Weather Analysis and Forecasting

Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis
 
 
Academic Press
  • 2. Auflage
  • |
  • erschienen am 15. Juni 2016
  • |
  • 360 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-800495-1 (ISBN)
 

Weather Analysis and Forecasting: Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis, Second Edition, is a step-by-step essential training manual for forecasters in meteorological services worldwide, and a valuable text for graduate students in atmospheric physics and satellite meteorology. In this practical guide, P. Santurette, C.G. Georgiev, and K. Maynard show how to interpret water vapor patterns in terms of dynamical processes in the atmosphere and their relation to diagnostics available from numerical weather prediction models. In particular, they concentrate on the close relationship between satellite imagery and the potential vorticity fields in the upper troposphere and lower stratosphere. These applications are illustrated with color images based on real meteorological situations over mid-latitudes, subtropical and tropical areas.

  • Presents interpretation of the water vapor channels 6.2 and 7.3?m as well as advances based on satellite data to improve understanding of atmospheric thermodynamics
    • Improves by new schemes the understanding of upper-level dynamics, midlatitudes cyclogenesis and fronts over various geographical areas
      • Provides analysis of deep convective phenomena to better understand the development of strong thunderstorms and to improve forecasting of severe convective events
      • Includes efficient operational forecasting methods for interpretation of data from NWP?models
      • Offers information on satellite water vapor images and potential vorticity fields to analyse and forecast convective phenomena and thunderstorms


      Christo G. Georgiev has worked in the Forecasting Department of the National Meteorological Service (NMS) of Bulgaria since 1993 as a satellite meteorology researcher, Associate Professor since 2004 and as Professor since 2012. He is well acquainted with the meteorological satellites, weather analysis and forecasting matters, having worked for the NMS of Bulgaria in a position of Programme Manager of Forecasting Technology (2008-2011), Head of Operational Weather Forecasting (2011-2014) and Head of Remote Sensing since 1 December 2015. He has taught at various national and international training courses for using satellite data in weather forecasting.
      • Englisch
      • San Diego
      • |
      • USA
      Elsevier Science
      • 20,39 MB
      978-0-12-800495-1 (9780128004951)
      0128004959 (0128004959)
      weitere Ausgaben werden ermittelt
      • Front Cover
      • Weather Analysis and Forecasting
      • Weather Analysis and Forecasting : Applying Satellite Water Vapor Imagery and Potential Vorticity Analysis
      • Copyright
      • Contents
      • Preface
      • Acknowledgments
      • Introduction
      • 1 - FUNDAMENTALS
      • 1 - A DYNAMICAL VIEW OF SYNOPTIC DEVELOPMENT
      • 1.1 VORTICITY AND POTENTIAL VORTICITY
      • 1.2 THE CONCEPT OF POTENTIAL VORTICITY THINKING
      • 1.2.1 THE CONSERVATION PRINCIPLE
      • 1.2.2 THE INVERTIBILITY PRINCIPLE
      • 1.2.3 CLIMATOLOGICAL DISTRIBUTION OF POTENTIAL VORTICITY
      • 1.2.4 POSITIVE POTENTIAL VORTICITY ANOMALIES AND THEIR REMOTE INFLUENCE
      • 1.3 OPERATIONAL USE OF POTENTIAL VORTICITY FIELDS TO MONITOR SYNOPTIC DEVELOPMENT
      • 1.3.1 UPPER-LEVEL DYNAMICS, DYNAMICAL TROPOPAUSE, AND DYNAMICAL TROPOPAUSE ANOMALY
      • 1.3.2 JET STREAM AND JET STREAKS
      • 1.3.3 SYNOPTIC DEVELOPMENT AS SEEN BY POTENTIAL VORTICITY CONCEPTS
      • 1.3.4 ANALYSIS OF A REAL-ATMOSPHERE STRUCTURE
      • 2 - THE INTERPRETATION PROBLEM OF SATELLITE WATER VAPOR IMAGERY
      • 2.1 INFORMATION CONTENT OF 6.2 AND 7.3µM CHANNELS
      • 2.1.1 ORIGIN OF THE RADIATION, RADIANCE, BRIGHTNESS TEMPERATURE, AND IMAGE GRAY SHADES
      • 2.1.1.1 Cold Air Temperatures and Inversions
      • 2.1.1.2 Earth's Surface Features and Clouds
      • 2.1.2 SENSITIVITY RANGE OF 6.2µM AND 7.3µM CHANNELS
      • 2.1.3 EFFECTS OF LAYERED MOISTURE ON THE RADIANCE
      • 2.1.3.1 Response of WV Channel Radiances to Differences in Humidity Profile
      • 2.2 ABILITY OF 6.2 AND 7.3µM IMAGES TO REFLECT MOIST/DRY LAYERS, CLOUDS, AND LAND SURFACE FEATURES
      • 2.2.1 UPPER-LEVEL DRY STRUCTURES (200-500HPA)
      • 2.2.2 DEEP MOIST LAYERS (200-1000HPA)
      • 2.2.3 HIGH-LEVEL MOIST LAYERS (200-400HPA)
      • 2.2.4 MID-LEVEL MOIST LAYERS (400-650HPA)
      • 2.2.5 LOW-LEVEL MOIST LAYERS (650-800HPA)
      • 2.2.6 MOISTURE/CLOUDINESS IN THE BOUNDARY LAYER (850-950HPA)
      • 2.2.7 EARTH'S SURFACE FEATURES
      • 2.3 POTENTIAL FOR OPERATIONAL USE OF IMAGES IN 6.2 AND 7.3µM CHANNELS OF METEOSAT SECOND GENERATION
      • 2 - PRACTICAL USE OF WATER VAPOR IMAGERY AND THERMODYNAMIC FIELDS
      • 3 - SIGNIFICANT WATER VAPOR IMAGERY FEATURES ASSOCIATED WITH SYNOPTIC THERMODYNAMIC STRUCTURES
      • 3.1 OPERATIONAL USE OF RADIATION MEASUREMENTS IN WATER VAPOR CHANNELS 6.2 AND 7.3µM
      • 3.2 INTERPRETATION OF SYNOPTIC-SCALE IMAGERY FEATURES
      • 3.2.1 MOIST (LIGHT) FEATURES IN 6.2µM IMAGERY
      • 3.2.1.1 Nearly White to White Features
      • 3.2.1.2 Medium-Gray to Light-Gray Features
      • 3.2.2 DRY (DARK) FEATURES IN 6.2µM IMAGERY
      • 3.2.2.1 Dry (Dark) Bands/Spots
      • 3.2.2.2 Dry Intrusions
      • 3.2.3 JET STREAM MOISTURE BOUNDARIES SEEN IN 6.2 AND 7.3µM IMAGERY
      • 3.3 MIDDLE- TO UPPER-TROPOSPHERE WIND FIELD FEATURES
      • 3.3.1 SPECIFIC UPPER-LEVEL FLOW PATTERNS SEEN IN 6.2µM IMAGERY
      • 3.3.2 INTERACTION OF A JET STREAM WITH A DYNAMICAL TROPOPAUSE ANOMALY: JET STREAK STRUCTURE EMERGENCE
      • 3.3.3 UPPER-LEVEL DIVERGENT FLOW AS A SIGN OF ASCENDING MOTIONS
      • 3.3.3.1 Synoptic-Scale Upper-Level Perturbations
      • 3.3.3.2 Deep Convection in Midlatitudes
      • 3.3.3.3 Deep Convection in Tropical Areas
      • 3.3.4 MID-LEVEL JET SEEN IN 7.3µM CHANNEL IMAGES
      • 3.3.4.1 Mid-Level Jet and Associated Synoptic Context
      • 3.3.4.2 Mid-Level Jet and Related Moisture Movement
      • 3.3.4.2.1 Moisture Movement Structure
      • 3.3.4.3 Mid-Level Jet in Dry Air Mass Over Northeast Africa
      • 3.4 BLOCKING REGIME
      • 3.4.1 BLOCKING REGIME FORMATION IN WHICH EASTERLIES RESULT FROM ANTICYCLOGENESIS
      • 3.4.2 BLOCKING REGIME FORMATION IN WHICH EASTERLIES RESULT FROM CYCLOGENESIS
      • 3.5 CYCLOGENESIS AND ATMOSPHERIC FRONTS
      • 3.5.1 EXTRATROPICAL AND TROPICAL CYCLONES: ENERGY SOURCE AND MAIN THERMODYNAMIC CHARACTERISTICS
      • 3.5.2 CYCLOGENESIS WITHIN BAROCLINIC TROUGHS: LEAF AND BAROCLINIC LEAF FEATURES IN THE WATER VAPOR IMAGERY
      • 3.5.3 CYCLOGENESIS WITH UPPER-LEVEL PRECURSORS
      • 3.5.3.1 Cyclone Development in the Western North Atlantic
      • 3.5.3.1.1 Upper-Level Precursors
      • 3.5.3.1.2 Synoptic Evolution
      • 3.5.3.1.3 Water Vapor Imagery Analysis of Explosive Deepening
      • 3.5.3.2 Explosive Cyclogenesis in the Southern West Pacific
      • 3.5.3.3 Water Vapor Imagery Dry Slot as a Precursor of Cyclone Deepening
      • 3.5.4 USEFULNESS OF WATER VAPOR IMAGERY TO IDENTIFY "STING JET" AND RELATED SURFACE WIND GUSTS
      • 3.5.5 SPLIT COLD FRONT SEEN IN WATER VAPOR IMAGERY
      • 3.6 INTERACTION OF TROPICAL CYCLONES WITH UPPER-LEVEL DYNAMICAL STRUCTURES
      • 3.6.1 EFFECTS OF UPPER-LEVEL FLOW PATTERN IN THE SURROUNDING ENVIRONMENT ON THE INTENSITY OF TROPICAL STORMS
      • 3.6.1.1 Tropical Cyclone Track Satellite Data From National Oceanic and Atmospheric Administration (NOAA) NESDIS
      • 3.6.1.2 Water Vapor Imagery Analysis of Typhoon Wipha
      • 3.6.1.2.1 Intensification
      • 3.6.1.3 Water Vapor Imagery Analysis of Hurricane Igor
      • 3.6.1.3.1 Intensification
      • 3.6.1.4 Weakening
      • 3.6.1.5 Reintensification
      • 3.6.2 INTENSIFICATION OF TROPICAL CYCLONES ON THE ANTICYCLONIC SHEAR SIDE OF JET STREAMS
      • 3.6.3 EFFECTS OF INTERACTION WITH MIDLATITUDE UPPER-LEVEL TROUGHS ON THE INTENSITY OF TROPICAL CYCLONES
      • 3.6.4 ROLE OF THE TROPICAL CYCLONE IN AN EXTRATROPICAL DEVELOPMENT ASSOCIATED WITH AN UPSTREAM UPPER-LEVEL CYCLONIC POTENTIAL VOR ...
      • 3.7 SUMMARY
      • 3.7.1 BASIC PRINCIPLES IN WATER VAPOR IMAGERY INTERPRETATION
      • 3.7.2 LIGHT WATER VAPOR IMAGERY PATTERNS: RELATION TO DYNAMICAL STRUCTURES
      • 3.7.3 DARK WATER VAPOR IMAGERY PATTERNS: RELATION TO DYNAMICAL STRUCTURES
      • 3.7.4 BOUNDARY PATTERNS ON THE WATER VAPOR IMAGERY: RELATION TO DYNAMICAL STRUCTURES
      • 3.7.5 INTERACTION/EVOLUTION OF WATER VAPOR IMAGERY FEATURES: RELATION TO DYNAMICAL PROCESSES
      • 3.7.6 UPPER-TROPOSPHERIC FLOW PATTERNS AFFECTING TROPICAL CYCLONE DEVELOPMENT
      • 3.7.7 SUPERPOSITION OF WATER VAPOR IMAGERY AND DYNAMICAL FIELDS: A TOOL FOR SYNOPTIC-SCALE ANALYSIS
      • 4 - DIAGNOSIS OF THERMODYNAMIC ENVIRONMENT OF DEEP CONVECTION
      • 4.1 INTRODUCTION
      • 4.2 ATMOSPHERIC ENVIRONMENT FAVORABLE FOR DEEP CONVECTION
      • 4.2.1 THE CONVECTIVE INGREDIENTS
      • 4.2.2 A DYNAMICAL TROPOPAUSE ANOMALY (UPPER-LEVEL CYCLONIC POTENTIAL VORTICITY MAXIMUM) FAVORS DEEP CONVECTION
      • 4.2.3 DRY AIR ALOFT INCREASES INSTABILITY AND FAVORS CONVECTIVE DEVELOPMENT
      • 4.2.4 DIVERGENT/CONVERGENT UPPER-LEVEL FLOW AS A POSITIVE/NEGATIVE FACTOR FOR DEEP CONVECTION
      • 4.3 UPPER-LEVEL DIAGNOSIS OF DEEP CONVECTION
      • 4.3.1 UPPER-LEVEL DYNAMICS FAVORABLE FOR DEEP CONVECTION IN MIDLATITUDES
      • 4.3.2 CONVECTION INITIATION AT DEFORMATION ZONES AND UPPER-LEVEL DYNAMICAL DRY FEATURES
      • 4.3.3 CONVECTIVE ENVIRONMENTS OVER THE SUBTROPICAL NORTH PACIFIC
      • 4.3.4 DEEP CONVECTION IN BLOCKING REGIMES
      • 4.3.5 UPPER-LEVEL DYNAMICS AND DEEP CONVECTION IN TROPICAL AREAS
      • 4.4 USE OF DATA FROM WATER VAPOR CHANNELS IN DIAGNOSING PRECONVECTIVE ENVIRONMENTS
      • 4.4.1 UPPER-LEVEL FORCING/INHIBITION IN THE ENVIRONMENT OF MOIST CONVECTION
      • 4.4.2 UPPER-LEVEL FORCING AND CONVECTIVE INSTABILITY IN SUBTROPICAL AREAS: MIDDLE EAST CASE STUDY, DECEMBER 22, 2009
      • 4.4.2.1 Diagnosis of Upper-Level Preconvective Environments
      • 4.4.2.2 Diagnosing Thermodynamic Context of Convective Development
      • 4.4.3 MOISTURE SUPPLY FOR DEEP CONVECTION AND RELATED DYNAMICAL STRUCTURES
      • 4.4.3.1 Atmospheric Rivers
      • 4.4.3.2 Moist Conveyor Belts
      • 4.4.3.3 Axes of Maximum Winds at Middle-Upper Troposphere and Related Movements of Moisture
      • 4.4.3.4 Diagnosis of Dynamical Moisture Structures
      • 4.4.3.5 Diagnosis of Large-Scale Confluent Moisture Movements by 6.2µm and 7.3µm Images
      • 4.4.4 REINFORCEMENT OF CONVECTIVE DEVELOPMENT THROUGH A POTENTIAL VORTICITY ANOMALY ADVECTION: A SURGE MOISTURE BOUNDARY IN THE W ...
      • 4.4.5 EARLY FORECAST OF UPPER-LEVEL FORCING FOR INTENSE CONVECTION
      • 4.4.5.1 Diagnosing the Strength of the Upper-Level Dynamics
      • 4.4.5.2 Early Forecast of Upper-Level Forcing for Convective Development
      • 4.5 SUMMARY OF THE CONCLUSIONS
      • 5 - USE OF WATER VAPOR IMAGERY TO ASSESS NUMERICAL WEATHER PREDICTION MODEL BEHAVIOR AND TO IMPROVE FORECASTS
      • 5.1 OPERATIONAL USE OF THE RELATIONSHIP BETWEEN POTENTIAL VORTICITY FIELDS AND WATER VAPOR IMAGERY
      • 5.1.1 NATURE AND USEFULNESS OF THE RELATIONSHIP
      • 5.1.2 INFORMATION CONTENT OF VORTICITY FIELDS RELATED TO WATER VAPOR IMAGERY
      • 5.1.3 COMPLEXITY OF THE RELATIONSHIP BETWEEN DRY INTRUSION AND POTENTIAL VORTICITY ANOMALIES
      • 5.2 SYNTHETIC (PSEUDO) WATER VAPOR IMAGES
      • 5.3 COMPARING POTENTIAL VORTICITY FIELDS, WATER VAPOR IMAGERY, AND SYNTHETIC WATER VAPOR IMAGES
      • 5.3.1 CONCEPT OF VALIDATING NUMERICAL WEATHER PREDICTION OUTPUT BY APPLYING A WATER VAPOR-POTENTIAL VORTICITY-PSEUDO WATER VAPOR ...
      • 5.3.2 TYPICAL INSTANCES OF WATER VAPOR-POTENTIAL VORTICITY-PSEUDO WATER VAPOR COMPARISON
      • 5.4 SITUATIONS OF MISMATCH BETWEEN WATER VAPOR IMAGE AND POTENTIAL VORTICITY FIELDS AS A WARNING SIGN OF NUMERICAL WEATHER PRED ...
      • 5.4.1 CYCLONE DEVELOPMENT WITHIN A CUT-OFF LOW SYSTEM
      • 5.4.2 CYCLOGENESIS WITH UPPER-LEVEL PRECURSOR IN STRONG ZONAL FLOW OVER THE NORTHEASTERN ATLANTIC COAST OF AMERICA
      • 5.4.3 MOIST ASCENT AT CUT-OFF UPPER-LEVEL FLOW OVER THE NORTHEASTERN ATLANTIC
      • 5.4.4 UPPER-LEVEL INFLUENCE ON DEEP CONVECTION WITHIN A CUT-OFF LOW SYSTEM
      • 5.4.4.1 Dry Feature Comparison to Validate Numerical Weather Prediction Simulation of the Upper-Level Descent
      • 5.4.4.2 Reliability of Potential Vorticity-Water Vapor Relationship
      • 5.4.4.3 Moist Feature Comparison to Validate Numerical Weather Prediction Simulation of Upper-Level Ascent
      • 5.4.4.4 Nature of the Poor Numerical Weather Pattern Forecast
      • 5.4.5 RAPID BAROCLINIC CYCLOGENESIS IN A STRONG ZONAL ATLANTIC FLOW
      • 5.5 USING POTENTIAL VORTICITY CONCEPTS AND WATER VAPOR IMAGES TO ADJUST NUMERICAL WEATHER PREDICTION INITIAL CONDITIONS AND GET ...
      • 5.5.1 SENSITIVITY ANALYSES OF UPPER-LEVEL DYNAMICS IN NUMERICAL WEATHER PREDICTION SIMULATIONS
      • 5.5.1.1 Impact of Upper-Level Potential Vorticity Anomalies in Numerical Simulations of Deep Convection in a Cut-off System Over th ...
      • 5.5.1.1.1 Upper-Level Effects
      • 5.5.1.1.2 Low-Level Effects
      • 5.5.1.2 Impact of Upper-Level Potential Vorticity Anomalies in Numerical Simulations of Deep Convection in a Cold Upper-Level Troug ...
      • 5.5.1.2.1 Potential Vorticity Modification
      • 5.5.1.2.2 Control Run
      • 5.5.1.2.3 Modified Run
      • 5.5.1.3 Applying Potential Vorticity Concepts in Understanding Extratropical Transition of Tropical Cyclones
      • 5.5.1.3.1 Control Run
      • 5.5.1.3.2 Modified Run
      • 5.5.2 IMPROVING NUMERICAL FORECASTS BY POTENTIAL VORTICITY INVERSION ADJUSTMENTS
      • 5.5.2.1 An Example of Effects on Forecasting Cyclogenesis With Strong Surface Winds
      • 5.5.2.1.1 PV Modification
      • 5.5.2.1.2 Improved Forecast
      • 5.5.2.2 An Example of Effects on Forecasting Upper-Level Forcing of Convection
      • 5.6 SUMMARY OF THE CONCLUSIONS
      • 5.6.1 COMPARISON BETWEEN WATER VAPOR IMAGERY AND DYNAMICAL FIELDS AS AN OPERATIONAL TOOL
      • 5.6.2 COMPARING SATELLITE AND SYNTHETIC WATER VAPOR IMAGERY WITH POTENTIAL VORTICITY FIELDS TO VALIDATE NUMERICAL WEATHER PREDICT ...
      • 5.6.3 USING THE TECHNIQUE OF POTENTIAL VORTICITY INVERSION TO ADJUST NUMERICAL WEATHER PREDICTION INITIAL CONDITIONS TO BETTER UN ...
      • 5.6.4 USING SATELLITE AND SYNTHETIC WATER VAPOR IMAGES AND POTENTIAL VORTICITY CONCEPTS TO ADJUST NUMERICAL WEATHER PREDICTION IN ...
      • Conclusion
      • A - RADIATION MEASUREMENTS IN WATER VAPOR ABSORPTION BAND
      • A.1 GEOSTATIONARY METEOROLOGICAL SATELLITES AND THEIR WATER VAPOR CHANNELS
      • A.2 RADIATIVE TRANSFER THEORY FOR THE WATER VAPOR CHANNELS
      • A.3 WATER VAPOR CHANNELS OF METEOSAT SECOND GENERATION SATELLITES AND THEIR SPECTRAL RESPONSE
      • A.3.1 TRANSMITTANCE
      • A.3.2 WEIGHTING FUNCTION
      • A.3.3 CONTRIBUTION FUNCTION
      • A.4 ALTITUDE ASSOCIATION OF THE CONTRIBUTION TO THE METEOSAT WATER VAPOR CHANNEL RADIANCE: EFFECT OF PORTIONING AND CROSSOVER E ...
      • A.4.1 RADIANCES FROM MOISTURE STRATIFIED IN SINGLE LAYERS
      • A.4.2 BRIGHTNESS TEMPERATURE
      • A.4.3 RADIANCE
      • A.4.4 EFFECT OF PORTIONING AND CROSSOVER EFFECT
      • B - POTENTIAL VORTICITY MODIFICATION TECHNIQUE AND POTENTIAL VORTICITY INVERSION TO CORRECT THE INITIAL STATE OF T ...
      • References
      • Glossary
      • Index
      • A
      • B
      • C
      • D
      • E
      • F
      • G
      • H
      • I
      • J
      • K
      • L
      • M
      • N
      • O
      • P
      • Q
      • R
      • S
      • T
      • U
      • V
      • W
      • Z
      • Back Cover

      Dateiformat: EPUB
      Kopierschutz: Adobe-DRM (Digital Rights Management)

      Systemvoraussetzungen:

      Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

      Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

      E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

      Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

      Weitere Informationen finden Sie in unserer E-Book Hilfe.


      Dateiformat: PDF
      Kopierschutz: Adobe-DRM (Digital Rights Management)

      Systemvoraussetzungen:

      Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

      Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

      E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

      Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

      Weitere Informationen finden Sie in unserer E-Book Hilfe.


      Download (sofort verfügbar)

      77,29 €
      inkl. 19% MwSt.
      Download / Einzel-Lizenz
      ePUB mit Adobe DRM
      siehe Systemvoraussetzungen
      PDF mit Adobe DRM
      siehe Systemvoraussetzungen
      Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
      E-Book bestellen

      Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok