Biochemistry of Oxidative Stress

Physiopathology and Clinical Aspects
 
 
Springer (Verlag)
  • erschienen am 28. Dezember 2016
  • |
  • XI, 454 Seiten
 
E-Book | PDF mit Wasserzeichen-DRM | Systemvoraussetzungen
978-3-319-45865-6 (ISBN)
 
The strongest point of this book titled "Biochemistry of Oxidative Stress: Physiopathology and Clinical Aspects", is that the academic and scientific background of the authors/editors guarantee the authorship of a book comprising all aspects of oxidative stress, ranging from very molecular aspects, to clinical application, including the antioxidant therapy. Of particular importance is the fact that the aforementioned aspects are described in the book in a general section and in three different and important pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. The importance of these pathologies lays in the fact that, taken separately or together, they represent by far the leading cause of death in the world. Finally, all the chapters have been written by highly recognized authorities in the field of their investigations. At least to our knowledge, this is the first book with this characteristics in the field of oxidative stress.

1st ed. 2016
  • Englisch
  • Cham
  • |
  • Schweiz
Springer International Publishing
  • 27 s/w Abbildungen, 47 farbige Abbildungen
  • |
  • 27 schwarz-weiße und 47 farbige Abbildungen, Bibliographie
  • 11,41 MB
978-3-319-45865-6 (9783319458656)
10.1007/978-3-319-45865-6
weitere Ausgaben werden ermittelt

Introduction

SECTION 1 GENERAL ASPECTS

1 The concept of oxidative stress after 30 years
Helmut Sies. Institute of Biochemistry and Molecular Biology I, and Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Building 22.03, University Street 1, D-40225 Düsseldorf, Germany. sies@uni-duesseldorf.de

2 Evolution of atmospheric oxygen and oxygen metabolism
Juan José Poderoso. Laboratory of Oxygen Metabolism, University Hospital, CONICET and University of Buenos Aires, Córdoba 2351, 1120 Buenos Aires, Argentina. jpoderos@fmed.uba.ar

3 Mitochondria as origin of cellular oxidative stress
Alberto Boveris. Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina. aboveris@ffyb.uba.ar

4 Biochemistry and physiology of mtNOS
Cecilia Giulivi. Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders Institute, University of California, Davis, California. cgiulivi@ucdavis.edu

5 Biochemistry of nitrogen reactive species
Rafael Radi. Center for Free Radical and Biomedical Research, Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. rafael.radi@gmail.com

6 Biochemistry of nitro fatty acids
Francisco Schopfer. Department of Pharmacology and Chemical Biology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, 15261, PA, U.S.A. fjs2@pitt.edu

7 Mammalian adaptation to life at high altitude
Gustavo F. Gonzales. Instituto de Investigaciones de la Altura, Universidad Peruana Cayetano Heredia, Lima, Peru. gustavo.gonzales@upch.pe

8 Metabolic syndrome and oxidative stress in rat pancreas
Matilde Otero-Losada. Instituto de Investigaciones Cardiológicas, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. molly1063@gmail.com

9 Progesterone prevents mitochondrial dysfunction and oxidative stress in the spinal cord of wobbler mice.
Alejandro De Nicola. Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, Buenos Aires, Argentina; Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina. alejandrodenicola@gmail.com.

10 Mitochondrial transfer by intercellular nanotubes.
Alicia Brusco, Viviana Sanchez. Institute of CellularBiology and Neuroscience (UBA-CONICET), University of Buenos Aires, Argentina. hbrusco@fmed.uba.ar; vsanchez@fmed.uba.ar

SECTION 2 CARDIOVASCULAR
11 Role of Oxidative Stress in Subcellular Defects in Ischemic Heart Disease.
Monika Bartekova, Naranjan S Dhalla. St. Boniface General Hospital Research Centre, Department of Human Anatomy & Cell Science, Faculty of Medicine, University of Manitoba, Winnipeg, Canada. nsdhalla@sbrc.ca

12 Regulation of protein nitrosylation by Trx1
Narayani Nagarajan, Junichi Sadoshima. Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, USA. sadoshju@njms.rutgers.edu

13 Inhibition of adenylyl cyclase type 5 increases longevity and healthful aging through oxidative stress protection.
Stephen Vatner. Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey. vatnersf@njms.rutgers.edu.
14 Antioxidant supplementation in elderly cardiovascular patients.
José Milei. Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina. ininca@fmed.uba.ar

15 Rupture of redox homeostasis in a model of pulmonary artery.
Adriane Bello Klein. Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil. belklein@ufrgs.br

16 Mitochondrial reactive oxygen species triggered by the cardiac renin-angiotensin-aldosterone system.
Horacio E. Cingolani. Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Argentina. cicmes@infovia.com.ar

17 Mitochondrial complex I inactivation and increased autooxidation after ischemia-reperfusion in the stunned heart
Verónica D'annunzio, Laura Valdez. Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina ; and Institute of Biochemistry and Molecular Medicine (IBIMOL), Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina. vdannunzio@gmail.com; lbvaldez@ffyb.uba.ar
18 Oxidized LDL and atherogenesis.
Gabriela Berg. Clinical Biochemistry Department, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina. gaberg@ffyb.uba.ar

19 Reactive oxygen species and cyclooxygenase products in the regulation of blood flow in small vessels.
Francisco Laurindo. Vascular Biology Laboratory, Heart Institute, University of São Paulo School of Medicine, 05403-000 São Paulo, Brazil. expfrancisco@incor.usp.br

20 Thioredoxin-1 attenuates postischemic ventricular and mitochondrial dysfunctions.
Veronica D'annunzio, Ricardo J Gelpi. Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, University of Buenos Aires, JE Uriburu 950 - 2nd Floor, C1114AAD, Buenos Aires, Argentina. rgelpi@fmed.uba.ar

21 Nitro-arachidonic acid reduces the damaged area in rat myocardial infarction. Homero Rubbo, Veronica D'annunzio, Rafael Radi, Ricardo J Gelpi. Department of Biochemistry and Center for Radical and Biomedical Research, Faculty of Medicine, University of the Republic, Montevideo, Uruguay; and Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina. hrubbo@fmed.edu.uy; vdannunzio@gmail.com; rgelpi@fmed.uba.ar

22 Inhaled particulate matter and myocardial dysfunction.
Pablo Evelson. Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, C1113AAD Buenos Aires, Argentina. pevelson@ffyb.uba.ar

SECTION 3 NEURODEGENERATION AND NEURONAL FUNCTION

23 Effect of lipoic acid in the triple transgenic mouse model of Alzhaimer's disease
Enrique Cadenas. Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90089, USA. cadenas@usc.edu

24 Neurovascular coupling mediated by NO in the hippocampus
Joao Laranjiña. Faculty of Pharmacy, Center for Neurosciences and Cell Biology, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal. laranjin@ci.uc.pt

25 Protection from neurodegeneration: signaling and mitocondrial regulation
Nibaldo C Inestrosa. Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, Alameda 340, P.O. 8331150, Santiago, Chile. ninestrosa@bio.puc.cl

26 Oxidative stress and neurodegeneration
Juana Pasquini. Department of Biological Chemistry, Biological and Physical Chemistry Institute (IQUIFIB-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina. jpasquin@qb.ffyb.uba.ar

27 Oxidative stress, metabolic syndrome and Alzheimer´s disease.
Victoria Campos-Peña. Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico, Mexico. neurovcpy@gmail.com

28 Systemic oxidative stress in patients with neurodegenerative diseases.
Marisa Repetto, Alberto Boveris. General Chemistry, Department of Physical Chemistry, School of Pharmacy and Biochemistry (UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina. mrepetto@ffyb.uba.ar

SECTION 4 CANCER
29 Oxygen metabolism and oxidative stress in cancer cells
Juan José Poderoso. Laboratory of Oxygen Metabolism, University Hospital, CONICET and University of Buenos Aires, Córdoba 2351, 1120 Buenos Aires, Argentina. jpoderos@fmed.uba.ar

30 Mitochondrial biogenesis is required for survival and propagation of cancer cells. Michael Lisanti. Breast Cancer Research Unit and the Manchester Breast Centre; Institute of Cancer Sciences; University of Manchester; Manchester; University of Manchester; Manchester, United Kingdom. michael.lisanti@kimmelcancercenter.org

31 Tumor immunology & immunotherapy in patients
Roland Mertelsmann. University Medical Center, Department of Hematology/Oncology, Hugstetter Str. 55, 79106 Freiburg, Germany. roland.mertelsmann@uniklinik.-freiburg.de

32 Oncogene-induced Nrf2 repression as adaptive response of cancer cells to acquire a pro-oxidant state favoring cell survival and in vivo tumor growth.
Salvador Moncada. University of Manchester, Wolfson Molecular Imaging Centre, 27 Palatine Road, Manchester M20 3LJ, UK salvador.moncada@manchester.ac.uk

33 Mitochondrial dynamics regulate oxidative metabolism in Leydig tumor cells.

Index

Dateiformat: PDF
Kopierschutz: Wasserzeichen-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Verwenden Sie zum Lesen die kostenlose Software Adobe Reader, Adobe Digital Editions oder einen anderen PDF-Viewer Ihrer Wahl (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie die kostenlose App Adobe Digital Editions oder eine andere Lese-App für E-Books (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nur bedingt: Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein "weicher" Kopierschutz verwendet. Daher ist technisch zwar alles möglich - sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

181,89 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Wasserzeichen-DRM
siehe Systemvoraussetzungen
E-Book bestellen