Heat Transfer Enhancement Using Nanofluid Flow in Microchannels

Simulation of Heat and Mass Transfer
 
 
William Andrew (Verlag)
  • 1. Auflage
  • |
  • erschienen am 11. Juni 2016
  • |
  • 376 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-323-43178-1 (ISBN)
 

Heat Transfer Enhancement Using Nanofluid Flow in Microchannels: Simulation of Heat and Mass Transfer focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels.

Economic and environmental incentives have increased efforts to reduce energy consumption. Heat transfer enhancement, augmentation, or intensification are the terms that many scientists employ in their efforts in energy consumption reduction. These can be divided into (a) active techniques which require external forces such as magnetic force, and (b) passive techniques which do not require external forces, including geometry refinement and fluid additives.


  • Gives readers the knowledge they need to be able to simulate nanofluids in a wide range of microchannels and optimise their heat transfer characteristics
  • Contains real-life examples, mathematical procedures, numerical algorithms, and codes to allow readers to easily reproduce the methodologies covered, and to understand how they can be applied in practice
  • Presents novel applications for heat exchange systems, such as entropy generation minimization and figures of merit, allowing readers to optimize the techniques they use
  • Focuses on the numerical simulation of passive techniques, and also covers the applications of external forces on heat transfer enhancement of nanofluids in microchannels


D. D. Ganji is a Professor of Mechanical Engineering and the Director of the Graduate Program at Babol Noshirvani University of Technology in Iran, as well as a consultant in nonlinear dynamics and the Dean of the National Elite Foundation of Iran. He has a Ph.D. in Mechanical Engineering from Tarbiat Modarres University. He is the Editor-in-Chief of International Journal of Nonlinear Dynamic and Engineering Science, and Editor of International Journal of Nonlinear Sciences and Numerical Simulation and International Journal of Differential Equations.
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 16,67 MB
978-0-323-43178-1 (9780323431781)
032343178X (032343178X)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Heat Transfer Enhancement Using Nanofluid Flow in Microchannels
  • Heat Transfer Enhancement Using Nanofluid Flow in Microchannels
  • Copyright
  • Contents
  • Preface
  • 1 - Introduction to Heat Transfer Enhancement
  • 1.1 Why Enhancing Heat Transfer Rate Is Crucial?
  • 1.2 Heat Transfer Enhancement Classification
  • 1.2.1 Passive Techniques
  • 1.2.1.1 Treated Surfaces
  • 1.2.1.2 Rough Surfaces
  • 1.2.1.3 Extended Surfaces
  • 1.2.1.4 Displacing Devices
  • 1.2.1.5 Swirl Flow Devices
  • 1.2.1.6 Curved Tubes
  • 1.2.1.7 Surface Tension Devices
  • 1.2.1.8 Additives for Liquids
  • 1.2.1.9 Additives for Gases
  • 1.2.2 Active Techniques
  • 1.2.2.1 Mechanical Aids
  • 1.2.2.2 Surface Vibration
  • 1.2.2.3 Fluid Vibration
  • 1.2.2.4 Electrostatic Fields
  • 1.2.2.5 Suction/Injection
  • References
  • 2 - Heat Transfer and Pressure Drop in Channels
  • 2.1 Concept of Fully Developed and Developing Flow
  • 2.2 Navier-Stokes Equations
  • 2.3 Fully Developed Region
  • 2.3.1 Hydrodynamic Fully Developed Flow
  • 2.3.2 Thermally Fully Developed Flow
  • 2.3.3 Fully Developed Flow in Circular Channels
  • 2.3.4 Fully Developed Flow in Concentric Annuli
  • 2.3.5 Temperature Variation of Flow in Parallel-Plate Channel
  • 2.3.6 Fully Developed Flow in Parallel-Plate Channel with Asymmetric Heating
  • 2.3.7 Unsteady Flow Between Two Parallel-Plate Channels (Nonzero Pressure Gradient)
  • 2.3.8 Unsteady Flow Between Two Parallel-Plate Channels (Zero Pressure Gradient)
  • 2.3.9 Fluid Flow in Rectangular Channel
  • 2.3.10 Free Convection Inside Channels
  • 2.3.11 Flow and Heat Transfer in Curved Tubes
  • 2.3.11.1 Fluid Flow in Helical Annular Tubes
  • 2.3.11.2 Forced Convective Heat Transfer in Helical Annular Tube
  • 2.3.12 Thermally Fully Developed Flow of Nanofluids Inside a Vertical Annulus
  • References
  • 3 - Preparation and Theoretical Modeling of Nanofluids
  • 3.1 Preparation of Nanofluids
  • 3.2 Theoretical Modeling of Nanofluids
  • 3.3 Buongiorno Model
  • 3.3.1 Stagnation Point Flow of a Nanofluid Toward an Exponentially Stretching Sheet With Nonuniform Heat Generation/Absorption
  • 3.3.2 Unsteady Boundary Layer Flow of Nanofluid Past a Permeable Stretching/Shrinking Sheet With Convective Heat Transfer
  • 3.3.3 Boundary Layer Slip Flow and Heat Transfer of Nanofluid Induced by a Permeable Stretching Sheet with Convective Boundary Co ...
  • 3.3.4 The Unsteady Flow of a Nanofluid in the Stagnation Point Region of a Time-Dependent Rotating Sphere
  • 3.4 Thermophysical Dependency of Nanofluids to Nanoparticle Volume Fraction
  • 3.4.1 Nanofluid Flow Over a Flat Plate
  • 3.4.2 Slip Effects at the Stagnation Point Flow Over a Stretching Sheet
  • 3.4.3 Force Convection Heat and Mass Transfer of MHD Nanofluid Flow Inside a Porous Microchannel With Chemical Reaction on the Walls
  • 3.5 Modified Buongiorno Model
  • 3.5.1 Laminar Filmwise Condensation of Nanofluids Over a Vertical Plate
  • 3.5.2 Laminar Film Boiling of Nanofluids Over a Vertical Cylinder
  • 3.5.3 Laminar Film Boiling of Nanofluids Over a Vertical Plate in Presence of a Uniform Variable-Directional Magnetic Field
  • 3.5.4 Laminar Film Boiling of Nanofluids Over a Vertical Cylinder in Presence of a Uniform Variable-Directional Magnetic Field
  • 3.6 Final Remarks
  • References
  • 4 - Simulation of Nanofluid Flow in Channels
  • 4.1 How Consequential Is Nanofluid Flow in Channels?
  • 4.2 Experimental and Theoretical Modeling of Nanofluids in Channels
  • 4.2.1 Discrepancy Between Experimental Data and Theoretical Models
  • 4.2.2 Theoretical Modeling of Nanofluids in Channels
  • 4.2.2.1 Effects of Shear, Viscosity Gradient, and Self-Diffusion on Nanoparticle Migration in Small Channels
  • 4.2.2.2 Thermophoresis, Shear, Brownian Diffusion, and Viscosity Gradient Effects on Nanoparticle Migration inside a Circular Tube
  • 4.3 Modified Buongiorno's Model and Its Influence on Physical Understanding of Nanofluid Behavior in Channels
  • 4.3.1 Forced Convective Heat Transfer
  • 4.3.1.1 Nanofluid Flow in a Parallel-Plate Channel
  • 4.3.1.2 Nanofluid Flow in a Circular Tube
  • 4.3.1.3 Nanofluid Flow in a Concentric Annulus
  • 4.3.2 Mixed Convective Heat Transfer
  • 4.3.2.1 Mixed Convection in Microchannels
  • 4.3.2.2 Mixed Convection in a Concentric Annulus
  • 4.3.3 Asymmetric Heating Effects on Nanoparticle Migration
  • 4.3.3.1 Forced Convection in a Parallel-Plate Microchannel
  • 4.3.3.2 Mixed Convection in a Parallel-Plate Microchannel
  • 4.3.3.3 Forced Convection in a Cooled Parallel-Plate Channel
  • 4.3.3.4 Forced Convection in a Parallel-Plate Microchannel With Heat Generation/Absorption
  • 4.3.3.5 Forced Convection in a Concentric Annulus With Heat Generation/Absorption
  • 4.3.3.6 Forced Convection in a Concentric Annulus With a Moving Core
  • 4.3.3.7 Mixed Convection in a Concentric Annulus
  • References
  • 5 - External Forces Effect on Intensification of Heat Transfer
  • 5.1 Heat Transfer Enhancement of Nanofluids With External Forces
  • 5.1.1 Periodically Moving Wall
  • 5.1.2 Motionless Walls
  • 5.2 Magnetic Field Effects on Forced Convective Heat Transfer
  • 5.2.1 Magnetic Field Effect on Heat Transfer of Alumina/Water (Al2O3-H2O) Nanofluid in a Channel
  • 5.2.2 Brownian Motion and Thermophoresis Effects on Slip Flow of Alumina/Water Nanofluid Inside a Circular Microchannel in the Pr ...
  • 5.2.3 Effect of Magnetic Fields on Heat Convection Inside a Concentric Annulus Filled With Al2O3-Water Nanofluid
  • 5.2.4 Effects of Nanoparticle Migration and Asymmetric Heating on Magnetohydrodynamic Forced Convection of Alumina/Water Nanoflui ...
  • 5.3 Magnetic Field Effects on Mixed Convective Heat Transfer
  • 5.3.1 Magnetohydrodynamic Mixed Convective Flow of Al2O3-Water Nanofluid Inside a Vertical Microtube
  • 5.3.2 MHD Mixed Convection in a Vertical Annulus Filled With Al2O3-Water Nanofluid Considering Nanoparticle Migration
  • 5.3.3 Effects of Nanoparticle Migration on Hydromagnetic Mixed Convection of Alumina/Water Nanofluid in Vertical Channels With As ...
  • 5.4 Magnetic Field Effects on Natural Convective Heat Transfer
  • 5.4.1 Magnetic Field and Slip Effects on Free Convection Inside a Vertical Enclosure Filled With Alumina/Water Nanofluid
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

153,51 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok