Quantum Optics and Nanophotonics

 
 
Oxford University Press
  • 1. Auflage
  • |
  • erschienen am 15. September 2017
  • |
  • 464 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-19-108177-4 (ISBN)
 
Quantum Optics and Nanophotonics consists of the lecture notes of the Les Houches Summer School 101 held in August 2013. Some of the most eminent experts in this flourishing area of research have contributed chapters lying at the intersection of basic quantum science and advanced nanotechnology. The book is part of the renowned series of tutorial books that contain the lecture notes of all the Les Houches Summer Schools since the 1950's and cover the latest developments in physics and related fields.
  • Englisch
  • Oxford
  • |
  • Großbritannien
174 BW line and 20 half-tone figures
  • 69,28 MB
978-0-19-108177-4 (9780191081774)
weitere Ausgaben werden ermittelt
Claude Fabre specializes in quantum optics, on the generation and characterization of non-classical states of light, study of quantum correlations and entanglement in light, applications to quantum information processing and quantum metrology. He is Professor at the Kastler Brossel Laboratory, Pierre and Marie Curie University, and has been a senior member of the Institut Universitaire de France since 2007. He is the former Director of Research at CNRS, served as President of the Societe Francaise d'Optique, and was Editor in Chief of the European Physical Journal D. He is a recipient of the Fabry de Gramont prize for his research. Vahid Sandoghdar¿s research focuses on the interaction of light and matter at the nanometer scale and covers fields ranging from quantum optics, plasmonics, high-resolution optical microscopy, and condensed matter physics to biophysics. He is Director at the Max Planck Institute for the Science of Light in Erlangen. He has held the Alexander von Humboldt Professorship at Friedrich-Alexander-Universität Erlangen-Nürnberg and is a recipient of an Advanced ERC Grant. During his earlier professorship at Eidgenössischen Technischen Hochschule (ETH) Zurich, he founded the Network of Optical Sciences (optETH) and the Zurich Center for Imaging Science and Technology (CIMST) at ETH. Nicolas Trepps is Professor at Pierre and Marie Curie University, Laboratoire Kastler Brossel, where his research centers on quantum metrology and quantum information with optical frequency. He is a recipient of an ERC starting grant, was awarded the Fabry-de Gramont Prize of the French Optical Society, and is a junior member of the Institut Universitaire de France. He has been awarded the Jean Jerphagnon Prize in 2013 for successfully transferring fundamental research to industry, in recognition of his founding of the start-up company CAILabs. He held a postdoctoral fellowship at Australian National University for his work on quantum information and high sensitivity optical measurement beyond the standard quantum limit. Leticia Cugliandolo is Professor at Pierre and Marie Curie University, where she works on statistical physics and field theory with applications to soft and hard condensed matter. She has written more than 130 scientific papers, and has been a coeditor of the Les Houches book series since 2007, when she assumed the directorship of the Les Houches Summer School of Physics.
  • Cover
  • Previous sessions
  • Preface
  • Contents
  • List of Participants
  • 1 Introduction to quantum information
  • Stephen M. Barnett
  • 1.1 A very short history
  • 1.2 Quantum communications and quantum key distribution
  • 1.3 Generalized measurements
  • 1.4 Entanglement and its applications
  • 1.5 Quantum computation
  • References
  • 2 Introduction to near-field optics and plasmonics
  • Jean-Jacques Greffet
  • 2.1 Basics of near-field optics
  • 2.2 Computing near fields with integral equations. Green tensor and local density of electromagnetic states (LDOS)
  • 2.3 Introduction to surface plasmons
  • References
  • 3 Transformation optics
  • Ulf Leonhardt
  • 3.1 Introduction
  • 3.2 Maxwell's electromagnetism
  • 3.3 Spatial transformations
  • 3.4 Curved space
  • 3.5 Space-time media
  • Acknowledgements
  • References
  • 4 Temporal and spectral properties of quantum light
  • Birgit Stiller, Ulrich Seyfarth and Gerd Leuchs
  • 4.1 Introduction
  • 4.2 Temporal and spectral properties of classical light
  • 4.3 Quantum optics of a single mode
  • 4.4 Quantum optics of several modes
  • Acknowledgements
  • References
  • 5 Quantum optics with nitrogen-vacancy centres in diamond
  • Yiwen Chu and Mikhail D. Lukin
  • 5.1 Background
  • 5.2 Level structure and polarization properties of the NV centre
  • 5.3 Experimental techniques
  • 5.4 PLE spectroscopy of NV centres
  • 5.5 Optical properties of NV centres
  • 5.6 Quantum entanglement between an optical photon and a solid state spin qubit
  • 5.7 Laser cooling and real-time measurement of nuclear spin environment of a solid state qubit
  • 5.8 Coherent optical transitions in implanted NV centres
  • 5.9 Diamond-based nanophotonic devices for quantum optics
  • 5.10 Outlook
  • Acknowledgements
  • References
  • 6 Single-molecule spectroscopy
  • Michel Orrit
  • 6.1 Introduction
  • 6.2 Microscopy methods
  • 6.3 Detection of fluorescence
  • 6.4 Fluorescence excitation spectroscopy
  • 6.5 Experiments based on fluorescence excitation spectroscopy
  • 6.6 Other detection methods
  • 6.7 Conclusions
  • Acknowledgements
  • References
  • 7 Quantum measurements: a modern view for quantum optics experimentalists
  • Aephraim M. Steinberg
  • 7.1 Information from measurement: update rules, density matrices, and POVMs
  • 7.2 Projective measurement, density matrices, and decoherence
  • 7.3 Generalized measurement (POVMs)
  • 7.4 Complementarity: Feynman's rules and the quantum eraser
  • 7.5 `Interaction-free' measurement and the trouble with retrodiction
  • 7.6 Strong and weak measurements: from von Neumann to Aharonov
  • Acknowledgements
  • Further reading
  • 8 Quantum optics and cavity QED with quantum dots in photonic crystals
  • Jelena Vuckovic
  • 8.1 Photonic crystals and microcavities
  • 8.2 Quantum dots
  • 8.3 Introduction to cavity quantum electrodynamics
  • 8.4 Quantum optics and cavity QED experiments with quantum dots in photonic crystal cavities
  • 8.5 Summary
  • Acknowledgements
  • References
  • 9 Casimir forces and vacuum energy
  • Serge Reynaud and Astrid Lambrecht
  • 9.1 The Casimir force
  • 9.2 Vacuum fluctuations and Casimir forces
  • 9.3 A simple derivation of the Casimir effect in one dimension
  • 9.4 The Casimir force in three-dimensional space
  • Acknowledgements
  • References

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

79,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen