Nanomaterials for Wastewater Remediation

 
 
Butterworth-Heinemann (Verlag)
  • 1. Auflage
  • |
  • erschienen am 17. Mai 2016
  • |
  • 366 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-804741-5 (ISBN)
 

Nanomaterials for Wastewater Remediation introduces techniques for nanoparticle formation and their benefits in environmental cleanup, as well as their recent advances and applications in wastewater treatment. The book follows a sequential approach for the treatment of wastewater, presenting state-of-the-art techniques for the characterization and measurement of nanomaterials.

Nanoparticles represent a promising new technology for wastewater remediation, not only because of their high treatment efficiency, but also for their cost effectiveness, as they have the flexibility for in situ and ex situ applications. New methods for developing nanomaterials with less environmental risk are described. Nanomaterials such as magnetic nanoparticles and graphene-based nanocomposites are discussed in detail. Also includes in-depth analyses of the ecotoxicological impacts of nanomaterials and the latest findings on the transport and fate of nanomaterials in the environment.


  • Covers methods for the characterization of nanomaterials using advanced instrumental techniques
  • Includes innovative methods for developing new nanomaterials while lessening their environmental risk
  • Provides the latest methods for determining the transport and fate of nanomaterials in the environment
  • Discusses in detail nanomaterials such as magnetic nanoparticles and graphene-based nanocomposites


Ravindra Kumar Gautam did his post-graduation in Environmental Science in 2009 from University of Allahabad, India. Thereafter, he worked for one year in National Environmental Engineering Research Institute (NEERI), Council of Scientific & Industrial Research, Nagpur, India. He has published 20 papers including research articles, book chapters, and conference proceedings. He has written a book entitled 'Environmental Magnetism: Fundamentals and Applications" (ISBN-10: 3659209090 | ISBN-13: 978-3659209093) which was published by Lambert Academic Publishing, Saarbrucken, Germany.
  • Englisch
  • Oxford
  • |
  • USA
Elsevier Science
  • 21,29 MB
978-0-12-804741-5 (9780128047415)
0128047410 (0128047410)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Dedicated
  • Content
  • About the Authors
  • Foreword
  • Preface
  • Chapter 1 - Nanotechnology for Water Cleanup
  • 1.1 - Introduction
  • 1.2 - Magnetic nanoparticles
  • 1.3 - Layered double hydroxides (LDHs) for environmental applications
  • 1.4 - Removal of inorganic contaminants by LDHs
  • 1.4.1 - Uptake of Heavy Metal Cations
  • 1.5 - Removal of nuclear wastes
  • 1.5.1 - Removal of Organic Pollutants by LDHs
  • 1.5.2 - Removal of Organic Compounds and Pesticides
  • 1.5.3 - Removal of Dyes
  • 1.6 - Graphene-based adsorbents
  • 1.7 - Metal organic frameworks (MOFs)
  • 1.8 - Bimetallic nanoparticles
  • 1.9 - Conclusions
  • References
  • Chapter 2 - Remediation Technologies for Water Cleanup: New Trends
  • 2.1 - Introduction
  • 2.2 - Remediation technologies for emerging pollutants
  • 2.2.1 - Membrane Filtration
  • 2.2.2 - Bioremediation and Phytoremediation
  • 2.2.3 - Heterogeneous Catalysts and Catalysis
  • 2.2.4 - Electrocoagulation
  • 2.2.5 - Clays/Layered Double Hydroxides
  • 2.2.6 - Biomass-Based Biosorption
  • 2.2.7 - Magnetic Nanoparticles as Nanosorbents
  • 2.2.8 - Advanced Oxidation Processes
  • 2.2.9 - Graphene-Based Nanosorbents
  • 2.3 - Conclusions
  • References
  • Chapter 3 - Advanced Oxidation Process-Based Nanomaterials for the Remediation of Recalcitrant Pollutants
  • 3.1 - Advanced oxidation processes
  • 3.2 - Main advanced oxidation processes
  • 3.2.1 - Sonochemical Oxidation Methods
  • 3.2.2 - Electrochemical Oxidation Processes
  • 3.2.3 - Advanced Photochemical Oxidation Processes
  • 3.2.4 - Heterogeneous Photocatalysis
  • 3.2.5 - Photo-Fenton Oxidation Reaction
  • 3.3 - Conclusions
  • References
  • Chapter 4 - Graphene-Based Nanocomposites as Nanosorbents
  • 4.1 - Introduction
  • 4.2 - Graphene-based nanocomposites as nanosorbents
  • 4.2.1 - Adsorption of Heavy Metals
  • 4.2.2 - Graphene Oxide
  • 4.2.3 - Graphene-Oxide-Based Chitosan-Gelatin Composites
  • 4.2.4 - Graphene Oxide Aerogels
  • 4.2.5 - Graphene-Oxide-Based Ferric Hydroxide Nanocomposites
  • 4.2.6 - Reduced Graphene Oxide-Metal Oxide Composites
  • 4.2.7 - Magnetic Chitosan/Graphene Oxide
  • 4.2.8 - Sulfonated Magnetic Graphene Oxide Composite
  • 4.2.9 - Graphene-Layered Double Hydroxide Nanocomposites
  • 4.2.10 - Simultaneous Removal of Heavy Metals and Dyes
  • 4.2.11 - Graphene-Based Polymer Composites
  • 4.2.12 - Graphene-Based Magnetic Nanocomposites
  • 4.2.13 - Effects of Coexisting Ions, Contact Time, and Temperature
  • 4.2.14 - Polydopamine-Functionalized Graphene Hydrogel
  • 4.2.15 - Thiol-Modified Graphene Oxide
  • 4.3 - Graphene oxide for removal of phenol and naphthol
  • 4.4 - Graphene oxide for removal of algal toxins
  • 4.5 - Graphene for removal of persistent organic pollutants
  • 4.6 - Conclusions
  • References
  • Chapter 5 - Kinetics and Equilibrium Isotherm Modeling: Graphene-Based Nanomaterials for the Removal of Heavy Metals From Water
  • 5.1 - Introduction
  • 5.2 - Kinetic studies and models
  • 5.2.1 - Reaction-Based Models
  • 5.2.1.1 - Pseudo-First-Order Model
  • 5.2.1.2 - Pseudo-Second-Order Model
  • 5.2.2 - Diffusion-Based Models
  • 5.2.2.1 - External Diffusion Model
  • 5.2.2.2 - Internal Diffusion Model (Weber and Morris Sorption Kinetic Model)
  • 5.3 - Other kinetic models
  • 5.3.1 - Boyd Kinetic Model
  • 5.3.2 - Bhattacharya and Venkobachar Model
  • 5.3.3 - Elovich Kinetic Model
  • 5.4 - Modeling of equilibrium adsorption processes
  • 5.4.1 - Equilibrium Adsorption Isotherms
  • 5.4.1.1 - Langmuir Isotherm
  • 5.4.1.2 - Freundlich Isotherm
  • 5.4.1.3 - Temkin Isotherm
  • 5.4.1.4 - Redlich-Peterson Isotherm
  • 5.4.1.5 - Dubinin and Radushkevich Isotherm
  • 5.5 - Thermodynamic analyses
  • 5.6 - Adsorption of heavy metals
  • 5.7 - Conclusions
  • References
  • Chapter 6 - Sorption of Dyes on Graphene-Based Nanocomposites
  • 6.1 - Adsorption of dyes
  • 6.2 - Graphene-based magnetic nanocomposites
  • 6.3 - Photocatalytic degradation
  • 6.4 - Graphene-based carbon nanotubes composites
  • 6.5 - Graphene-based sulfonic magnetic nanocomposites
  • 6.6 - Graphene-based polymer nanocomposites
  • 6.7 - Graphene-based sand composites
  • 6.8 - Graphene-based chitosan composites
  • 6.9 - Conclusions
  • References
  • Chapter 7 - Functionalized Magnetic Nanoparticles: Adsorbents and Applications
  • 7.1 - Magnetic nanoparticles
  • 7.2 - Synthesis of magnetic nanoparticles
  • 7.2.1 - Coprecipitation
  • 7.2.2 - Hydrothermal Syntheses
  • 7.2.3 - Microemulsion
  • 7.2.4 - Thermal Decomposition
  • 7.3 - Magnetic nanoparticles in wastewater treatment
  • 7.3.1 - Magnetic Nanoparticles as Nanosorbents for Heavy Metals
  • 7.4 - Modeling of adsorption: kinetic and isotherm models
  • 7.5 - Conclusions and future perspectives
  • References
  • Chapter 8 - Layered Double Hydroxides Nanomaterials for Water Remediation
  • 8.1 - Introduction
  • 8.2 - Synthesis of layered double hydroxides
  • 8.2.1 - Coprecipitation Method
  • 8.2.2 - Urea Method
  • 8.2.3 - Microwave Synthesis
  • 8.2.4 - Ion-Exchange Method
  • 8.2.5 - Sol-Gel Method
  • 8.2.6 - Memory Effect or Calcination-Rehydration Method
  • 8.2.7 - Postsynthesis Treatments
  • 8.3 - Potential applications of LDHs
  • 8.3.1 - Removal of Phenolic Compounds
  • 8.3.2 - Removal of Pesticides
  • 8.3.3 - Removal of Dyes
  • 8.3.4 - Removal of Surfactants
  • 8.3.5 - Removal of Oxyanions
  • 8.3.6 - Removal of Heavy Metal and Rare Earth Cations
  • 8.3.7 - Removal of Nuclear Wastes
  • 8.3.8 - Removal of Toxic Vapor From Water
  • 8.3.9 - Miscellaneous Application of LDHs as Adsorbent
  • 8.3.9.1 - Air Pollution Control
  • 8.3.9.2 - CO2 Sequestration
  • 8.4 - Conclusions
  • References
  • Chapter 9 - Magnetic Nanophotocatalysts for Wastewater Remediation
  • 9.1 - Introduction
  • 9.2 - Synthesis and characterization
  • 9.3 - Applications of magnetically recyclable nanophotocatalysts
  • 9.3.1 - Degradation of Dyes
  • 9.3.2 - Degradation of Organochlorine Pollutants DDT and DDE
  • 9.3.3 - Degradation of Pharmaceuticals
  • 9.3.4 - Reduction of Chromium [Cr(VI)]
  • 9.3.5 - Oxidation of Arsenic [As(III)]
  • 9.3.6 - Degradation of Phenol
  • 9.3.7 - Degradation of Chlorophenol
  • 9.3.8 - Degradation of Nitrophenol
  • 9.3.9 - Photocatalytic Degradation of the Insecticide
  • 9.3.10 - Degradation of Oil
  • 9.3.11 - Disinfection of Pathogenic Bacteria
  • 9.4 - Conclusions
  • References
  • Chapter 10 - Alumina Nanoparticles and Alumina-Based Adsorbents for Wastewater Treatment
  • 10.1 - Introduction
  • 10.2 - Synthesis
  • 10.3 - Application
  • 10.3.1 - Removal of Phenolic Compounds
  • 10.3.2 - Removal of Dyes
  • 10.3.3 - Removal of Hydrophobic Organic Compounds (HOCs)
  • 10.3.4 - Removal of Surfactants
  • 10.3.5 - Removal of Inorganic Species
  • 10.4 - Conclusions
  • References
  • Chapter 11 - Bimetallic Nanomaterials for Remediation of Water and Wastewater
  • 11.1 - Introduction
  • 11.2 - Applications of bimetallic nanomaterials
  • 11.2.1 - Degradation of Chlorophenol
  • 11.2.2 - Degradation of Dyes
  • 11.2.3 - Remediation of Arsenic
  • 11.2.4 - Removal of Benzene and Volatile Organic Compounds
  • 11.2.5 - Dechlorination of Trichloroethylene
  • 11.2.6 - Dechlorination of Endocrine-Disrupting Chemicals
  • 11.3 - Conclusions
  • References
  • Chapter 12 - Desorption, Regeneration, and Reuse of Nanomaterials
  • 12.1 - Introduction
  • 12.2 - Regeneration of photocatalysts
  • 12.3 - Recovery of metals and regeneration of magnetic nanoparticles
  • 12.4 - Regeneration of Graphene-Based Nanocomposites
  • 12.5 - Regeneration of Nanosorbents Used in Dye Removal
  • 12.6 - Desorption and regeneration of inorganic solid wastes
  • 12.7 - Management of spent eluents
  • 12.8 - Management of spent nanomaterials
  • 12.9 - Conclusions
  • References
  • Chapter 13 - Nanomaterials in the Environment: Sources, Fate, Transport, and Ecotoxicology
  • 13.1 - Introduction
  • 13.2 - Release of nanomaterials into the environment
  • 13.3 - Titanium dioxide
  • 13.4 - Silicon dioxide
  • 13.5 - Iron oxide nanoparticles
  • 13.6 - Graphene-based materials and their toxicity
  • 13.7 - Metal and semiconductor nanoparticles
  • 13.8 - Copper nanoparticles
  • 13.9 - Nickel nanoparticles
  • 13.10 - Silver nanoparticles
  • 13.11 - Magnetic nanoparticles in the environment
  • 13.12 - Environmental and safety concerns toward nanomaterials
  • 13.13 - Challenges in certain areas
  • 13.14 - Proposed actions to address these challenges
  • 13.15 - Conclusions
  • References
  • Subject Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

145,18 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok