Integration of Distributed Energy Resources in Power Systems

Implementation, Operation and Control
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 23. März 2016
  • |
  • 322 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803213-8 (ISBN)
 

Integration of Distributed Energy Resources in Power Systems: Implementation, Operation and Control covers the operation of power transmission and distribution systems and their growing difficulty as the share of renewable energy sources in the world's energy mix grows and the proliferation trend of small scale power generation becomes a reality.

The book gives students at the graduate level, as well as researchers and power engineering professionals, an understanding of the key issues necessary for the development of such strategies. It explores the most relevant topics, with a special focus on transmission and distribution areas.

Subjects such as voltage control, AC and DC microgrids, and power electronics are explored in detail for all sources, while not neglecting the specific challenges posed by the most used variable renewable energy sources.


  • Presents the most relevant aspects of the integration of distributed energy into power systems, with special focus on the challenges for transmission and distribution
  • Explores the state-of the-art in applications of the most current technology, giving readers a clear roadmap
  • Deals with the technical and economic features of distributed energy resources and discusses their business models
  • Englisch
  • San Diego
  • |
  • USA
Elsevier Science
  • 28,99 MB
978-0-12-803213-8 (9780128032138)
0128032138 (0128032138)
weitere Ausgaben werden ermittelt
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • List of contributors
  • Chapter 1 - Introduction
  • 1.1 - Introduction
  • 1.2 - Distributed generation resources
  • 1.2.1 - Reciprocating engines
  • 1.2.2 - Microturbine generator (MTG) system
  • 1.2.3 - Fuel cells
  • 1.3 - Renewable energy sources
  • 1.3.1 - Wind energy conversion system
  • 1.3.2 - PV energy system
  • 1.3.3 - Biomass
  • 1.3.4 - Geothermal energy
  • 1.3.5 - Hydro energy
  • 1.4 - Energy storage systems
  • 1.4.1 - Electric double layer capacitor
  • 1.4.2 - Battery energy storage system
  • 1.4.3 - Superconducting magnetic energy storage
  • 1.4.4 - Flywheel
  • 1.4.5 - Plug in electric vehicle
  • 1.5 - Smart grid
  • References
  • Chapter 2 - Integration of distributed energy resources in distribution power systems
  • 2.1 - Introduction
  • 2.2 - Interconnection issues and countermeasures
  • 2.2.1 - Volt-VAR control
  • 2.2.2 - Gossip-like VVC MAS procedure
  • 2.3 - Role of ICT in the integration of distributed energy resources
  • 2.3.1 - Models of the communication networks
  • 2.3.1.1 - Wired communication network model
  • 2.3.1.2 - Cellular communication network model
  • 2.3.2 - Model of the power distribution feeder
  • 2.3.3 - Test results
  • 2.3.3.1 - Results obtained with the wired communication network
  • 2.3.3.2 - Results obtained with the cellular communication network
  • 2.4 - Conclusions
  • Acknowledgment
  • References
  • Chapter 3 - Operational aspects of distribution systems with massive DER penetrations
  • 3.1 - Introduction
  • 3.2 - Control objectives
  • 3.2.1 - Importance of distributed generations
  • 3.2.2 - Challenges of distributed generations system
  • 3.2.3 - Overview of control system
  • 3.3 - Control method
  • 3.3.1 - The objective function and constraints
  • 3.3.1.1 - Objective function
  • 3.3.1.2 - Constraints
  • 3.4 - Particle swarm optimization
  • 3.4.1 - PV generator system
  • 3.4.2 - BESS at the interconnection point
  • 3.4.3 - Plug-in electric vehicle
  • 3.5 - Simulation results
  • 3.5.1 - Dynamic responses for the without optimization approach
  • 3.5.2 - Dynamic responses for the comparison method
  • 3.5.3 - Dynamic responses for the proposed method
  • 3.6 - Conclusions
  • References
  • Chapter 4 - Prediction of photovoltaic power generation output and network operation
  • 4.1 - Needs for forecasting photovoltaic (PV) power output in electric power systems
  • 4.2 - Power output fluctuation characteristics
  • 4.2.1 - Fluctuation characteristics of irradiance at single point
  • 4.2.1.1 - Smoothing effect
  • 4.2.2 - Fluctuation characteristics of spatial average irradiance in utility service area
  • 4.3 - Forecasting methods
  • 4.3.1 - Overview
  • 4.3.2 - Accuracy measures
  • 4.3.3 - NWP models
  • 4.3.3.1 - Ensemble forecast of NWP models
  • 4.3.3.2 - Spatiotemporal interpolation and smoothing
  • 4.3.3.3 - Postprocessing by statistical model
  • 4.3.3.4 - Combination of different forecast models
  • 4.3.4 - Satellite cloud motion vector approach
  • 4.3.5 - All Sky images
  • 4.3.6 - Statistical models
  • 4.4 - Examples of forecasted results
  • 4.5 - Smoothing effect on forecast accuracy
  • 4.6 - Power system operation considering PV power output fluctuations
  • 4.7 - Energy management examples of smart house with PV
  • 4.7.1 - United States/Japan demonstration smart grid project in Los Alamos
  • References
  • Chapter 5 - Prediction of wind power generation output and network operation
  • 5.1 - Need for forecasting wind power output in electric power systems
  • 5.2 - Power output fluctuation characteristics
  • 5.2.1 - Fundamentals
  • 5.2.2 - Maximum variation
  • 5.2.3 - Umbrella curve
  • 5.2.4 - Standard deviation
  • 5.2.5 - Power spectral density
  • 5.3 - Power output smoothing control
  • 5.3.1 - Application of energy-storage system
  • 5.3.2 - Kinetic energy of wind turbines
  • 5.3.3 - Pitch angle control
  • 5.4 - Forecasting methods
  • 5.4.1 - Difficulties
  • 5.4.2 - Physical approach
  • 5.4.3 - Statistic approach
  • 5.4.4 - Regional forecasting
  • 5.4.5 - Probabilistic forecast
  • 5.5 - Examples of forecasted results
  • 5.6 - Forecasting applications
  • 5.6.1 - Scheduled generation of wind farms and solar power plants with energy-storage systems
  • 5.6.2 - Suppression of ramp variation of wind output
  • References
  • Chapter 6 - Energy management systems for DERs
  • 6.1 - Basic concepts of home energy management systems
  • 6.2 - Control strategies for energy storage systems
  • 6.3 - Control strategies for EVs as storage
  • 6.4 - Use of smart meter data
  • References
  • Chapter 7 - Protection of DERs
  • 7.1 - Introduction
  • 7.2 - Protection in distribution system
  • 7.2.1 - General protection
  • 7.2.2 - IEEE standards for protection
  • 7.2.2.1 - Voltage requirements
  • 7.2.2.2 - The grounding
  • 7.2.2.3 - Synchronization
  • 7.2.2.4 - Energization area
  • 7.2.3 - What to do under fault conditions
  • 7.2.4 - Fault currents change
  • 7.2.5 - Smart protection
  • 7.2.5.1 - Fault detection
  • 7.2.5.2 - Fault location
  • 7.2.5.3 - Fault isolation
  • 7.2.5.4 - Service restoration
  • 7.2.5.5 - Power system stability
  • 7.3 - Power system disturbances
  • 7.3.1 - Power quality issues
  • 7.3.1.1 - Voltage behavioral changes
  • 7.3.1.2 - Power frequency variations
  • 7.3.1.3 - Harmonics and transients
  • 7.3.2 - Faults
  • 7.3.2.1 - Symmetrical faults
  • 7.3.2.2 - Unsymmetrical faults
  • 7.3.2.3 - Surrounding weather
  • 7.3.2.4 - Equipment
  • 7.3.2.5 - Mishandling
  • 7.3.2.6 - Flashover
  • 7.3.3 - Consequences of electric faults
  • 7.3.3.1 - Flow of overcurrent
  • 7.3.3.2 - Threat for operator
  • 7.3.3.3 - Loss of apparatus
  • 7.3.3.4 - Effect on healthy systems
  • 7.3.3.5 - Fire risk
  • 7.3.4 - Application based three-phase fault analysis
  • 7.4 - Impact of DER on protection system
  • 7.4.1 - Protection failure
  • 7.4.2 - Hosting capacity
  • 7.4.3 - Loss of coordination
  • 7.4.4 - Protection issues of DER
  • 7.5 - Protection schemes for distribution systems with DER
  • 7.5.1 - Islanded operation
  • 7.5.2 - The protection equipment for DER networks
  • 7.5.2.1 - Overcurrent relays
  • 7.5.2.2 - Reclosers
  • 7.5.2.3 - Sectionalizers
  • 7.5.2.4 - Fuses
  • 7.5.3 - Recent technological trends in DER protection
  • 7.5.3.1 - DER protection characteristics
  • 7.5.3.2 - Overcurrent protection scheme
  • 7.5.3.3 - Fuse operating scheme
  • 7.5.3.4 - Voltage control scheme
  • 7.6 - Conclusions
  • References
  • Chapter 8 - Lightning protections of renewable energy generation systems
  • 8.1 - Introduction
  • 8.2 - Lightning protection principle
  • 8.2.1 - Reduction
  • 8.2.2 - Suppression
  • 8.2.3 - Shielding
  • 8.2.4 - Lightning characteristics for lightning protection design
  • 8.2.5 - IEC international standard
  • 8.3 - Lightning protection for wind power generation systems
  • 8.3.1 - Lightning damage in wind power generation system
  • 8.3.2 - Lightning protection methods for wind turbine
  • 8.3.3 - Grounding resistance
  • 8.3.4 - Lightning protection of blade using receptor
  • 8.3.5 - Energy coordination of surge arrester/surge protective device
  • 8.4 - Lightning protection of wind farms
  • 8.5 - Lightning protection for photovoltaic power generation systems
  • 8.5.1 - Lightning damage in photovoltaic system
  • 8.5.2 - Lightning protection against lightning overvoltages in photovoltaic systems
  • 8.5.3 - Direct lightning flash to photovoltaic system
  • References
  • Chapter 9 - Distributed energy resources and power electronics
  • 9.1 - Power electronics in PV power generation systems
  • 9.2 - Power electronics in wind power generation systems
  • 9.3 - Power electronics in battery energy storage systems
  • 9.4 - Power quality problems with related to DERs
  • Chapter 10 - AC/DC microgrids
  • 10.1 - Basic concept of AC microgrids
  • 10.1.1 - Islanding mode
  • 10.1.1.1 - Asynchronous operation
  • 10.1.1.2 - Synchronous operation
  • 10.1.2 - Connected mode
  • 10.1.3 - Backup mode
  • 10.1.4 - Experiment field and device specification
  • 10.1.5 - System operation
  • 10.1.6 - Measurement of power quality
  • 10.1.6.1 - Voltage and frequency
  • 10.1.6.1.1 - Voltage harmonics
  • 10.1.6.1.2 - Current harmonics
  • 10.2 - Battery charge pattern and cost
  • 10.2.1 - Battery charge method
  • 10.2.2 - Test results
  • 10.2.2.1 - Charge pattern
  • 10.2.2.2 - Test result
  • 10.2.2.3 - Effect on electric rate
  • 10.3 - Supply and demand control of microgrids
  • 10.3.1 - Peak cut/peak shift mode operation
  • 10.3.2 - Receiving constant power mode operation
  • 10.4 - Basic concept of DC microgrids
  • 10.4.1 - System operation of DC microgrid
  • 10.5 - Examples of microgrids in the world
  • 10.6 - Conclusions
  • References
  • Chapter 11 - Stability problems of distributed generators
  • 11.1 - Voltage stability in distribution systems
  • 11.1.1 - Definitions
  • 11.2 - Stability problem with DGs connected to a weak power system
  • 11.2.1 - Voltage stability analysis
  • 11.2.2 - Voltage stability index
  • 11.2.3 - Battery control method
  • 11.2.4 - Simulation results
  • 11.3 - Stability problem with power electronics in DGs
  • 11.3.1 - Terminal characteristics of submodule
  • 11.3.2 - Stability criteria
  • 11.3.2.1 - Stability criterion 1
  • 11.3.2.2 - Stability criterion 2
  • 11.3.3 - Comparison between stability criteria
  • 11.3.4 - Conclusions
  • 11.4 - Stability problems in microgrids
  • 11.4.1 - Microgrid model
  • 11.4.1.1 - PVS
  • 11.4.1.2 - ESS
  • 11.4.1.3 - High-speed circuit breaker
  • 11.4.1.4 - Load
  • 11.4.2 - Inverter control method
  • 11.4.2.1 - Grid connected mode
  • 11.4.2.2 - Isolated mode
  • 11.4.3 - FRT requirements
  • 11.4.4 - Criteria of power quality
  • 11.4.5 - Simulation and results
  • 11.4.5.1 - Sensitivity analysis of cutoff delay time of circuit breaker
  • 11.4.5.2 - Sensitivity analysis of cutoff delay time of circuit breaker with IM load
  • 11.4.6 - Conclusions
  • References
  • Chapter 12 - Virtual synchronous generators and their applications in microgrids
  • 12.1 - Basic concepts of virtual synchronous generators
  • 12.2 - Control schemes of virtual synchronous generators
  • 12.2.1 - VSYNC's VSG Design
  • 12.2.2 - IEPE's VSG topology
  • 12.2.3 - KHI's VSG
  • 12.2.4 - VSG system of Osaka University
  • 12.3 - Applications for microgrids
  • References
  • Chapter 13 - Application of DERs in electricity market
  • 13.1 - Basic concept of electricity market and DERs
  • 13.1.1 - RPS
  • 13.1.2 - FIT
  • 13.1.3 - Effect of DER's mass penetration for electricity market
  • 13.2 - Electricity market reform and virtual power plan
  • References
  • Subject Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok