Neuroprotective Effects of Phytochemicals in Neurological Disorders

 
 
Standards Information Network (Verlag)
  • erschienen am 3. Januar 2017
  • |
  • 648 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-15517-1 (ISBN)
 
Phytochemicals are naturally occurring bioactive compounds found in edible fruits, plants, vegetables, and herbs. Unlike vitamins and minerals, phytochemicals are not needed for the maintenance of cell viability, but they play a vital role in protecting neural cells from inflammation and oxidative stress associated with normal aging and acute and chronic age-related brain diseases. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the advances in our understanding of the potential neuroprotective benefits that these naturally occurring chemicals contain.
Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the role that a number of plant-based chemical compounds play in a wide variety of neurological disorders. Chapters explore the impact of phytochemicals on neurotraumatic disorders, such as stroke and spinal cord injury, alongside neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as neuropsychiatric disorders such as depression and schizophrenia. The chapters and sections of this book provide the reader with a big picture view of this field of research.
Neuroprotective Effects of Phytochemicals in Neurological Disorders aims to present readers with a comprehensive and cutting edge look at the effects of phytochemicals on the brain and neurological disorders in a manner useful to researchers, neuroscientists, clinical nutritionists, and physicians.
1. Auflage
  • Englisch
  • Hoboken
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • 22,76 MB
978-1-119-15517-1 (9781119155171)
weitere Ausgaben werden ermittelt
Tahira Farooqui and Akhlaq A. Farooqui, The Ohio State University, Columbus, OH, USA
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Contributors
  • Preface
  • Acknowledgments
  • Chapter 1 Use of Phytochemicals against Neuroinflammation
  • 1.1 Introduction
  • 1.2 Mechanism of Action of Phytochemicals
  • 1.3 Bioavailability of Phytochemicals
  • 1.4 Plants Effective against Neuroinflammation
  • 1.4.1 Order: Apiales
  • 1.4.2 Order: Arecales
  • 1.4.3 Order: Asparagales
  • 1.4.4 Order: Asterales
  • 1.4.5 Order: Celastrales
  • 1.4.6 Order: Cucurbitales
  • 1.4.7 Order: Dipsacales
  • 1.4.8 Order: Ericales
  • 1.4.9 Order: Fagales
  • 1.4.10 Order: Fabales
  • 1.4.11 Order: Ginkgoales
  • 1.4.12 Order: Gentianales
  • 1.4.13 Order: Lamiales
  • 1.4.14 Order: Laurales
  • 1.4.15 Order: Magnoliales
  • 1.4.16 Order: Malpighiales
  • 1.4.17 Order: Oxalidales
  • 1.4.18 Order: Pinales
  • 1.4.19 Order: Piperales
  • 1.4.20 Order: Ranunculales
  • 1.4.21 Order: Rosales
  • 1.4.22 Order: Sapindales
  • 1.4.23 Order: Saxifragales
  • 1.4.24 Order: Solanales
  • 1.4.25 Order: Vitales
  • 1.4.26 Order: Zingiberales
  • 1.4.27 Order: Fucales
  • 1.4.28 Order: Agaricales
  • 1.4.29 Order: Polyporales
  • 1.5 Use of Phytochemicals against Neuroinflammation
  • 1.5.1 Catechin Flavonoid Polyphenols
  • 1.5.2 Anthocyanin Flavonoid Polyphenols
  • 1.5.3 Stilbenoid Polyphenols
  • 1.5.4 Curcuminoid Polyphenols
  • 1.5.5 Ginkgo biloba Polyphenols
  • 1.5.6 Aromatic Acid Class of Phenolic Compounds
  • 1.5.7 Phenylethanoid Class of Phenolic Compounds
  • 1.5.8 Organosulfur Class of Glucosinolates
  • 1.5.9 n-3 Fatty Acids
  • 1.6 Phytochemicals and Stroke
  • 1.6.1 Tea
  • 1.6.2 Flavonoids
  • 1.6.3 Resveratrol
  • 1.6.4 Ginkgo biloba
  • 1.6.5 Olive Oil
  • 1.6.6 n-3 Fatty Acids
  • 1.7 Phytochemicals and AD
  • 1.7.1 Flavonoids
  • 1.7.2 Resveratrol
  • 1.7.3 Curcumin
  • 1.7.4 Ginkgo biloba
  • 1.7.5 n-3 Fatty Acids
  • 1.8 Conclusion
  • Acknowledgments
  • Conflicts of Interest
  • References
  • Chapter 2 Flavonoids in Transgenic Alzheimer's Disease Mouse Models: Current Insights and Future Perspectives
  • 2.1 Introduction
  • 2.2 Histopathological Hallmarks in AD
  • 2.2.1 Tauopathy
  • 2.2.2 Amyloidopathy
  • 2.3 Current Therapy
  • 2.4 Natural Bioactive Compounds
  • 2.4.1 Flavonoids
  • 2.4.2 Biflavonoids
  • 2.5 Transgenic Mouse Models for the Evaluation of Flavonoids
  • 2.6 Conclusion
  • Acknowledgments
  • References
  • Chapter 3 Neuroprotective Effects of Polyphenols in Aging and Age-Related Neurological Disorders
  • 3.1 Introduction
  • 3.2 Effects of Polyphenols on Age-Related Cognitive Decline
  • 3.3 Polyphenols and AD
  • 3.4 Cellular and Molecular Interactions Underlying the Cognitive Effects of Polyphenols
  • 3.4.1 Stimulation of Synaptic Plasticity
  • 3.4.2 Modulation of Neuroinflammation
  • 3.4.3 Flavonoid-Induced Changes in Vascular Function and Angiogenesis
  • 3.5 Conclusion
  • References
  • Chapter 4 Indian Herbs and their Therapeutic Potential against Alzheimer's Disease and Other Neurological Disorders
  • 4.1 Introduction
  • 4.2 Ayurveda
  • 4.3 Therapeutic Intervention in AD
  • 4.4 Medicinal Plants
  • 4.4.1 Ashwagandha
  • 4.4.2 Brahmi
  • 4.4.3 Gotu Kola
  • 4.4.4 Chandan
  • 4.4.5 Shankhapushpi
  • 4.4.6 Yastimadhu
  • 4.4.7 Bhilawa
  • 4.4.8 Haldi
  • 4.4.9 Safed Bach
  • 4.4.10 Guggulu
  • 4.4.11 Jatamansi
  • 4.4.12 Ananthamoola
  • 4.4.13 Aparajita
  • 4.4.14 Tulsi
  • 4.4.15 Ber
  • 4.4.16 Pudina
  • 4.4.17 Til
  • 4.5 Herbs and Drug Interactions
  • 4.6 Conclusion
  • Acknowledgements
  • References
  • Chapter 5 Garlic and its Effects in Neurological Disorders
  • 5.1 Introduction
  • 5.2 Bioavailability of Garlic Constituents
  • 5.3 Biochemical Effects of Garlic Components in Visceral Tissues
  • 5.4 Biochemical Effects of Garlic on the Brain
  • 5.4.1 Garlic Components and Hydrogen Sulfide Formation in the Brain
  • 5.4.2 Adverse Effects of Garlic
  • 5.5 Effects of Garlic Constituents in Neurological Disorders
  • 5.5.1 Beneficial Effects of Garlic Components in Ischemic/Reperfusion Injury
  • 5.5.2 Beneficial Effects of Garlic Components in AD
  • 5.5.3 Beneficial Effects of Garlic Components in PD
  • 5.5.4 Beneficial Effects of Garlic Components in Animal Models of Huntington's Disease
  • 5.5.5 Beneficial Effects of Garlic Components in Animal Models of Depression
  • 5.6 Conclusion
  • References
  • Chapter 6 Effects of Extra-Virgin Olive Oil in Neurological Disorders
  • 6.1 Introduction
  • 6.2 Bioavailibility and Metabolism of Olive Oil and Metabolism of Olive Oil Components in Visceral and Brain Tissues
  • 6.3 Effect of Oleic Acid and its Metabolites in Neurological Disorders
  • 6.4 Beneficial Effects of Olive Oil Components in AD
  • 6.5 Beneficial Effects of Olive Oil Components in Ischemic Injury
  • 6.6 Beneficial Effects of Oil Components in Neuropsychiatric Diseases
  • 6.7 Conclusion
  • References
  • Chapter 7 Ginger Components as Anti-Alzheimer Drugs: Focus on Drug Design
  • 7.1 Introduction
  • 7.2 Neurodegeneration in AD
  • 7.3 Treatment Strategies
  • 7.4 Designing an Anti-Alzheimer Agent
  • 7.5 Ginger: A Promising Remedy for AD
  • 7.6 Shogaols and Gingerols as Potential Anti-Alzheimer Leads
  • 7.7 Molecular Interaction of Ginger Compounds with Potential Anti-Alzheimer Drug Targets
  • 7.8 Pharmacokinetic Profile of Ginger Components
  • 7.9 Conclusion
  • References
  • Chapter 8 Phytomedicine: A Possible Tool for Alzheimer's Disease Therapeutics
  • 8.1 Introduction
  • 8.2 Pathophysiology
  • 8.3 Therapeutics
  • 8.3.1 Plants and their Compounds with Acetylcholinesterase-Inhibitory Activity
  • 8.3.2 Plants/Phytoconstituents Acting on Aß
  • 8.3.3 Plants/Phytoconstituents Acting on Tau
  • 8.4 Conclusion
  • References
  • Chapter 9 Effects of Phytochemicals on Diabetic Retino-neuropathy
  • 9.1 Introduction
  • 9.2 Pathophysiology of Diabetic Retino-neuropathy
  • 9.3 Biological Activity of Phytochemicals
  • 9.4 Antidiabetic Effects of Phytochemicals
  • 9.5 Phytochemicals in the Treatment of DR
  • 9.6 Phytochemicals and Retino-neuropathy
  • 9.7 Conclusions
  • Acknowledgments
  • References
  • Chapter 10 Herbal Drugs: A New Hope for Huntington's Disease
  • 10.1 Introduction
  • 10.2 Epidemiology
  • 10.3 Pathophysiology
  • 10.4 Therapeutic Approaches
  • 10.4.1 Bacopa monnieri Wettst. (Syn. Herpestis monniera
  • Fam: Scrophulariaceae)
  • 10.4.2 Cannabis sativa Linn. (Fam: Cannabaceae)
  • 10.4.3 Centella asiatica Linn. (Syn. Hydrocotyl asiatica
  • Fam: Apiaceae)
  • 10.4.4 Convolvulus pluricaulis Chois. (Syn. C. prostratus, C. microphyllus, Fam: Convolvulaceae)
  • 10.4.5 Curcuma longa Linn. (Fam: Zingiberaceae)
  • 10.4.6 Ginkgo biloba Linn. (Fam: Ginkgoaceae)
  • 10.4.7 Panax ginseng C.A. Meyer (Fam: Araliaceae)
  • 10.4.8 Withania somnifera Dunal. (Fam: Solanaceae)
  • 10.4.9 Flavonoids
  • 10.4.10 Lycopene
  • 10.4.11 Resveratrol
  • 10.4.12 Celastrol
  • 10.4.13 Trehalose
  • 10.5 Conclusion
  • References
  • Chapter 11 Neuroprotective Properties of Dietary Polyphenols in Parkinson's Disease
  • 11.1 Introduction
  • 11.2 Pathogenesis of PD
  • 11.3 Polyphenols
  • 11.3.1 Anthocyanins
  • 11.3.2 Curcuminoids
  • 11.3.3 Resveratrol
  • 11.3.4 Tea Polyphenols
  • 11.4 Polyphenols and PD
  • 11.5 Conclusion
  • References
  • Chapter 12 Potential of Polyphenols in the Treatment of Major Depression: Focus on Molecular Aspects
  • 12.1 Introduction
  • 12.2 Major Depression and Animal Models
  • 12.3 Curcumin (1,7-bis (4-hydroxy-3-methoxyphenyl)- 1,6-heptadiene-3,5-dione)
  • 12.3.1 Molecular Mechanisms
  • 12.4 Ferulic Acid (4-hydroxy-3-methoxy-cinnamic acid)
  • 12.4.1 Molecular Mechanisms
  • 12.5 Resveratrol (5-(E)-2-(4-hydroxyphenyl)ethenyl)benzene-1,3-diol)
  • 12.5.1 Molecular Mechanisms
  • 12.6 Naringenin ((2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)- 2,3-dihydrochromen-4-one)
  • 12.6.1 Molecular Mechanisms
  • 12.7 Quercetin (2-(3,4-dihydroxyphenyl)-3,5, 7-trihydroxychromen-4-one)
  • 12.7.1 Molecular Mechanisms
  • 12.8 Hesperidin (4'-methoxy-7-O-rutinosyl-3´, 5-dihydroxyflavanone)
  • 12.8.1 Molecular Mechanisms
  • 12.9 Rutin (2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3- ((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(((2R,3R,4R,5R,6S)- 3,4,5-trihydroxy-6-methyloxan-2-yl)oxymethyl)oxan-2-yl)oxychromen-4-one)
  • 12.9.1 Molecular Mechanisms
  • 12.10 Conclusion
  • References
  • Chapter 13 Effect of Phytochemicals on Diabetes-Related Neurological Disorders
  • 13.1 Introduction
  • 13.2 Phytochemicals as Natural Remedies for DN
  • 13.2.1 Cannabis sativa L.
  • 13.2.2 Calotropis procera L.
  • 13.2.3 Ginkgo biloba L.
  • 13.2.4 Artemisia dracunculus L.
  • 13.2.5 Moringa oleifera L.
  • 13.2.6 Gymnema sylvestre
  • 13.2.7 Citrullus colocynthis L.
  • 13.2.8 Ocimum sanctum L.
  • 13.2.9 Tinospora cordifolia
  • 13.2.10 Trigonella foenum-graecum L.
  • 13.2.11 Momordica charantia L.
  • 13.2.12 Cleome viscosa L.
  • 13.2.13 Dioscorea nipponica
  • 13.2.14 Other Phytochemical Sources Effective against DN
  • 13.3 Conclusion
  • References
  • Chapter 14 Neuroprotective Effects of Extra-Virgin Olive Oil and its Components in Alzheimer's Disease
  • 14.1 Alzheimer's Disease
  • 14.1.1 Aß Pathogenesis
  • 14.1.2 Targeting Aß for Therapeutic Intervention
  • 14.2 Extra-Virgin Olive Oil and AD
  • 14.3 EVOO Components and AD
  • 14.3.1 Oleocanthal
  • 14.3.2 Oleuropein Aglycone
  • 14.4 Conclusion
  • References
  • Chapter 15 Protective Role of Black-Tea Extract in a Transgenic Drosophila Model of Parkinson's Disease
  • 15.1 Introduction
  • 15.2 Materials and Methods
  • 15.2.1 Drosophila Stocks
  • 15.2.2 Drosophila Culture and Crosses
  • 15.2.3 Histological Evaluation of the Drosophila Brain
  • 15.2.4 Drosophila Climbing Assay
  • 15.2.5 Drosophila Activity Pattern
  • 15.2.6 Lipid Peroxidation Assay
  • 15.2.7 Estimation of Glutathione Content
  • 15.2.8 Estimation of Glutathione S-Transferase Activity
  • 15.2.9 Estimation of Protein Carbonyl Content
  • 15.2.10 Dopamine Content
  • 15.2.11 Analysis of Cell Death in the Drosophila Brain
  • 15.2.12 Statistical Analysis
  • 15.3 Results
  • 15.4 Discussion
  • Acknowledgements
  • References
  • Chapter 16 Apitherapy: Therapeutic Effects of Propolis on Neurological Disorders
  • 16.1 Introduction
  • 16.2 Complexity in the Chemical Composition of Propolis
  • 16.3 Biological Activities of Propolis in Human Health and Disease
  • 16.3.1 Antioxidative Activity
  • 16.3.2 Anti-inflammatory Activity
  • 16.3.3 Immunomodulatory Activity
  • 16.4 Protective Effects of Flavonoids in Neurological Disorders
  • 16.5 Toxicity of Propolis
  • 16.6 Conclusion
  • References
  • Chapter 17 Molecular Mechanisms behind the Beneficial Activity of Polyunsaturated Fatty Acids in Alzheimer's Disease and Related Conditions
  • 17.1 Introduction
  • 17.2 Pathobiology of AD
  • 17.3 Factors that Influence the Genesis and Progression of AD
  • 17.3.1 Aß Peptide and AD
  • 17.3.2 Oxidative Stress and Neuronal Death
  • 17.3.3 Inflammation and Neuronal Death
  • 17.3.4 Cholinergic System and AD
  • 17.3.5 Proinflammatory Cytokines in AD
  • 17.3.6 Neurotrophic Factors in AD
  • 17.3.7 PUFAs in AD
  • 17.4 Crosstalk between PUFAs and BDNF
  • 17.5 Conclusion
  • References
  • Chapter 18 Prevention of Neuroinflammation by Resveratrol: Focus on Experimental Models and Molecular Mechanisms
  • 18.1 Introduction
  • 18.2 Resveratrol in Neuroinflammation
  • 18.2.1 In vitro Models
  • 18.2.2 In vivo Models
  • 18.3 Molecular Mechanisms of Resveratrol's Action in Neuroinflammation
  • 18.3.1 Proinflammatory Enzymes
  • 18.3.2 Proinflammatory mRNAs
  • 18.3.3 APE1/Ref1
  • 18.3.4 Estrogen Receptors
  • 18.3.5 AMPK/SIRT1
  • 18.4 Conclusion
  • Acknowledgments
  • References
  • Chapter 19 Modulation of the Estradiol and Neprilysin Pathways by Resveratrol in a Lipopolysaccharide Model of Cognitive Impairment
  • 19.1 Introduction
  • 19.2 Methodology
  • 19.3 Relation between Resveratrol as a Phytoestrogen and NEP in an LPS-Induced Cognitive Impairment Model
  • References
  • Chapter 20 Neuroprotective Effect of Resveratrol in Cerebral Ischemia
  • 20.1 Introduction
  • 20.2 Pathophysiology of Ischemic Stroke
  • 20.2.1 Apoptosis
  • 20.2.2 Oxidative Stress
  • 20.2.3 Inflammation
  • 20.2.4 BBB Dysfunction
  • 20.2.5 Glutamate Excitotoxicity
  • 20.2.6 Toll-Like Receptors
  • 20.3 Resveratrol
  • 20.4 Conclusion
  • References
  • Chapter 21 Effects of Nobiletin in Animal Models of Cognitive Impairment: Current Insights and Future Perspectives
  • 21.1 Introduction
  • 21.2 Beneficial Effects of Nobiletin in AD Animal Models
  • 21.2.1 Effects of Nobiletin in Olfactory-Bulbectomized Mice
  • 21.2.2 Effects of Nobiletin in MK-801-Treated Mice
  • 21.2.3 Effects of Nobiletin in Senescence-Accelerated Mice
  • 21.2.4 Effects of Nobiletin in Amyloid Precursor Protein Transgenic Mice
  • 21.2.5 Effects of Nobiletin in a Triple Transgenic Mouse Model of AD
  • 21.2.6 Effects of Nobiletin in Animal Models of Cerebral Ischemia
  • 21.3 Beneficial Effects of Nobiletin in Neuronal Cultured Cells
  • 21.4 Pharmacokinetic Studies of Nobiletin
  • 21.5 Conclusion
  • References
  • Chapter 22 Potential Neuroprotective Effects of Curcumin against Dementia
  • 22.1 Introduction
  • 22.2 Preclinical Studies
  • 22.3 Human Studies
  • 22.4 Discrepancy between Preclinical and Clinical Studies
  • 22.5 Conclusion
  • References
  • Chapter 23 Neuroprotective Activity of Curcumin and Emblica officinalis Extract against Carbofuran-Induced Neurotoxicity in Wistar Rats
  • 23.1 Introduction
  • 23.2 Neurotoxic Action of Insecticides
  • 23.3 Carbofuran
  • 23.3.1 Toxicity
  • 23.3.2 Mechanism of Action
  • 23.4 Curcumin
  • 23.5 Emblica officinalis
  • 23.6 Mechanisms of Curcumin and Emblica in Carbofuran Toxicity
  • 23.6.1 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in Neurobehavioral Activities in Animals
  • 23.6.2 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in Marker Enzymes
  • 23.6.3 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in AChE and CK Activity in Serum and Brain
  • 23.6.4 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in LDH and GGT Activity in Serum and Liver
  • 23.6.5 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in Antioxidant Enzymes and Glutathione in Liver
  • 23.6.6 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in Oxidative Stress Markers in the Liver
  • 23.6.7 Effects of Curcumin and Emblica on Carbofuran-Induced Changes in Mitochondrial Enzymes in Liver
  • 23.7 Discussion
  • 23.8 Conclusion
  • Acknowledgment
  • References
  • Chapter 24 Potential Use of Curcuminoids for the Treatment of Alzheimer's Disease
  • 24.1 Introduction
  • 24.2 Medicinal Value of Turmeric in AD
  • 24.3 AD-Related Pharmacological Activities and Molecular Targets of Curcuminoid Mixture and its Constituents
  • 24.3.1 Effect on Aß-Induced Neurotoxicity
  • 24.3.2 Curcuminoids and Tau Hyperphosphorylation
  • 24.3.3 Molecular Targets of Curcuminoids
  • 24.3.4 Cholinergic System Modulation, Memory Enhancement, and Other In Vivo Effects of Curcuminoids
  • 24.3.5 Pharmacological Targets of Curcuminoids
  • 24.4 Comparative Efficacies of Curcuminoids and their Constituents
  • 24.5 Curcumin Analogues and Conjugates, and their Potential as Therapeutic and Diagnostic Candidates
  • 24.6 Metabolites of Curcuminoids and their Therapeutic Potential in AD
  • 24.7 Pharmacokinetics of Curcuminoids
  • 24.7.1 Pharmacokinetic Properties of Curcuminoids and Methods for Improving their Bioavailability
  • 24.7.2 Shortcomings and Side Effects of Curcuminoids
  • 24.8 Conclusion
  • References
  • Chapter 25 Prevention by Curcumin of Neuroinflammation in Intracerebral Hemorrhage
  • 25.1 Introduction
  • 25.2 Neuroinflammation following ICH
  • 25.3 Characteristics of Curcumin
  • 25.4 Novel Delivery Systems
  • 25.5 Anti-inflammatory Properties in ICH
  • 25.5.1 Inflammatory Cells
  • 25.5.2 Molecular Mechanisms
  • 25.5.3 Epigenetic Regulatory Mechanisms
  • 25.6 Current Applications in ICH
  • 25.7 Conclusion
  • References
  • Chapter 26 Effect of Polyphenols on Protein Misfolding
  • 26.1 Introduction to Plant Polyphenols
  • 26.2 Protein Misfolding and Amyloids
  • 26.2.1 Mechanism of Amyloidosis
  • 26.2.2 Physicochemical Factors Affecting Amyloidosis
  • 26.2.3 Amyloidosis and Neurotoxicity
  • 26.3 Inhibition of Protein Misfolding and Aggregation
  • 26.3.1 Phytopolyphenols as Antioxidants
  • 26.3.2 Phytopolyphenols in Neurodegenerative Diseases
  • 26.4 Prospect for Polyphenols as Pharmaceutical Agents
  • References
  • Chapter 27 Molecular Mechanisms Involved in the Neuroprotective Action of Phytochemicals
  • 27.1 Introduction
  • 27.2 Allicin
  • 27.2.1 BBB Permeability
  • 27.2.2 Attenuation of Oxidative Stress
  • 27.2.3 Neuroprotective Actions
  • 27.3 Curcumin
  • 27.3.1 BBB Permeability
  • 27.3.2 Attenuation of Oxidative Stress
  • 27.3.3 Neuroprotective Actions
  • 27.4 Epigallocatechin-3-Gallate
  • 27.4.1 BBB Permeability
  • 27.4.2 Attenuation of Oxidative Stress
  • 27.4.3 Neuroprotective Actions
  • 27.5 Genistein
  • 27.5.1 BBB Permeability
  • 27.5.2 Attenuation of Oxidative Stress
  • 27.5.3 Neuroprotective Actions
  • 27.6 Ginkgolides
  • 27.6.1 BBB Permeability
  • 27.6.2 Attenuation of Oxidative Stress
  • 27.6.3 Neuroprotective Actions
  • 27.7 Resveratrol
  • 27.7.1 BBB Permeability
  • 27.7.2 Attenuation of Oxidative Stress
  • 27.7.3 Neuroprotective Actions
  • 27.8 Sulforaphane
  • 27.8.1 BBB Permeability
  • 27.8.2 Attenuation of Oxidative Stress
  • 27.8.3 Neuroprotective Actions
  • 27.9 Theanine
  • 27.9.1 BBB Permeability
  • 27.9.2 Attenuation of Glutamate Toxicity
  • 27.9.3 Neuroprotective Actions
  • 27.10 Conclusion
  • Acknowledgment
  • References
  • Chapter 28 Nutraceuticals and Cognitive Dysfunction: Focus on Alzheimer's Disease
  • 28.1 Introduction
  • 28.2 Polyphenols
  • 28.3 Flavonoids
  • 28.4 Nonflavonoid Polyphenols
  • 28.5 ?3 Fatty Acids
  • 28.6 B Vitamins
  • 28.7 Other Vitamins: A, D, E, and K
  • 28.8 Carotenoids
  • 28.9 Phenolic Acids and Diterpenes
  • 28.10 Conclusions
  • References
  • Chapter 29 Summary and Perspective
  • 29.1 Introduction
  • 29.2 Molecular Mechanisms Contributing to Beneficial Effects of Phytochemicals in the Brain
  • 29.3 Problems Associated with the Use of Phytochemicals in Neurological Diseases
  • 29.4 Directions for Future Studies
  • 29.5 Conclusion
  • References
  • Index
  • Supplemental Images
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

160,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen