopy
  • 2. Transmission Electron Microscopy
  • 3. Atomic Force Microscopy
  • III. Formation of Metal thin Films on Polyimide Substrates
  • A. Surface Preparation Without Modification
  • B. Surface Preparation with Modification
  • 1. Low-Energy Ion Beams
  • 2. Irradiation with High-Energy Ion Beams
  • 3. Ion Beam Implantation
  • 4. Plasma Modification and Etching
  • 5. Photochemical Modification
  • 6. Surface Texturing
  • 7. Chemical Modification by Solutions
  • C. Metal Film Deposition
  • 1. Physical Vapor Deposition of Metals
  • 2. Electrochemical and Electroless Deposition
  • 3. Industrial Metallization Processes
  • IV. Chemical Bonding at The Metal-Polyimide Interface
  • A. Bonding on Untreated Polyimide Surfaces
  • 1. Interaction of Single Metal Atoms with Polyimide
  • 2. Coverages Near One Monolayer and Higher
  • B. Effects of Surface Pretreatments
  • V. Mass Transport at the Interface
  • A. Diffusion of Copper
  • B. Diffusion of Other Metals
  • VI. Modes of Failure
  • A. Failure of Metal Films on Unmodified Polyimide Surfaces
  • B. Failure of Metal Films on Modified Polyimide Surfaces
  • C. Effects of Postmetallization Treatments on Failure
  • D. Summary of Failure Modes
  • VII. Conclusion
  • Acknowledgments
  • References
  • Applications
  • 22. Polyimides for Gas Separation
  • I. Introduction
  • II. Effects of Polymer-Penetrant Interactions on Permeability
  • A. Fickian Diffusion in Rubbery Polymers
  • 1 . Above the Penetrant Critical Temperature
  • 2. Below the Penetrant Critical Temperature
  • B. Non-Fickian Diffusion in Glassy Polymers
  • 1. Comparisons of Glassy and Rubbery Materials
  • 2. Penetrant Interaction with Glassy Polymers
  • 3. Permeability-Selectivity Considerations for Glassy Polymers
  • III. Modeling of Permeability Properties
  • A. Comparative Tabulation Approach
  • B. Physical Structure/Permeability Relationships
  • C. Predictive Modeling Techniques
  • 1. Permachor Calculations
  • 2. Atomistic Simulations
  • IV. Fabrication Processes for Commercial Applications
  • A. Introduction
  • B. Overview of Structures
  • 1. Integrally Skinned Asymmetrical Structure
  • 2. Thin Film Composite Structure
  • C. Surface Modification Techniques
  • V. Permeability Properties of Polyimides
  • A. Compositional Concerns
  • B. Measurement Techniques
  • 1. Equipment
  • 2. Measured Parameters
  • C. Tabular Data
  • 1. Polyimides
  • 2. Polyetherimides
  • 3. Polyamideimides
  • 4. Surface-Modified Polymers
  • VI. Conclusion
  • Acknowledgment
  • References
  • 23. Applications of Polyimides as Photosensitive Materials
  • I. Introduction
  • II. Patterning Strategies with Thin Film Polyimides
  • III. Photosensitive Polyimides
  • A. Structure and Properties
  • 1. Covalent Type
  • 2, Ionic Type
  • 3. Intrinsic Type
  • 4. Solution Properties
  • 5. Patterning Properties
  • 6. Final Film Properties
  • B. Available Photosensitive Polyimides
  • IV. Applications of Photosensitive Polyimides
  • A. In High-Density Interconnects/Multichip Modules
  • B. As Protection Layers
  • C. As Optical Interconnects
  • D. As High-Performance Resists
  • V. New Developments
  • A. Positive Working Photosensitive Polyimides
  • B. Langmuir-Blodgett PSPl Films
  • VI. Conclusion
  • References
  • 24. Polyimides in High-Performance Electronics Packaging and Optoelectronic Applications
  • I. Introduction
  • A. Chemical Structures of Polyimides Used in Electronics Packaging
  • B. Electronics Packaging
  • 1. Behavior and Basic Function of Dielectrics
  • 2. Processes Used in Electronics Packaging
  • II. Properties Required from Dielectrics
  • A. Dielectric Properties
  • B. Mechanical Integrity
  • 1. Thermal Mismatch Stress
  • 2. Mechanical Failure
  • 3. Mechanical Properties
  • 4. Adhesion
  • C. Thermal Properties
  • 1. Thermal Degradation
  • 2. Glass Transition Temperature
  • D. Chemical Resistance
  • E. Planarization
  • III. Specific Polyimides
  • A. PMDA-ODA Based Polyimides
  • B. BPDA-PDA-Based Polyimides
  • C. BTDA-Based Polyimides
  • D. PIQ-13
  • E. Silicone-Containing Polyimides
  • F. Fluorinated Polyimides
  • G. Photosensitive Polyimides
  • H. Polyimide Foams
  • IV. Optoelectronic Applications
  • A. Basic Concepts
  • B. Waveguide Material Requirements
  • C. Fabrication of Waveguides and Waveguide Structures
  • D. Dynamic Gratings in Polyimides for Optical Modulation
  • E. Optical Sensors Using Polyimides
  • F. Electro-Optic Modulation Using Polyimide Lightguides
  • V. Conclusions
  • Acknowledgments
  • References
  • 25. Polyimides as Langmuir-Blodgett Films
  • I. Introduction
  • II. Preparation of Polyimide LB Films
  • A. Precursor Method
  • B. Preparation of Polyimide Mono- and Multilayer Films
  • C. Defects in Polyimide Langmuir-Blodgett Films Evaluated by Electrochemical Method
  • D. Orientation of Polymer Chain in Polyimide LB Films
  • III. Optical Applications
  • A. Photodiode
  • 1. Tin Dioxide Electrode Modified by Polyimide Langmuir-Blodgett Films Possessing Tetraphenylporphyrin Unit
  • 2. Photodiodes Constructed by Polyimide LB Films Triads Possessing Electron Donor, Sensitizer, and Electron Acceptor
  • B. New Memory Systems Constructed with Polyimide LB Films Having Azobenzene Pendant Groups
  • IV. Electrical Properties and Applications
  • A. Introduction
  • B. Electrical Conduction Current through PI LB Films
  • 1 . Electrical Transport Properties of Langmuir-Blodgett Films
  • 2. Fabrication of Metal/Polyimide/MetaI Elements
  • 3. Polyimide Langmuir-Blodgett Films as a Tunneling Barrier
  • 4. Application of Polyimide Langmuir-Blodgett Films
  • C. Displacement Current Across Polyimide Langmuir-Blodgett Films
  • D. Interfacial Phenomena Between Polyimides and Metals
  • 1. Surface Potential of Heat-Treated Polyimide LB Films
  • 2. Spatial Distribution of Charges in PI LB Films
  • 3. Potential Change in Heat-Treated PI LB Films with Photoirradiation
  • 4. Charge Storage Phenomena in Polyimide Langmuir-Blodgett Films
  • V. Conclusion
  • References
  • Index

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

385,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
E-Book bestellen