Absorption-Based Post-Combustion Capture of Carbon Dioxide

 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 27. Mai 2016
  • |
  • 814 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100515-6 (ISBN)
 

Absorption-Based Post-Combustion Capture of Carbon Dioxide provides a comprehensive and authoritative review of the use of absorbents for post-combustion capture of carbon dioxide. As fossil fuel-based power generation technologies are likely to remain key in the future, at least in the short- and medium-term, carbon capture and storage will be a critical greenhouse gas reduction technique.

Post-combustion capture involves the removal of carbon dioxide from flue gases after fuel combustion, meaning that carbon dioxide can then be compressed and cooled to form a safely transportable liquid that can be stored underground.


  • Provides researchers in academia and industry with an authoritative overview of the amine-based methods for carbon dioxide capture from flue gases and related processes
  • Editors and contributors are well known experts in the field
  • Presents the first book on this specific topic
  • Englisch
  • London
Elsevier Science
  • 19,00 MB
978-0-08-100515-6 (9780081005156)
0081005156 (0081005156)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Absorption-Based Post-Combustion Capture of Carbon Dioxide
  • Related titles
  • Absorption-Based Post-Combustion Capture of Carbon Dioxide
  • Copyright
  • Contents
  • List of contributors
  • Woodhead Publishing Series in Energy
  • One - Introductory issues
  • 1 - Introduction
  • 1.1 Climate change and greenhouse gas emissions
  • 1.2 Factors influencing CO2 emissions
  • 1.3 Reducing emissions by CO2 capture and storage
  • 1.4 The case for post-combustion CO2 capture
  • 1.5 Amine-based processes for post-combustion CO2 capture
  • 1.6 Book structure
  • 1.6.1 General introduction (Chapters 1-4)
  • 1.6.2 Capture agents (Chapters 5e12)
  • 1.6.3 Process design (Chapters 13e15)
  • 1.6.4 Absorbent degradation, emissions, and waste handling (Chapters 16e22)
  • 1.6.5 Process integration and operation (Chapters 23e29)
  • 1.7 The future of post-combustion capture
  • References
  • 2 - The fundamentals of post-combustion capture
  • 2.1 Introduction
  • 2.2 The physics of absorption
  • 2.2.1 Solubility, driving force, and diffusion
  • 2.2.2 Mass transfer across the gas-liquid interface
  • 2.3 The chemistry of absorption
  • 2.3.1 Introduction
  • 2.3.2 The reactions of CO2 in aqueous amine solutions
  • 2.3.3 The kinetics of the reaction of CO2 in aqueous amine solutions
  • 2.3.4 Chemical thermodynamics and thermal swing absorption
  • 2.3.4.1 The cyclic capacity
  • 2.3.4.2 The ideal amine, trade-off between thermodynamics and kinetics
  • 2.3.4.3 Other options, bifunctional amines, and mixed amine solvents
  • 2.3.5 Chemical kinetics and enhanced mass transfer
  • 2.4 Putting it all together
  • 2.4.1 Absorption
  • 2.4.2 Desorption
  • References
  • 3 - Conventional amine scrubbing for CO2 capture
  • 3.1 Introduction
  • 3.2 History
  • 3.2.1 Acid gas treating
  • 3.2.2 Energy performance improves with time
  • 3.2.3 Analogy to limestone slurry scrubbing
  • 3.3 Basic chemistry and rates
  • 3.4 Simple flowsheet
  • 3.5 Advanced absorption
  • 3.6 Advanced regeneration systems
  • 3.7 Energy criteria for amine selection
  • 3.7.1 Capacity
  • 3.7.2 CO2 absorption rate
  • 3.7.3 Heat of CO2 absorption
  • 3.7.4 Thermal degradation
  • 3.8 Absorbent management criteria
  • 3.8.1 Oxidative degradation
  • 3.8.2 Nitrosamine
  • 3.8.3 Amine volatility
  • 3.8.4 Amine aerosol emissions
  • 3.8.5 Amine cost and availability
  • 3.8.6 Molecular weight
  • 3.9 Summary of important representative absorption liquids
  • 3.9.1 Monoethanolamine (MEA)
  • 3.9.2 Piperazine (PZ)
  • 3.9.3 PZ blends
  • 3.10 Capital and energy cost optimization
  • 3.11 Conclusions
  • Acknowledgments
  • References
  • 4 - Liquid absorbent selection criteria and screening procedures
  • 4.1 Introduction
  • 4.2 Liquid absorbent selection and criteria
  • 4.3 Key absorbent properties
  • 4.4 Experimental determination of fundamental chemical properties
  • 4.4.1 Stopped-flow kinetics
  • 4.4.1.1 Procedure
  • 4.4.2 Nuclear magnetic resonance (NMR) spectroscopy
  • 4.4.2.1 Procedure
  • 4.4.3 Potentiometric titrations-protonation constants of amines
  • 4.4.3.1 Procedure
  • 4.4.3.2 Analysis
  • 4.5 Bulk CO2 absorption rates and overall CO2 mass transfer coefficients
  • 4.5.1 Apparatus
  • 4.5.2 Wetted-wall column procedure
  • 4.5.3 Absorption flux, NCO2, and overall CO2 mass transfer coefficients, KG
  • 4.6 Measurement of CO2 equilibrium properties
  • 4.6.1 Introduction
  • 4.6.2 Vapor-liquid equilibrium (VLE) apparatus and procedure
  • 4.6.3 Absorption capacity, cyclic capacity, and absorption enthalpies
  • 4.7 Fast-track method for the estimation of overall liquid absorbent performance
  • References
  • Two - Capture agents
  • 5 - Precipitating amino acid solutions
  • 5.1 Introduction
  • 5.1.1 DECAB and DECAB+ processes
  • 5.1.2 Chapter outline
  • 5.2 Fundamentals of amino acid precipitation
  • 5.2.1 Amino acid solubility in water
  • 5.2.2 Precipitation due to CO2 absorption
  • 5.2.3 Energy effects of amino acid precipitation
  • 5.2.4 Advantages of amino acid precipitation
  • 5.2.4.1 Increased absorption capacity
  • 5.2.4.2 Enhanced desorption
  • 5.2.5 Disadvantages of amino acid precipitation
  • 5.2.5.1 Slurry handling
  • 5.2.5.2 Crystallization control
  • 5.3 Experimental investigations
  • 5.3.1 Precipitation point
  • 5.3.2 Precipitate composition
  • 5.3.3 Absorption rate
  • 5.4 Process development and simulations
  • 5.4.1 Process optimization
  • 5.4.1.1 Regeneration conditions
  • 5.4.1.2 Recycle split factor
  • 5.4.1.3 Solid-liquid separator temperature
  • 5.4.1.4 Multiple absorber feeds
  • 5.4.1.5 Lean vapor recompression
  • 5.4.1.6 Absorption liquid variations
  • 5.4.1.7 Other configurations
  • 5.4.2 Energy performance estimates
  • 5.5 Conclusions
  • 5.6 Research gaps and outlook
  • References
  • 6 - Aminosilicone systems for post-combustion CO2 capture
  • 6.1 Introduction
  • 6.2 Early work using aminosilicones in CO2 capture
  • 6.3 Liquid absorbent-based capture system
  • 6.3.1 Candidate molecules
  • 6.3.2 Liquid absorbent properties
  • 6.3.3 Bench-scale system
  • 6.3.4 Economics
  • 6.3.5 Overall evaluation of aminosilicone liquid-absorbent process
  • 6.3.6 Future work
  • 6.4 Aminosilicone-based phase-change process
  • 6.4.1 Candidate molecules
  • 6.4.2 Carbamate formation and transport
  • 6.4.3 Carbamate desorption
  • 6.4.4 Economics
  • 6.4.5 Future work
  • Disclaimer
  • Acknowledgments
  • References
  • 7 - Inorganic salt solutions for post-combustion capture
  • 7.1 Introduction
  • 7.2 Commercial history of the hot potassium carbonate process
  • 7.3 Absorption kinetics in K2CO3 systems
  • 7.3.1 Inorganic promoters
  • 7.3.2 Organic promoters
  • 7.4 Vapor-liquid equilibrium
  • 7.5 Solid-liquid equilibrium
  • 7.6 Demonstration of potassium carbonate processes for CO2 capture
  • 7.6.1 Demonstration of pre-combustion CO2 capture with K2CO3 solution
  • 7.6.2 Demonstration of post-combustion CO2 capture with K2CO3 solution
  • 7.7 Conclusions
  • References
  • 8 - Mixed salt solutions for CO2 capture
  • 8.1 Introduction
  • 8.2 Process description
  • 8.2.1 Technology background
  • 8.2.1.1 Reduced NH3 emission
  • 8.2.2 Proof of concept and lab-scale evaluation
  • 8.2.3 Effect of temperature on the rate of CO2 absorption
  • 8.3 Process energy requirement
  • 8.3.1 Reboiler duty
  • 8.3.2 Reduced energy for compression
  • 8.3.3 High CO2 capture capacity
  • 8.3.4 Mixed-salt system operation without solids
  • 8.4 Results of the bench-scale pilot experiments
  • 8.4.1 Lab-scale 4-in. absorber
  • 8.4.2 Large bench-scale 8-in. system
  • 8.4.2.1 Effect of gas flow rate
  • 8.4.2.2 Results from regenerator experiments
  • 8.5 Process modeling
  • 8.6 Summary
  • Acknowledgments
  • References
  • 9 - Dual-liquid phase systems
  • 9.1 Introduction of dual-liquid phase system
  • 9.1.1 Background and concept
  • 9.1.2 Categories and status
  • 9.2 1,4-Butanediamine (BDA)/N,N-diethylethanolamine (DEEA) dual-liquid phase system
  • 9.2.1 Phase-separation mechanism
  • 9.2.1.1 Distribution of amine and CO2
  • 9.2.1.2 Separation mechanism
  • 9.2.1.3 Distribution of the reaction products
  • 9.2.2 Degradation and energy analysis
  • 9.2.2.1 Degradation
  • 9.2.2.2 Energy analysis
  • 9.3 Other dual-liquid systems
  • 9.3.1 The DMX system of IFP Energies nouvelles
  • 9.3.2 The N-methyl-1,3-propanediamine/N,N-diethylethanolamine system of Norwegian University of Science and Technology
  • 9.3.3 Alkanolamine-alcohol system of Korea Institute of Energy Research (KIER)
  • 9.3.4 Self-concentrating system of TU Dortmund University
  • 9.4 Conclusions and outlook
  • References
  • 10 - Enzyme-enhanced CO2 absorption
  • 10.1 Introduction
  • 10.1.1 Kinetics of reactive CO2 absorption
  • 10.1.2 Carbonic anhydrase
  • 10.1.3 Kinetics of noncatalyzed CO2 hydration in water
  • 10.2 Application of enzymes with reactive absorbents
  • 10.2.1 Impact of enzyme on CO2 absorption in aqueous N-methyldiethanolamine (MDEA) solutions at 298K
  • 10.2.1.1 Impact of enzyme on physical and chemical properties
  • 10.2.1.2 Impact of enzyme on the reaction kinetics
  • 10.2.2 CO2 absorption with other amines in combination with enzyme at 298K
  • 10.2.3 Combined temperature and pKa effect
  • 10.2.3.1 Methyl diethanolamine (MDEA)
  • 10.2.3.2 N,N-Dimethylethanolamine (DMMEA)
  • 10.2.3.3 Triisopropanolamine (TIPA)
  • 10.2.3.4 Brønsted relation
  • 10.2.3.5 Other absorbents
  • 10.3 Impact of enzyme on carbon capture and sequestration process
  • 10.3.1 Base case
  • 10.3.2 MDEA with enzyme versus monoethanolamine (MEA)
  • 10.3.2.1 Impact of enzyme kinetics
  • 10.3.2.2 CO2 flux
  • 10.3.2.3 Absorber height versus enzyme concentration
  • 10.3.2.4 Absorber height versus specific reboiler duty
  • 10.4 Concluding remarks
  • 10.5 Notation
  • References
  • 11 - Ionic liquids for post-combustion CO2 capture
  • 11.1 Introduction
  • 11.2 Bench-scale studies using reactive ILs for CO2 absorption
  • 11.3 Industrial and pilot studies
  • 11.4 Technical and economic hurdles facing ILs
  • 11.5 Summary and outlook
  • References
  • 12 - Aqueous ammonia-based post-combustion CO2 capture
  • 12.1 Process chemistry
  • 12.1.1 Vapor-liquid-solid equilibrium
  • 12.1.2 Reaction mechanism in the liquid phase
  • 12.2 Aqueous NH3-based CO2 capture processes
  • 12.3 Performance of aqueous NH3-based post-combustion capture processes
  • 12.3.1 Regeneration energy
  • 12.3.2 NH3 loss
  • 12.3.3 CO2 absorption rate
  • 12.3.4 Overall performance
  • 12.4 Further advancements in NH3-based processes
  • 12.5 Conclusions
  • References
  • Three - Process design
  • 13 - Process modifications for CO2 capture
  • 13.1 Introduction
  • 13.2 Why process modifications?
  • 13.2.1 Operating cost reduction
  • 13.2.2 Investment cost reduction
  • 13.2.3 Environmental control
  • 13.2.4 Process modification and operating conditions
  • 13.3 Process modifications for investment cost reduction
  • 13.3.1 Gas-liquid contactors selection
  • 13.3.1.1 Packing discussion
  • 13.3.1.2 Plate and spray alternative
  • 13.3.1.3 Membrane contactor
  • 13.3.2 Absorber column design
  • 13.3.2.1 Flue gas path integration
  • 13.3.2.2 Absorber construction options
  • 13.4 Process modification for operating cost reduction
  • 13.4.1 Absorption enhancement modification
  • 13.4.1.1 Intercooled absorber
  • 13.4.1.2 Interheated absorber
  • 13.4.1.3 Rich liquid absorbent recycle
  • 13.4.1.4 Split-flow arrangement
  • 13.4.2 Thermal integration modification
  • 13.4.2.1 Rich liquid split
  • 13.4.2.2 Rich liquid absorbent preheating
  • 13.4.2.3 Rich liquid flash
  • 13.4.2.4 Parallel lean/rich heat exchanger arrangement
  • 13.4.2.5 Overhead condensate bypass
  • 13.4.2.6 Interheated stripper
  • 13.4.2.7 Heat-integrated stripper
  • 13.4.3 Heat pump modifications
  • 13.4.3.1 Lean vapor compression
  • 13.4.3.2 Rich vapor compression
  • 13.4.3.3 Stripper overhead compression
  • 13.4.3.4 Multipressure stripper
  • 13.4.3.5 Integrated heat pump
  • 13.4.4 Advanced processes concept
  • 13.4.4.1 Double liquid absorbent processes
  • 13.4.4.2 Multistage heated flash strippers
  • 13.4.4.3 Multieffect strippers
  • 13.4.4.4 Absorber feed compression and expansion
  • 13.4.4.5 Live steam stripping
  • 13.5 Industrial implementation
  • 13.5.1 Pilot plant and industrial unit implementation
  • 13.5.1.1 Pilot plant evaluation
  • 13.5.1.2 Industrial technology demonstration
  • 13.5.2 Industrial design opportunities and constraints
  • 13.5.2.1 Synergy between absorption liquid and process
  • 13.5.2.2 Synergies between process modifications
  • 13.5.2.3 Trade-off between investment cost and performance
  • 13.5.2.4 Trade-off between operability and performance
  • References
  • 14 - Gas-liquid contactors in liquid absorbent-based PCC
  • 14.1 Introduction
  • 14.2 Contacting principles of gas-liquid devices
  • 14.3 Types of gas-liquid contactors
  • 14.3.1 Packed column (incl. advanced/optimized packings)
  • 14.3.2 Tray column
  • 14.3.3 Bubble column
  • 14.3.4 Spray column
  • 14.3.5 Membrane contactors
  • 14.4 Innovative contactor types
  • 14.4.1 Rotating liquid sheet contactor
  • 14.4.2 Rotating packed bed (Higee technology)
  • 14.4.3 Flat jets (developed by Neumann Systems Group)
  • 14.5 Conclusion
  • Notation
  • References
  • 15 - Hybrid amine-based PCC processes, membrane contactors for PCC
  • 15.1 Generalities
  • 15.1.1 Membrane contactor characteristics
  • 15.1.1.1 Module and fiber characteristics
  • 15.1.1.2 Membrane characteristics
  • 15.1.2 Advantages and main issues of membrane contactors
  • 15.1.3 Membrane wetting
  • 15.1.3.1 Qualitative description
  • 15.1.3.2 Prediction of wetting conditions
  • 15.2 Membrane contactor modeling
  • 15.2.1 Basic principles
  • 15.2.2 Transfer in membrane contactors
  • 15.2.2.1 General definitions
  • 15.2.2.2 Momentum transfer: hydrodynamics
  • 15.2.2.3 Mass and heat transfer
  • Lumen-side transfer
  • Shell-side transfer
  • Membrane transfer
  • 15.2.3 Model equations
  • 15.2.4 Illustration of simulation outcomes
  • 15.3 Pilot-plant investigations
  • 15.4 Conclusions and outlook
  • Nomenclature
  • References
  • Four - Solvent degradation, emissions and waste handling
  • 16 - Degradation of amine-based solvents
  • 16.1 Introduction
  • 16.2 Reaction, mechanisms, and products of amine degradation
  • 16.2.1 Oxidative degradation
  • 16.2.1.1 Oxidation of amine-metal complexes
  • 16.2.1.2 Oxidation of amines by free radicals
  • 16.2.1.3 Other products of amine oxidation
  • 16.2.2 Carbamate polymerization
  • 16.2.2.1 Alkanolamines and linear ethylamine oligomers
  • 16.2.2.2 Cyclic amines
  • 16.2.2.3 Blended amines
  • 16.2.3 Nitrosation
  • 16.2.4 Heat-stable salts
  • 16.3 Measuring amine degradation
  • 16.3.1 Quantitative methods of analysis
  • 16.3.1.1 Quantification of organic analytes in aqueous PCC streams
  • 16.3.2 Assessing amine condition
  • 16.4 Opportunities for controlling amine degradation
  • 16.4.1 Selection of amines
  • 16.4.2 Preventing enhanced degradation
  • 16.4.3 Inhibiting amine oxidation
  • 16.4.4 Heat-stable salts
  • 16.4.5 Carbamate polymerization and thermal amine degradation
  • 16.4.6 Nitration and nitrosation
  • 16.5 Post-combustion CO2 capture plant design and operation aspects
  • 16.5.1 Impact of amine degradation on the design and operation of PCC plants
  • 16.5.2 Impact of PCC plant design and operation on amine degradation
  • 16.6 Conclusions and recommendations for future research directions
  • 16.6.1 Reactions and mechanisms
  • 16.6.2 Analytical methods
  • 16.6.3 Construction materials
  • 16.6.4 Additives
  • 16.6.5 Optimization
  • Acknowledgments
  • References
  • 17 - Reclaiming of amine-based absorption liquids used in post-combustion capture
  • 17.1 Introduction
  • 17.2 Stripping, neutralization, and filtration
  • 17.3 Thermal reclamation
  • 17.4 Ion exchange
  • 17.5 Electrodialysis
  • 17.6 Economic and environmental considerations
  • 17.7 Conclusions
  • References
  • 18 - Assessment of corrosion in amine-based post-combustion capture of carbon dioxide systems
  • 18.1 Introduction
  • 18.2 Types of corrosion
  • 18.3 Experiences from corrosion in amine-based natural gas treatment
  • 18.3.1 Operating parameters affecting amine solution corrosion
  • 18.3.2 Known failures
  • 18.3.3 Methods used for corrosion control
  • 18.4 Corrosion measurement techniques for amine-based PCC systems
  • 18.4.1 Laboratory methods
  • 18.4.2 In situ corrosion coupons
  • 18.4.3 Corrosion probes
  • 18.4.4 Comparison of results from different methods
  • 18.5 Effect of process conditions on corrosion in amine-based PCC systems
  • 18.5.1 Acid-gas loading and temperature
  • 18.5.2 Oxygen content
  • 18.5.3 Sulfur dioxide content
  • 18.5.4 Amine type and concentration
  • 18.5.5 Heat-stable salts and amine degradation products
  • 18.5.6 Particulates and solution velocity
  • 18.5.7 Corrosion in other areas of plant
  • 18.5.8 Corrosion inhibitors
  • 18.5.9 Other absorption liquids
  • 18.6 Conclusion
  • 18.7 Final comments
  • References
  • 19 - Overview of aerosols in post-combustion CO2 capture
  • 19.1 Introduction
  • 19.2 Causes and mechanisms
  • 19.2.1 Particle number concentration
  • 19.2.2 Particle size distribution
  • 19.2.3 Supersaturation
  • 19.2.4 Reactivity of the amine
  • 19.3 Countermeasures
  • 19.3.1 Brownian diffusion demister
  • 19.3.2 Wet electrostatic precipitator
  • 19.3.3 BASF's "dry bed" and "pretreatment" countermeasure
  • 19.3.4 MHI's amine reduction system and a special demister
  • 19.3.5 Aker solution's antimist system
  • 19.3.6 Gas-Gas Heat exchanger (GGH)
  • 19.4 Future outlook
  • References
  • 20 - Emissions from amine-based post-combustion CO2 capture plants
  • 20.1 Introduction
  • 20.2 The amine-based post-combustion CO2 capture process
  • 20.3 Amine degradation
  • 20.4 Atmospheric releases from amine-based post-combustion CO2 capture plants
  • 20.4.1 Amine emissions
  • 20.4.2 Amine by-product emissions
  • 20.4.3 Changes in existing emissions composition
  • 20.5 Atmospheric degradation of post-combustion CO2 capture emissions
  • 20.5.1 Amine degradation chemistry
  • 20.5.2 Regional modeling of impact of post-combustion CO2 capture emissions
  • References
  • 21 - Waste handling in liquid absorbent-based post-combustion capture processes
  • 21.1 Introduction
  • 21.2 Landfill
  • 21.3 Nonhazardous waste landfill
  • 21.4 Hazardous waste landfill
  • 21.5 Power plant
  • 21.6 Suitability of reclaimer waste for firing in coal-fired furnace
  • 21.7 Suitability of reclaimer waste for firing in natural gas combined cycle HRSG
  • 21.8 Cement manufacturing process
  • 21.9 Reclaimer waste suitability in cement kiln
  • 21.10 Preprocessing of reclaimer waste for disposal in cement kiln
  • 21.11 Selective non-catalytic reduction of NOx removal
  • 21.12 Suitability of reclaimer waste as an selective noncatalytic reduction reagent
  • 21.13 Wastewater treatment plant
  • 21.14 Suitability of reclaimer waste for wastewater treatment plant
  • References
  • 22 - Treatment of flue-gas impurities for liquid absorbent-based post-combustion CO2 capture processes
  • 22.1 Introduction
  • 22.1.1 Technologies for treatment flue-gas impurities relevant to post-combustion CO2 capture
  • 22.1.2 Existing technologies
  • 22.1.3 Considerations for flue-gas treatment to optimize PCC
  • 22.2 NOX control
  • 22.2.1 NOX emission effects
  • 22.2.2 Primary measures (combustion modifications)
  • 22.2.3 Nitrogen reduction (DeNOx) technologies
  • 22.2.4 Other technologies and synopsis
  • 22.3 Particulate matter control
  • 22.3.1 Particulate emission effects
  • 22.3.2 Electrostatic precipitators
  • 22.3.2.1 Wet and dry electrostatic precipitators
  • 22.3.3 Fabric filters
  • 22.4 SOX emission control
  • 22.4.1 SOX emission effects
  • 22.4.2 Wet scrubbers
  • 22.4.2.1 Strengths and limitations
  • 22.4.3 Semidry scrubbers
  • 22.4.4 Dry scrubbers
  • 22.4.5 Noteworthy technologies
  • 22.5 Mercury control
  • 22.5.1 Mercury emission effects
  • 22.5.2 Mercury control technologies
  • 22.6 Trace elements and other contaminants
  • 22.7 Multipollutant control
  • 22.7.1 Multipollutant control (CO2 inclusive)
  • 22.7.1.1 Cansolv® technology
  • 22.7.1.2 CASPER and CS-Cap processes
  • 22.7.1.3 CO2CRC UNO MK 3 process
  • 22.7.1.4 Chilled and cooled ammonia processes
  • 22.7.1.5 Carbon fiber composite
  • 22.7.2 Multipollutant control (exclusive of CO2)
  • 22.8 Conclusion
  • References
  • Five - Process integration and operation
  • 23 - Power plant integration methods for liquid absorbent-based post-combustion CO2 capture
  • 23.1 Integrated overall process
  • 23.1.1 Provision for heat duty
  • 23.1.2 Provision for cooling duty
  • 23.1.3 Provision for electrical duty
  • 23.2 Integration approaches
  • 23.2.1 Basic integration
  • 23.2.2 Heat integration
  • 23.2.3 Retrofit integration
  • 23.2.4 Greenfield integration
  • 23.3 Modeling approach
  • 23.4 Power loss of integrated overall process
  • 23.4.1 Power loss by steam extraction-power loss factor
  • 23.4.1.1 Retrofit integration
  • 23.4.1.2 Operation with pressure maintaining valve
  • 23.4.1.3 Operation with a throttle
  • 23.4.1.4 Greenfield integration
  • 23.4.2 Power loss by CO2 compression
  • 23.4.3 Power loss by electrical consumers
  • 23.4.4 Power loss by increased cooling demand
  • 23.5 Power gain by heat integration
  • 23.6 Example quantification of an integrated overall process
  • 23.6.1 Sensitivity of selected boundary conditions on the overall process
  • 23.6.1.1 ?preb
  • 23.6.1.2 ?Treb
  • 23.6.1.3 pcond
  • 23.6.1.4 eCO2
  • 23.6.2 Example overall process evaluation for monoethanolamine
  • 23.6.3 Example overall process evaluation for piperazine
  • 23.7 Summary
  • References
  • 24 - Dynamic operation of liquid absorbent-based post-combustion CO2 capture plants
  • 24.1 Introduction
  • 24.2 Dynamic operation of post-combustion CO2 capture
  • 24.2.1 Strategies to improve flexibility
  • 24.2.2 Flexible operation modes
  • 24.2.3 Start-up venting and bypassing the post-combustion CO2 capture system
  • 24.2.4 Liquid absorbent storage
  • 24.2.5 Optimization of the steam cycle design and heat integration
  • 24.3 Design considerations for dynamic post-combustion CO2 capture operation
  • 24.3.1 Motivation for flexible operation of post-combustion CO2 capture
  • 24.3.2 Economic benefits of post-combustion CO2 capture dynamic operation
  • 24.3.2.1 Volatility of electricity demand and prices
  • 24.3.2.2 CO2 pricing
  • 24.3.3 Dynamically changing physical properties
  • 24.3.3.1 Flue gas composition and properties
  • 24.3.3.2 Absorption liquid properties
  • Plant performance
  • Amine loss
  • Changes to viscosity
  • Foaming effects
  • Fouling effects
  • 24.4 Developments in dynamic modeling of post-combustion CO2 capture
  • 24.4.1 Dynamic post-combustion CO2 capture models
  • 24.4.2 Comparison of equilibrium-based and rate-based approaches
  • 24.4.3 Stand-alone dynamic models
  • 24.4.4 Integrated dynamic models of the post-combustion CO2 capture process
  • 24.4.5 Dynamic modeling for process optimization and control
  • 24.5 Developments in dynamic operation of pilot plants
  • 24.5.1 Role of post-combustion CO2 capture plants in dynamic model development
  • 24.5.2 Dynamic operation approach
  • 24.5.3 Online monitoring
  • 24.6 Concluding remarks and outlook
  • References
  • 25 - Renewable energy integration in liquid absorbent-based post-combustion CO2 capture plants
  • 25.1 Introduction
  • 25.2 Base case scenario
  • 25.3 Model-based analysis of renewable energy integration options
  • 25.3.1 Option 1: integration of solar power with post-combustion CO2 capture-retrofitted power plants
  • 25.3.2 Option 2: integration of solar thermal energy with post-combustion CO2 capture-retrofitted power plant
  • 25.3.3 Option 3: integration of solar thermal energy and power with post-combustion CO2 capture-retrofitted power plants
  • 25.3.4 Summary of the results
  • 25.4 Discussion, conclusions, and future directions
  • Nomenclature
  • Acknowledgments
  • References
  • 26 - Pilot plant operation for liquid absorption-based post-combustion CO2 capture
  • 26.1 Introduction
  • 26.2 Purpose of pilot-scale experiments
  • 26.3 Design philosophy of pilot-scale facilities
  • 26.3.1 CO2 capture efficiency
  • 26.3.2 Energy requirements
  • 26.3.3 Absorbent robustness, degradation, and emissions
  • 26.3.4 Material considerations
  • 26.3.5 Standard pilot plant layout
  • 26.4 Common measurements and calculations
  • 26.4.1 Measurements
  • 26.4.1.1 Gas flow rate
  • 26.4.1.2 Gas composition
  • 26.4.1.3 Liquid flow rates
  • 26.4.1.4 Temperature
  • 26.4.1.5 Pressure
  • 26.4.1.6 Levels
  • 26.4.1.7 Other measurement points
  • 26.4.2 Calculations
  • 26.4.2.1 CO2 capture efficiency
  • 26.4.3 Regeneration energy
  • 26.4.3.1 Direct method
  • 26.4.3.2 Indirect method
  • 26.5 Challenges of pilot-scale experimentation
  • 26.5.1 Operating at an industrial site
  • 26.5.2 Access to power and utilities
  • 26.5.3 Pretreatment requirements
  • 26.5.4 Long-term operation
  • 26.5.5 Environmental considerations
  • 26.5.6 Analytical requirements
  • 26.5.7 Water balance
  • 26.6 Pilot plant experience/results
  • 26.6.1 Energy requirement
  • 26.6.2 Absorbent degradation and emissions
  • 26.6.3 Materials testing
  • 26.6.4 Model validation
  • 26.6.5 Process modifications
  • 26.7 Conclusions
  • References
  • 27 - Techno-economics of liquid absorbent-based post-combustion CO2 processes
  • 27.1 Introduction
  • 27.2 Techno-economic evaluation parameters and methodology
  • 27.2.1 Project specifications
  • 27.2.2 Capture processes' modeling and technical performance parameters
  • 27.2.3 Capture plant sizing and costing
  • 27.2.4 Economic assessment methodology and parameters
  • 27.3 Absorption-based process benchmarking and evaluation
  • 27.3.1 Process input and operational specifications
  • 27.3.2 Benchmarking process description
  • 27.4 Absorption process benchmarking and base case performance
  • 27.4.1 Process input and operational specifications
  • 27.4.2 MEA process description
  • 27.4.3 Technical performance
  • 27.4.4 Process capital investment
  • 27.4.5 Process operational investment
  • 27.5 Process potential improvement and cost reduction
  • 27.5.1 Absorbent properties and performance
  • 27.5.2 CO2 capture costs reduction
  • 27.6 Novel absorbents techno-economic evaluation
  • 27.6.1 Overview of potential novel liquid based process modifications
  • 27.6.2 Novel process performance and economic evaluation
  • 27.7 Conclusions and remarks
  • References
  • 28 - Liquid absorbent-based post-combustion CO2 capture in industrial processes
  • 28.1 Introduction
  • 28.2 Overview of CO2 emissions from industrial processes
  • 28.2.1 Cement production emissions
  • 28.2.2 Iron and steel production emissions
  • 28.2.3 Refinery emissions
  • 28.2.4 Hydrogen and chemical production emissions
  • 28.2.5 Gas-to-liquids (GTL) process emissions
  • 28.2.6 Aluminum smelting
  • 28.3 Status of chemical absorption-based post-combustion capture from industrial sources
  • 28.3.1 Development status of chemical absorption-based CO2 capture from cement production
  • 28.3.2 Development status of chemical absorption-based CO2 capture from iron and steel production
  • 28.3.3 Development status of chemical absorption-based CO2 capture from refineries
  • 28.3.4 Development status of chemical absorption-based CO2 capture from hydrogen and chemical production
  • 28.3.5 Development status of chemical absorption-based CO2 capture from GTL processes
  • 28.3.6 Development status of chemical absorption-based CO2 capture from aluminum smelting
  • 28.4 Utilization of waste heat and heat integration for absorption-based CO2 capture
  • 28.5 Economics of chemical absorption-based CO2 capture at industrial processes
  • 28.5.1 Cement
  • 28.5.2 Iron and steel
  • 28.5.3 Refineries
  • 28.5.4 Hydrogen production (for refineries, ammonia, and methanol)
  • 28.5.5 Gas to liquid
  • 28.6 Practical limitations and challenges of absorption-based post-combustion capture for industrial processes
  • 28.7 Concluding remarks and development outlook
  • References
  • 29 - Commercial liquid absorbent-based PCC processes
  • 29.1 Introduction
  • 29.2 CO2 separation technological history and background
  • 29.2.1 Adsorption
  • 29.2.2 Cryogenic technique
  • 29.2.3 Membrane technology
  • 29.2.4 Chemical looping combustion
  • 29.2.5 Absorption
  • 29.3 Vendors/technologies: commercial scale
  • 29.3.1 Fluor's Econamine FG Plus Technology
  • 29.3.2 Mitsubishi Heavy Industries KS-Technology
  • 29.3.3 The Shell-Cansolv CO2 capture system
  • 29.3.4 Aker Clean Carbon Technology
  • 29.4 Vendors/technologies: pilot plant and demonstration scale
  • 29.4.1 HTC Purenergy
  • 29.4.2 Siemens
  • 29.4.3 Hitachi
  • 29.4.4 Toshiba
  • 29.4.5 Linde/BASF
  • 29.4.6 Babcock & Wilcox
  • 29.4.7 Alstom/Dow Chemical
  • 29.4.8 IFP/PROSERNAT
  • 29.4.9 China Huaneng
  • 29.4.10 IHI
  • 29.4.11 Other suppliers
  • 29.4.12 Large-scale operation overview
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • O
  • P
  • R
  • S
  • T
  • U
  • V
  • W
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

297,50 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok