Essentials of Mineral Exploration and Evaluation

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 10. Mai 2016
  • |
  • 410 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-805332-4 (ISBN)
 

Essentials of Mineral Exploration and Evaluation offers a thorough overview of methods used in mineral exploration campaigns, evaluation, reporting and economic assessment processes. Fully illustrated to cover the state-of-the-art exploration techniques and evaluation of mineral assets being practiced globally, this up-to-date reference offers balanced coverage of the latest knowledge and current global trends in successful mineral exploration and evaluation. From mineral deposits, to remote sensing, to sampling and analysis, Essentials of Mineral Exploration and Evaluation offers an extensive look at this rapidly changing field.


  • Covers the complete spectrum of all aspects of ore deposits and mining them, providing a 'one-stop shop' for experts and students
  • Presents the most up-to-date information on developments and methods in all areas of mineral exploration
  • Includes chapters on application of GIS, statistics, and geostatistics in mineral exploration and evaluation
  • Includes case studies to enhance practical application of concepts


Dr. S.M. Gandhi obtained his M. Tech and Ph.D degrees in Applied Geology in 1967 and 1975, respectively, from Sagar University, India. He joined Hindustan Zinc (HZL) in 1971 as Exploration/Mining geologist and worked in Zawar group of mines until 1974. Between 1974 and 1979, he was a Canadian Commonwealth Fellow and carried out research on Lithogeochemical Exploration Techniques for base metals in Eastern Canada and obtained a Ph.D from Univ. of New Brunswick (UNB), Canada, in 1978. During his stay in North America, besides serving as a faculty member in UNB in mineral exploration and exploration geochemistry, Dr. Gandhi visited and worked in various world-class base and precious metal prospects/deposits along with multinational exploration groups in Canada and USA. He has 62 scientific publications in peer-reviewed, national and international journals. He is now a consultant in Mineral Exploration & Mineral Evaluation and a guest faculty member in a few Universities, teaching Mineral Exploration courses.
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 15,06 MB
978-0-12-805332-4 (9780128053324)
0128053321 (0128053321)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Essentials of Mineral Exploration and Evaluation
  • Copyright Page
  • Contents
  • Preface
  • Some Abbreviations and Acronyms Used in the Text
  • Weights and Measures
  • Length
  • Surface and Area
  • Weight
  • Volume
  • 1 Metals and Minerals: Global Trends, Outlook, and Mineral Exploration
  • 1.1 General
  • 1.2 Emerging Economies of the New World
  • 1.3 Program for Progress
  • 1.4 Recycling and Conservation
  • 1.5 Some Environmental Benefits of Metals Recycling
  • 1.6 Substitution
  • 1.7 Global Flow of Metals and Minerals
  • 1.7.1 Metal Prices in Nominal Terms
  • 1.7.2 Chinese Demand Growth
  • 1.7.3 Higher Prices Bring Benefits to Producer Countries and Investors
  • 1.7.4 Market-Driven Industry Gives Grounds for Optimism
  • 1.7.5 Long-Term Price Trends
  • 1.7.6 Policy Implications
  • 1.8 Global Demand of Mineral Resources up to 2050
  • 1.9 Shifting Markets Create New Opportunities
  • 1.10 The Great Fall of China and Global Volatility
  • 1.11 Challenges of Developing Adequate Supply of Minerals
  • 1.12 The Need for Intense Mineral Exploration
  • References
  • 2 Mineral Deposits: Types and Associations
  • 2.1 Introduction
  • 2.2 Definitions
  • 2.3 The Rock Cycle
  • 2.4 Rock-Forming Minerals
  • 2.5 Ore Body
  • 2.6 Formation of Mineral Deposit
  • 2.7 Chemical and Physical Controls of Ore Deposition
  • 2.8 Ore Deposit Types
  • 2.9 Composition of the Deposit
  • 2.9.1 Metallic Deposits
  • 2.9.2 Nonmetallic Resources
  • 2.9.3 Energy Resources
  • 2.9.3.1 Coal
  • 2.9.3.2 Petroleum
  • 2.9.3.3 Oil Sands (Tar Sands) and Oil Shales
  • 2.9.3.4 Uranium and Geothermal Sources
  • 2.9.3.5 Renewable Resources
  • 2.9.3.6 Metallic and Nonmetallic Ore Minerals
  • 2.10 Classification Based on Form
  • 2.11 Classification Based on the Theory of Origin
  • 2.11.1 Magmatic
  • 2.11.2 Hydrothermal
  • 2.11.3 Syngenetic
  • 2.11.4 Epigenetic
  • 2.11.5 Sedimentary Deposits
  • 2.11.6 Secondary Deposits
  • 2.12 Classification Based on Ore Formation Processes and Element Associations
  • 2.13 Placers
  • 2.14 Metallogenic Provinces and Epochs
  • 2.14.1 Metallogenic Provinces
  • 2.14.2 Metallogenic Epochs
  • 2.15 Metallogenic Provinces in relation to Plate Tectonic Setting
  • References
  • 3 Reconnaissance and Prospecting
  • 3.1 Reconnaissance
  • 3.2 Reconnaissance Map
  • 3.3 Reconnaissance Survey
  • 3.4 Geological Survey
  • 3.4.1 Equipments Used in Geological Field Mapping
  • 3.5 Geological Mapping
  • 3.5.1 Digital Mapping
  • 3.5.2 Structural Mapping
  • 3.6 Digital Elevation Models
  • 3.7 Prospecting
  • 3.7.1 Float Sample Tracing
  • 3.7.2 Panning
  • 3.7.3 Pitting and Trenching
  • 3.8 Prospecting Types
  • 3.9 Preliminary Field Trip
  • 3.10 Prospecting Methods
  • 3.10.1 Preliminary Proving
  • 3.10.2 Detailed Proving
  • 3.11 Guides for Prospecting
  • 3.11.1 Evidence from Outlying Areas
  • 3.12 Classification of Guides
  • 3.12.1 Physiographic Guides
  • 3.12.2 Physiography, in relation to Oxidation and Enrichment: Residual Ores
  • 3.13 Mineralogical Guides
  • 3.13.1 Target Rings of Alteration
  • 3.13.2 Hypogene Zoning as a Guide
  • 3.13.3 Oxidation Products
  • 3.13.4 Leached Outcrops
  • 3.13.5 Metals in the Oxidized Zones
  • 3.14 Stratigraphic and Lithologic Guides
  • 3.15 Structural Guides
  • 3.15.1 Fracture Patterns as Guides
  • 3.15.2 Contacts as Guides
  • 3.15.3 Folds
  • 3.16 Geochemical Guides
  • 3.16.1 Biogeochemical and Geobotanical Guides
  • 3.17 Animal Activity
  • References
  • 4 Remote Sensing Techniques
  • 4.1 Introduction
  • 4.2 Remote Sensing
  • 4.3 Why Remote Sensing
  • 4.4 Major Remote Sensing Satellite Systems
  • 4.4.1 High-Resolution Satellites
  • 4.5 Radar and Thermal Infrared Sensors
  • 4.6 Digital Image Processing
  • 4.7 Application of Remote Sensing
  • 4.7.1 Mapping of Geology and Fracture Patterns at Regional and Local Scales
  • 4.7.2 Hydrothermally Altered Rocks and Associated Mineral Deposits
  • 4.8 Advantages of Satellite Imageries
  • 4.9 Remote Sensing and Geographic Information System
  • 4.10 Remote Sensing Versus Aerial Photography/Photogrammetry
  • 4.11 Remote Sensing and Multispectral Imaging
  • 4.12 Remote Sensing Versus SONAR
  • 4.13 Remote Sensing Industry-Present Trends and Outlook
  • References
  • 5 Geophysical Exploration
  • 5.1 Introduction
  • 5.2 Geophysical Methods and Targets
  • 5.3 Choice of a Technique
  • 5.4 Gravity Techniques-Gravity Gradiometry, Geodesy, Microgravity Surveys
  • 5.5 Magnetic Techniques
  • 5.6 Electromagnetic Methods
  • 5.6.1 Limitations
  • 5.7 Radiometric (Gamma Ray) Method-Aeroradiometric Surveys
  • 5.8 Seismic Methods
  • 5.9 Electrical Techniques
  • 5.9.1 Direct Current Resistivity Method
  • 5.9.2 Electromagnetic Method
  • 5.9.3 Mise-a-la-Masse Method
  • 5.9.4 Self-Potential Method
  • 5.9.5 Induced Polarization Method
  • 5.10 Thermal Methods
  • 5.11 Remote Sensing Methods
  • 5.12 Borehole Geophysics (Geophysical Logging)
  • 5.13 Lithology Logs
  • 5.14 Ground Penetrating Radar Surveys
  • 5.15 Very Low Frequency Surveys
  • 5.16 Other Methods
  • 5.17 Geophysical Inversion Technique
  • 5.18 Emerging Geophysical Technique
  • 5.18.1 Magnetotelluric Technique
  • 5.18.1.1 Controlled Source Magnetotelluric (CSMT)
  • 5.18.1.2 Audio Magnetotelluric (AMT)
  • 5.18.1.3 Deep Rapid Reconnaissance and Detailed Follow-up
  • 5.18.1.4 Advantages of MT Surveys
  • 5.19 Airborne Geophysical Survey
  • 5.19.1 Advantages
  • 5.20 High-Definition Airborne Gravity Gradiometry
  • 5.21 Unmanned Aerial Vehicles
  • 5.22 Future Trends
  • 5.23 Marine Geophysical Exploration Survey
  • 5.23.1 Exploration for New Resources
  • 5.24 Satellite Geophysics
  • References
  • 6 Geochemical Exploration
  • 6.1 Introduction
  • 6.2 The Geochemical Cycle
  • 6.3 General Principles
  • 6.3.1 Physical Dispersion
  • 6.3.2 Chemical Dispersion
  • 6.3.3 Primary and Secondary Environments
  • 6.3.4 Geochemical Mobility
  • 6.3.5 Pathfinders
  • 6.4 Geochemical Exploration Surveys
  • 6.4.1 Types of Geochemical Surveys
  • 6.5 Various Geochemical Exploration Surveys
  • 6.5.1 Pedogeochemical Survey
  • 6.5.1.1 Collection of Sample
  • 6.5.1.2 Soils
  • 6.5.1.2.1 Factors Affecting Soil Formation
  • 6.5.2 Stream Sediment Survey
  • 6.5.3 Lake Sediments
  • 6.5.4 Glacial Drift
  • 6.5.5 Heavy Minerals
  • 6.5.5.1 Indicator Minerals
  • 6.5.6 Lithogeochemical Survey
  • 6.5.6.1 Isotopic Surveys
  • 6.5.7 Hydrogeochemical Survey
  • 6.5.8 Atmogeochemical Surveys
  • 6.5.9 Vegetation
  • 6.5.9.1 Biogeochemical Surveys
  • 6.5.9.2 Geobotanical Surveys
  • 6.5.10 Electrogeochemical Specific Ion Surveys
  • 6.5.11 Electrogeochemical Survey
  • 6.6 Other Advanced Techniques
  • 6.7 Design of Geochemical Survey
  • 6.8 Sampling for Geochemical Surveys
  • 6.9 Geochemical Maps
  • 6.10 Interpretation of Data
  • 6.10.1 Estimation of Background and Threshold
  • 6.10.2 Distinguishing Between Significant and Nonsignificant Anomalies
  • 6.10.3 Distinction Between Superjacent and Lateral Anomalies
  • 6.10.4 Appraisal of Anomalies
  • 6.11 Geochemical Data Processing
  • 6.12 Analysis of Exploration Data and Identifying Geochemical Anomalies
  • 6.13 Geochemical Survey Interpretation
  • 6.14 Typical Geochemical Exploration Program
  • References
  • 7 Geological Exploration
  • 7.1 Introduction
  • 7.2 Minerals Activity Project
  • 7.3 Mineral Exploration
  • 7.4 Evolution of Exploration Technology
  • 7.5 Development of Exploration Technology
  • 7.6 Challenges for Mineral Exploration
  • 7.7 Designing an Exploration Approach
  • 7.8 The Exploration Cycle
  • 7.8.1 Reconnaissance and Preliminary Exploration: Geological Concept Formation
  • 7.8.1.1 Typical Activities
  • 7.8.2 Advanced Exploration (Detailed Target Evaluation)
  • 7.8.2.1 Typical Activities
  • 7.8.2.2 Public Consultation
  • 7.8.3 Feasibility Stage
  • 7.8.3.1 Typical Activities
  • 7.8.4 Deposit Development
  • 7.8.4.1 Typical Activities
  • 7.9 Environmental Impacts of Mineral Exploration and Development
  • 7.10 Mine Closure Plan
  • 7.11 Greenfields Versus Brownfields exploration
  • 7.12 Resourcing the Future
  • 7.13 Project Funding
  • 7.13.1 Exploration Funding by Junior Exploration Companies
  • 7.14 Ingredients of a Successful Exploration Campaign
  • 7.14.1 Selection of Right Geological Terrain
  • 7.14.1.1 Applying Conceptual Geometrical Models in Evaluating Mineral Prospects
  • 7.14.1.2 Targeting and Target Generation
  • 7.14.1.3 Target Selection by Airborne Surveying
  • 7.15 Mineral Exploration and Development-Geographic Location
  • 7.16 Expected Revenues, Costs, and Risks
  • 7.17 Exploration Expenditure
  • 7.17.1 Sources of Exploration Financing
  • 7.17.2 Optimum Level of Exploration Expenditure
  • 7.17.3 New Technology Adoption
  • 7.18 Discovery Depends Upon Various Factors
  • 7.19 Mineral Exploration Under Deep Cover
  • 7.20 Interpretation and 3D Modeling
  • 7.21 Economic Concepts for Exploration Strategy
  • 7.22 Research and Training
  • 7.23 Scarcity of Exploration Geoscientists
  • References
  • 8 Drilling
  • 8.1 Introduction
  • 8.2 Categories of Drilling Rig
  • 8.3 Drilling Methods
  • 8.3.1 Diamond Core Drilling
  • 8.3.2 Air-Rotary Drilling
  • 8.3.3 Mud Rotary Drilling
  • 8.3.4 Auger Drilling
  • 8.3.5 Percussion Rotary Air-Blast Drilling
  • 8.3.6 Air-Core Drilling
  • 8.3.7 Dry Drilling
  • 8.3.8 Rotasonic (Sonic) Drilling
  • 8.3.9 All Hydraulic Drills
  • 8.4 Selection of Drill
  • 8.5 Selection of Drilling Fluid
  • 8.6 Selection of Pump
  • 8.7 Exploration Drilling Methods
  • 8.7.1 Diamond Core Drilling
  • 8.7.1.1 Diamond Drill Bit
  • 8.7.2 RC Drilling
  • 8.7.3 Wire-Line Core Drilling
  • 8.8 The Coiled Tubing Drill Rig
  • 8.9 Samples From Drilling Campaign
  • 8.9.1 Core
  • 8.9.2 Dry Drill Cuttings
  • 8.9.3 Wet Drill Cuttings
  • 8.10 Core Recovery
  • 8.11 Core Storage
  • 8.12 Core Splitting
  • 8.13 Core Logging
  • 8.14 High-Tech Core Scanning and Interpretation
  • 8.15 Deductions From Drill Core Samples
  • 8.15.1 Grade
  • 8.15.2 Stratigraphic Thickness (Width)
  • 8.15.3 Structure
  • 8.16 Portable XRF Analyzer
  • 8.17 Deviation of Drill Holes
  • 8.18 Directional Core Drilling
  • 8.19 Surveying Boreholes
  • 8.20 Drill Sections
  • 8.21 Planning a Drill Campaign
  • 8.22 Drilling for Sampling Purposes
  • 8.23 Angle of Intersection
  • 8.24 Drilling for New Ore
  • 8.25 When to Stop Drilling
  • Appendix
  • References
  • 9 Sampling and Analysis
  • 9.1 Introduction
  • 9.2 Sampling
  • 9.3 Geological Sampling Methods
  • 9.3.1 Talus Debris (Float) Sampling
  • 9.3.2 Trench and Pit Sampling
  • 9.3.3 Chip Sampling
  • 9.3.4 Grab Sampling
  • 9.3.5 Channel Sampling
  • 9.3.6 Placer Sampling
  • 9.3.7 Drill Sampling: Core/Cuttings/Sludge
  • 9.3.8 Bulk Sampling
  • 9.3.9 Dump Sampling
  • 9.3.10 Car Sampling
  • 9.4 Criteria for the Selection of a Sampling Procedure
  • 9.5 Collection of Samples
  • 9.6 Errors in Sampling
  • 9.7 Preparation of Samples
  • 9.7.1 Drying
  • 9.7.2 Comminution
  • 9.7.2.1 Crushing
  • 9.7.2.2 Pulverizing
  • 9.7.2.3 Tumbling Mills
  • 9.7.3 Splitting
  • 9.8 Screening and Particle Size Distribution
  • 9.9 Sample Preparation Methods for Analysis
  • 9.9.1 Wet Method
  • 9.9.2 Dry Method
  • 9.10 Analysis of Geochemical Samples
  • 9.10.1 Precision and Accuracy
  • 9.10.1.1 Preparation of Sample
  • 9.10.1.2 Decomposition of Sample
  • 9.10.1.3 Separation of Element
  • 9.10.1.4 Estimation of Element
  • 9.11 High-Quality Analyses for Exploration
  • 9.12 Sources of Error
  • Appendix: Gy's Sampling Reduction Formula
  • References
  • 10 Geographic Information System and Common Earth Model
  • 10.1 Geographic Information System
  • 10.1.1 Introduction
  • 10.1.2 Types of GIS
  • 10.1.3 GIS and Data Integration
  • 10.1.4 GIS and Remote Sensing
  • 10.1.5 GIS and GPS
  • 10.1.6 GIS for Mineral Exploration
  • 10.1.7 Mineral Potentiality Mapping
  • 10.1.8 Sources of Error in GIS
  • 10.1.9 3D GIS Technology
  • 10.1.10 Recent Trends and Future Directions
  • 10.2 Common Earth Model
  • 10.3 3D & 4D GIS Geomodeling
  • 10.4 Common Earth Model at Exploration Stages
  • References
  • 11 Conventional and Statistical Resource/Reserve Estimation
  • 11.1 Introduction
  • 11.2 Conventional Resource/Reserve Estimation
  • 11.2.1 Polygonal Method
  • 11.2.2 Triangular Method
  • 11.2.3 Cross-Sectional Method
  • 11.2.4 RSG Method
  • 11.2.5 Contour Method
  • 11.2.6 LVS Method
  • 11.3 Drawbacks of Conventional Resource/Reserve Estimation
  • 11.4 Statistical Resource/Reserve Estimation
  • 11.4.1 Statistics and Probability
  • 11.4.2 Probability Distribution
  • 11.4.3 Frequency Distribution
  • 11.5 Characterization of a Distribution
  • 11.5.1 Parameters of Central Tendency
  • 11.5.2 Parameters of Dispersion
  • 11.5.3 Parameter of Symmetry
  • 11.5.4 Parameter of Peakedness
  • 11.6 Probability Models
  • 11.6.1 The Normal Distribution Theory
  • 11.6.1.1 Fitting a Normal Distribution to Sample Distribution
  • 11.6.1.2 Numerical Estimation of Mean, Variance, and Confidence Limits of Mean
  • 11.6.1.3 Graphical Estimation for Normal Distribution
  • 11.6.1.4 Measures of Degree of Skewness and Kurtosis
  • 11.6.1.5 Chi-Squared (?2) Goodness-of-Fit Test
  • 11.6.2 The Lognormal Distribution Theory
  • 11.6.2.1 Fitting a Lognormal Distribution to a Skewed Sample Distribution
  • 11.6.2.2 Estimation of Additive Constant (C)
  • 11.6.2.3 Proof of the Equation
  • 11.7 Graphical Estimation of Logarithmic Mean and Logarithmic Variance
  • 11.8 Numerical Estimation of Logarithmic Mean and Logarithmic Variance
  • 11.9 Estimation of Average of a Mineral Deposit
  • 11.10 Estimation of Central 90% Confidence Limits of Mean of a Lognormal Population
  • 11.11 Number of Samples
  • 11.12 Demerits of Statistical Resource/Reserve Estimation
  • References
  • 12 Geostatistical Resource/Reserve Estimation
  • 12.1 Background
  • 12.2 Geostatistics
  • 12.3 Random Function
  • 12.4 Regionalized Variable
  • 12.5 Why Geostatistics
  • 12.6 Semivariogram Function
  • 12.7 Mathematical Models of Semivariogram
  • 12.7.1 The Spherical Model
  • 12.7.2 The Linear Model
  • 12.7.3 The de Wijsian Model
  • 12.7.4 The ah? Model
  • 12.7.5 The Exponential Model
  • 12.7.6 The Gaussian Model
  • 12.7.7 The Parabolic Model
  • 12.7.8 The Hole-Effect Model
  • 12.7.9 The Pure Random Model
  • 12.8 Kriging: Concepts and Applications
  • 12.8.1 Practice of Kriging
  • 12.9 Integrated Geostatistical Modeling Process
  • 12.9.1 Geology and Geostatistics
  • 12.9.2 Exploration Database
  • 12.9.3 Integrated Geostatistical Modeling
  • 12.9.3.1 Sample Value Compositing
  • 12.9.3.2 Statistical Modeling
  • 12.9.3.3 Semivariogram Analysis
  • 12.9.3.4 Trend Analysis
  • 12.9.3.5 Semivariogram Modeling
  • 12.9.3.6 Block Kriging
  • 12.10 Mineral Inventory
  • 12.11 Grade-Tonnage Relations
  • 12.12 A Step-by-Step Summary for an Integrated Geostatistical Study
  • 12.13 Geostatistics in Mineral industry
  • 12.14 Limitations of Use of Geostatistics
  • References
  • 13 Mineral Resources Classification
  • 13.1 Introduction
  • 13.2 History of the Development of Reporting Standards
  • 13.3 Exploration Results
  • 13.4 Competent Person and Responsibility
  • 13.5 Mineral Resource Classification
  • 13.5.1 Mineral Resources
  • 13.5.2 Mineral Reserves/Ore Reserves
  • 13.6 The JORC Code
  • 13.7 Reporting Terminology
  • 13.8 Codification of UNFC System
  • 13.9 The Russian Federation Classification System
  • 13.10 The Chinese Reserve and Resource Reporting System
  • References
  • 14 Valuation of Mineral Properties
  • 14.1 Introduction
  • 14.2 Periodic Change in Mineral Property Values
  • 14.3 Exploration Assets and the Exploration Procedure
  • 14.4 Valuation Techniques, Approaches, and Methodology
  • 14.4.1 Cost Approach: AVM
  • 14.4.2 Market Approach
  • 14.4.2.1 Comparable Transaction Method
  • 14.4.2.2 Option Agreement Terms Method
  • 14.4.3 The Income Approach
  • 14.4.3.1 Net Price Method
  • 14.4.3.2 User Cost Method or "El Serafy" Method
  • 14.4.3.3 Net Present Value
  • Income Flows and Discount Rate
  • Capital Availability
  • Option Investments
  • Rate of Reinvestment
  • 14.4.3.4 Appropriation Method
  • 14.4.4 DCF Method
  • 14.4.4.1 Dynamic Modeling of Uncertainty
  • 14.4.4.2 Flexibility and Contingent Payoffs
  • 14.4.4.3 Market-Based Valuation Methods
  • 14.4.4.4 Tail Margin Method
  • 14.5 Mineral Valuation Codes
  • 14.6 Concluding Remarks
  • References
  • Appendix: Case Study of Rampura-Agucha Zinc-Lead Deposit, India
  • A.1 Rampura-Agucha Zinc-Lead Deposit-From Discovery to Development Saga
  • A.1.1 Location and Access
  • A.1.2 Topography, Drainage, and Climate
  • A.1.3 History of Discovery of the Deposit
  • A.1.4 Exploration by Hindustan Zinc Limited
  • A.1.5 Exploration Scheme of HZL
  • A.1.6 Drill Core Recovery
  • A.1.7 Drill Core Length
  • A.1.8 Core Logging
  • A.1.9 Bulk Density
  • A.1.10 Sampling, Analytical, Laboratory Bias, and Reliability of Estimates
  • A.1.11 Sampling Bias
  • A.1.12 Analytical Bias
  • A.1.13 Estimation Parameters
  • A.1.14 Cross-Sections and Level Plans
  • A.1.15 Ore Reserves Classification
  • A.1.16 Grade Estimation
  • A.1.17 Confidence Limit
  • A.1.18 Estimate of Average Grade Between 360-0 mRL
  • A.1.19 Specific Gravity Weighted Average Grade
  • A.1.20 Comparison of Grades by Various Methods
  • A.1.21 Grade Acceptance
  • A.1.22 Trace Element Studies
  • A.1.23 Ore Reserves
  • A.1.24 Further Investigations
  • A.1.25 Ore Reserve Acceptance
  • A.1.26 Exploratory Underground Work and Bulk Sampling
  • A.1.27 Beneficiation Tests
  • A.1.28 Government Approval
  • A.1.28.1 Summary of Investigations
  • A.1.29 The Technology Tie-ups
  • A.1.30 Preliminary Activities
  • A.1.31 Project Beginning
  • A.1.32 Fine-Tuning the Recoveries
  • A.1.33 Training
  • A.1.34 Environmental Aspects
  • A.1.35 Land Use
  • A.1.36 Mine Area
  • A.1.37 Plant Area
  • A.1.38 Solid Waste Handling
  • A.1.38.1 Waste Rock Dump
  • A.1.38.2 Tailings Dam
  • A.1.39 Air Quality
  • A.1.40 Water Quality
  • A.1.41 Noise and Vibrations
  • A.1.42 Green-Belt Development
  • A.1.43 Monitoring
  • A.1.44 Initial Mining Operations
  • A.1.44.1 The Ore Deposit
  • A.1.45 Design of the Pit
  • A.1.46 Pilot Pit
  • A.1.47 Pit Design by British Mining Consultants Limited
  • A.1.48 Mine Expansion, Phase-I
  • A.1.49 Mine Expansion, Phase-II
  • A.1.50 HZL, Under the New Management
  • A.1.51 Rampura-Agucha Mine
  • A.1.51.1 Overview
  • A.2 Rampura-Agucha Ore Deposit Characteristics and Its Genesis
  • A.2.1 Genesis
  • A.2.2 Special Features Observed Only at Rampura-Agucha
  • A.3 Ancient Mining and Smelting for Silver/Lead in Rampura-Agucha Area
  • A.3.1 Introduction
  • A.3.2 Surface indications
  • A.3.3 Subsurface Indications
  • A.3.4 Ancient Smelting
  • A.3.5 Archeological Investigations
  • A.3.6 Concluding Remarks
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok