Sustainable Retail Refrigeration

 
 
Wiley-Blackwell (Verlag)
  • erschienen am 27. Oktober 2015
  • |
  • 376 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-1-118-92740-3 (ISBN)
 
Carbon emissions from the retail segment of the food cold chain are relatively high compared to other parts of the food cold chain. Studies have also shown that food temperature is less well controlled at the retail and consumer end of the cold chain. There is therefore considerable potential to optimize performance of refrigerated display cabinets and the refrigeration systems that are used to operate them to reduce carbon emissions and to improve food temperature control.
Sustainable Retail Refrigeration draws together world experts on retail refrigeration. In a single resource, the authors cover the latest technologies and best current knowledge in the field. With increasing concerns about energy use and global warming gasses, retailers are increasingly being called to account for their actions.
Sustainable Retail Refrigeration is a valuable reference to manufacturers, managers and policy makers, incorporating both a design and an operational perspective.
1. Auflage
  • Englisch
  • Hoboken
  • |
  • Großbritannien
John Wiley & Sons
  • 25,09 MB
978-1-118-92740-3 (9781118927403)
1118927400 (1118927400)
weitere Ausgaben werden ermittelt
Professor Judith A. Evans, London South Bank University, UK
Dr Alan M. Foster, London South Bank University, U
  • Title Page
  • Copyright Page
  • Contents
  • List of Contributors
  • Abbreviations
  • Chapter 1 Overview of Retail Display in Food Retailing
  • 1.1 History
  • 1.2 Retail refrigeration and the food cold chain
  • 1.2.1 Temperature
  • 1.2.2 Emissions
  • 1.3 Types of store
  • 1.4 Purpose of retail display
  • 1.5 Types of cabinet
  • 1.5.1 Open-fronted vertical display
  • 1.5.2 Closed display
  • 1.5.3 Food display
  • 1.5.4 Refrigeration systems
  • 1.6 Cabinet performance
  • 1.7 Store ventilation and air conditioning
  • 1.8 Design and optimization
  • 1.9 Future trends
  • References
  • Chapter 2 Operation, Design and Performance of Retail Display Cabinets
  • 2.1 Introduction
  • 2.2 Different types of display cabinet
  • 2.3 Display cabinet operation
  • 2.4 Heat transfer in display cabinets
  • 2.5 Experimental study of heat transfer and airflow in a refrigerated display cabinet
  • 2.5.1 Airflow visualization
  • 2.5.2 Velocity field in air curtain
  • 2.5.3 Temperature variations inside the display cabinet
  • 2.5.4 Temperature field in the display cabinet
  • 2.6 Performance of cabinets - temperature and energy
  • 2.6.1 Improvement of energy efficiency
  • 2.6.2 Refrigerant leakage
  • 2.7 Conclusion
  • References
  • Chapter 3 Retail Display Testing Standards and Legislation
  • 3.1 Introduction
  • 3.2 Test standards for retail cabinets worldwide
  • 3.2.1 ISO EN 23953:2005 + amd. 2012 (Europe)
  • 3.2.2 ANSI/ASHRAE Standard 72-2005, Method of Testing Commercial Refrigerators and Freezers (USA)
  • 3.2.3 ANSI/AHRI Standard 1200 (2010) Standard for Performance Rating of Commercial Refrigerated Display Merchandisers and Storage Cabinets (USA)
  • 3.2.4 AS 1731 Standard (Australia and New Zealand)
  • 3.2.5 Comparison between test standards
  • 3.3 Voluntary and mandatory efficiency programmes
  • 3.3.1 Energy Star Program (USA)
  • 3.3.2 Self-Contained Commercial Refrigerators and Freezers, Energy Efficiency Regulations (Canada)
  • 3.3.3 MEPS Requirements for Commercial Refrigeration (Australia)
  • 3.3.4 UK Enhanced Capital Allowance (ECA) Scheme (UK)
  • 3.3.5 Accelerated Capital Allowance (ACA) (Ireland)
  • 3.3.6 Ecodesign Directive
  • 3.4 International legislation affecting retail cabinets
  • 3.4.1 Europe
  • 3.4.2 USA
  • 3.4.3 Australia/New Zealand
  • 3.5 Real-life operation of display cabinets
  • 3.5.1 Impact of standards on cabinet performance in supermarkets
  • 3.5.2 Reasons for variations between test standards and real-life usage of cabinets
  • 3.6 Conclusions
  • References
  • Chapter 4 Airflow Optimization in Retail Cabinets and the Use of CFD Modelling to Design Cabinets
  • 4.1 Introduction
  • 4.2 Computational fluid dynamics (CFD)
  • 4.3 Open vertical refrigerated display case - model description
  • 4.4 Conclusion
  • Acknowledgement
  • References
  • Chapter 5 Display of Unwrapped Foods
  • 5.1 Introduction
  • 5.2 Mass transfer
  • 5.2.1 The impact of weight loss on quality and operating costs
  • 5.3 Common types of display cabinets for unwrapped food
  • 5.3.1 Temperature and moisture control issues
  • 5.3.2 Reducing weight loss and drying by humidification
  • 5.4 Hygiene
  • 5.4.1 Research results - hygiene and bacteria
  • 5.4.2 Research results - impact of humidification systems
  • 5.5 Conclusions
  • References
  • Chapter 6 Small Commercial Display Cabinets
  • 6.1 Introduction
  • 6.2 Types and applications of small integral display cabinets
  • 6.2.1 Integral medium-temperature and low-temperature food display cabinets
  • 6.2.2 Vending machines
  • 6.3 Advantages and disadvantages of integral display cabinets
  • 6.4 Display cabinet features
  • 6.4.1 Air curtains
  • 6.4.2 Doors and anti-sweat heaters
  • 6.4.3 Lighting
  • 6.5 Typical vapour compression refrigeration system and components
  • 6.5.1 Condenser
  • 6.5.2 Capillary tube: significance, selection and control strategies
  • 6.5.3 Evaporator
  • 6.5.4 Compressor
  • 6.6 Energy modelling of display cabinets
  • 6.6.1 Compressor model
  • 6.6.2 Display cabinet model
  • 6.6.3 Heat exchanger model
  • 6.6.4 Expansion valve model
  • 6.7 Refrigerant options
  • 6.8 Alternative refrigeration systems
  • 6.8.1 Thermoacoustic refrigeration
  • 6.8.2 Thermoelectric refrigeration
  • 6.8.3 Magnetic refrigeration
  • Nomenclature
  • References
  • Chapter 7 Current and Future Carbon-saving Options for Retail Refrigeration
  • 7.1 Introduction
  • 7.2 Reducing direct emissions of greenhouse gases
  • 7.2.1 Gas-tight refrigeration systems
  • 7.2.2 Reduced refrigerant charge
  • 7.2.3 Refrigerants without, or with very low, GWP
  • 7.3 Reducing energy consumption
  • 7.3.1 Heat recovery
  • 7.3.2 Energy accumulation in the form of thermal storage
  • 7.3.3 Intelligent system control
  • 7.3.4 Glass lids and doors
  • 7.3.5 Improved insulation
  • 7.3.6 Infra-red reflecting shades and baldaquins
  • 7.3.7 Improved air curtain in open refrigerated multi-decks
  • 7.3.8 Improved anti-sweat heaters, edge/rim heating, dew point control
  • 7.3.9 Siphon in defrost drain
  • 7.3.10 Improved lighting
  • 7.3.11 Improved compressor
  • 7.3.12 Two-stage compression with intermediate cooling
  • 7.3.13 Rotation speed control/variable speed drive (VSD) compressors (and pumps)
  • 7.3.14 Drive compressor (partially) by expansion machine
  • 7.3.15 Improved expansion valves
  • 7.3.16 Expansion machine
  • 7.3.17 Improved evaporator/condenser
  • 7.3.18 Flooded evaporators
  • 7.3.19 Defrost on demand of the evaporator
  • 7.3.20 Hot gas/warm brine defrost
  • 7.3.21 Improved fan and/or fan motor
  • 7.3.22 Speed control of fan
  • 7.3.23 Fan motor outside cabinet
  • 7.3.24 Reduced condensation temperature
  • 7.3.25 Free cooling
  • 7.3.26 Suction line heat exchanger/internal heat exchange
  • 7.3.27 Economizer
  • 7.3.28 Optimized refrigerants
  • 7.3.29 Correct product loading of the refrigeration/freezer units
  • 7.3.30 Air humidity in the sales room
  • 7.3.31 Cleaning of evaporator and condenser
  • 7.3.32 Summary of measures
  • 7.4 Using renewable energy
  • 7.5 Discussion
  • 7.6 Conclusions
  • Acknowledgement
  • References
  • Chapter 8 Design of Supermarket Refrigeration Systems
  • 8.1 Introduction
  • 8.2 Types of food retail store
  • 8.2.1 Convenience
  • 8.2.2 Supermarket
  • 8.2.3 Hypermarket
  • 8.2.4 Others
  • 8.3 Choice of refrigeration system
  • 8.3.1 Convenience
  • 8.3.2 Supermarket
  • 8.3.3 Hypermarket
  • 8.4 Direct expansion system
  • 8.5 Refrigerants
  • 8.5.1 HFCs
  • 8.5.2 HFOs
  • 8.6 Refrigerant containment
  • 8.7 Energy usage in a typical store
  • 8.8 Optimizing energy efficiency through compressor selection
  • 8.9 Optimizing energy efficiency through control and component selection
  • 8.9.1 Defrost
  • 8.9.2 Discharge and suction pressure control
  • 8.9.3 Expansion device
  • 8.9.4 Anti-condensation heaters
  • 8.9.5 Fan motors
  • 8.9.6 Heat exchangers
  • 8.9.7 Night blinds or covers
  • 8.9.8 Lighting
  • 8.9.9 Heat reclaim
  • 8.10 Skills and training
  • Chapter 9 Refrigerants and Carbon Footprint in Supermarkets
  • 9.1 Introduction
  • 9.2 Carbon footprint
  • 9.2.1 Energy efficiency and carbon footprint
  • 9.2.2 Global warming potential and carbon footprint
  • 9.2.3 Carbon footprint reduction
  • 9.3 Use of natural refrigerants in supermarkets
  • 9.3.1 Natural refrigerants in the retail market
  • 9.3.2 Design of CO2 supermarket systems
  • 9.3.3 Explanation of various systems, their advantages and disadvantages
  • 9.3.4 Components and selection of components
  • 9.3.5 Methods to achieve low energy consumption and leakage rates
  • 9.4 Other natural alternatives
  • 9.4.1 Hydrocarbons with water loop condensing circuit
  • 9.4.2 Air cycle
  • 9.4.3 Secondary systems
  • 9.5 Future systems
  • References
  • Chapter 10 Integration of Air Conditioning, Refrigeration and Energy Generation in Supermarkets
  • 10.1 Introduction
  • 10.2 Integration between refrigeration and air conditioning systems
  • 10.2.1 Supermarket HVAC system
  • 10.2.2 Interaction between refrigerated display cases and store air conditions
  • 10.3 Heat recovery
  • 10.3.1 Heat availability for recovery
  • 10.3.2 Heat recovery strategies
  • 10.3.3 Heat recovery with directly connected heat pumps
  • 10.3.4 Heat recovery with water loop heat pumps (WLHPs)
  • 10.3.5 Heat recovery from CO2 refrigerating systems
  • 10.4 Co-generation and tri-generation
  • 10.4.1 Power systems
  • 10.4.2 Thermally driven cooling systems
  • 10.4.3 System arrangements
  • 10.5 Concluding remarks
  • References
  • Chapter 11 Maintenance and Long-term Operation of Supermarkets and Minimizing Refrigerant Leakage
  • 11.1 Introduction - an end user perspective
  • 11.1.1 Energy consumption, refrigerant gas leakage and carbon emissions
  • 11.1.2 Managing the refrigeration estate
  • 11.1.3 Reliability
  • 11.1.4 Equipment sourcing
  • 11.2 Refrigeration management at ASDA UK
  • 11.3 Why is refrigerant leakage important?
  • 11.4 Refrigerants, leakage rates and trends in the retail sector
  • 11.5 Where and why refrigerant leakage occurs
  • 11.5.1 Previous studies
  • 11.5.2 Where do systems leak? Analysis of service records
  • 11.6 Legislative and other approaches to reducing refrigerant emissions
  • 11.6.1 USA
  • 11.6.2 Japan
  • 11.6.3 Asia Pacific
  • 11.6.4 Europe
  • 11.6.5 Additional measures aimed at reducing refrigerant leakage
  • 11.7 Training and certification of refrigeration personnel
  • 11.8 Refrigerant containment in supermarkets
  • 11.8.1 Design
  • 11.8.2 Installation
  • 11.8.3 Commissioning
  • 11.8.4 Operation
  • 11.8.5 Service and maintenance
  • 11.8.6 Record-keeping
  • 11.8.7 Best practice guidance
  • 11.9 Operation and maintenance of refrigeration systems at ASDA UK
  • 11.9.1 Maintenance philosophy
  • 11.9.2 General and preventative maintenance procedures
  • 11.9.3 Leak testing
  • 11.9.4 Records and record-keeping
  • 11.9.5 Using records and targets to drive improvements
  • 11.9.6 Performance monitoring and KPIs
  • References
  • Chapter 12 Whole Supermarket System Modelling
  • 12.1 Modelling a whole supermarket
  • 12.2 Modelling subsystems in supermarkets
  • 12.2.1 Building model
  • 12.2.2 Outdoor climate
  • 12.2.3 HVAC model
  • 12.2.4 Refrigeration system model
  • 12.2.5 Display cabinets
  • 12.2.6 Cold storage rooms
  • 12.2.7 Defrost
  • 12.3 Available models
  • 12.3.1 EnergyPlus
  • 12.3.2 CyberMart
  • 12.3.3 RETScreen
  • 12.3.4 SuperSIM
  • 12.4 Capabilities of the models
  • 12.5 Future developments
  • References
  • Chapter 13 Lifecycle Analysis, Carbon Footprint, Sustainability
  • 13.1 Introduction to lifecycle analysis
  • 13.2 LCA concepts
  • 13.3 The single LCA index
  • 13.4 LCA limitations
  • 13.5 Example: Compare the lifecycle impact of three different refrigerated cabinets
  • 13.5.1 Goal and scope
  • 13.5.2 Functional unit
  • 13.5.3 Inventory analysis
  • 13.5.4 Lifecycle scenario assumptions
  • 13.5.5 Impact assessment of the three cabinets
  • 13.6 Designing for low lifecycle impact
  • 13.6.1 Material choice to reduce environmental impact
  • 13.6.2 Design to reduce environmental impact
  • 13.7 Carbon footprint
  • 13.7.1 Assessing carbon footprint
  • 13.7.2 Supermarket contribution to carbon footprint
  • 13.8 Total equivalent warming impact (TEWI)
  • 13.9 Future developments
  • References
  • Chapter 14 Designing a Zero Carbon Supermarket
  • 14.1 Introduction
  • 14.2 System boundaries
  • 14.3 Building needs
  • 14.4 Refrigerated appliances
  • 14.5 Lighting and other appliances
  • 14.6 Building technical systems
  • 14.7 Building energy management systems
  • 14.8 Building envelope
  • 14.9 Energy supply
  • 14.10 Energy export or storage
  • 14.11 Design for operation and maintenance
  • 14.12 Design for low lifecycle cost
  • 14.13 Design for the people
  • 14.14 An example of a zero carbon supermarket
  • References
  • Glossary
  • Index
  • EULA

Abbreviations


µGT micro gas turbine ACA Accelerated Capital Allowance ACH air changes per hour AHU air handling unit AMR active magnetic regenerator ANN artificial neural network ASHRAE American Society of Heating, Refrigerating and Air Conditioning Engineers BEMS building energy management system BRA British Refrigeration Association BTU British thermal unit BWS beer, wines and spirits CAV constant air volume CCGT combined cycle gas turbine CCHP combined cooling, heat and power CCT correlated colour temperature CDEC calculated daily energy consumption CE mark Conformité Européene CFC chlorofluorocarbon CFD computational fluid dynamics CHP combined heat and power COP coefficient of performance CRI colour rendering index DAG discharge air grille DAT discharge air temperature DEC direct energy consumption DG distributed generation DP correction factor for influence of indoor relative humidity on defrost in cabinets DPIV digital particle image velocimetry DSM demand-side management DX direct expansion ECA Enhanced Capital Allowance ECM electrically commutated motor EEI Energy Efficiency Index EER energy-efficiency ratio EEV electronic expansion valve EFLH equivalent full load hours FDA Food and Drug Administration F-gas fluorinated gases FGB flash gas bypass FSIS Food Safety and Inspection Service GHG greenhouse gas GT gas turbine GWP global warming potential HACCP hazard analysis critical control point HC hydrocarbon HCFC hydroclorfluorocarbon HER heat extraction rate HFC hydrofluorocarbon HFO hydrofluoroolefin HHV higher heating value HNBR hydrogenated nitrile butadiene HT high temperature HTF heat transfer fluid HVAC heating, ventilation and air conditioning HVAC&R heating, ventilation, air conditioning and refrigeration ICE internal combustion engine IOR Institute of Refrigeration IPCC Intergovernmental Panel on Climate Change KPI key performance indicator LCA lifecycle analysis LCC lifecycle cost LCCP lifecycle climate performance LDV laser Doppler velocimetry LED light-emitting diode LT low temperature MAP modified atmosphere packaging MCE magnetocaloric effect MDEC maximum daily energy consumption MEPS minimum energy performance standard MOC method of characteristics MPE multi-port extruded MT medium temperature MTP Market Transformation Programme NIST National Institute of Standards and Technology NS Navier-Stokes ODP ozone depletion potential OVRDC open vertical refrigerated display cases PAFC phosphoric acid fuel cell PBP payback period PCM phase change material PEC pumping energy consumption PEM polymeric electrolyte membrane PFC perfluorocarbon PIV particle imagery velocimetry PNS parabolized Navier-Stokes PPM pre-planned maintenance PV photovoltaic RAC refrigeration and air conditioning RAG return air grille REAL Zero Refrigerant Emissions And Leakage Zero Project REC refrigeration energy consumption REHVA Representatives of European Heating and Ventilating Associations RET renewable energy technology RC resistor capacitor RH relative humidity RTE ready to eat (food) RTOC Refrigeration, Air Conditioning and Heat Pump Technical Options Committee RTS radiant time series SAR second assessment report SCT saturated condensing temperature SHR sensible heat ratio SNAP Significant New Alternatives Program SOFC solid oxide fuel cell SST supermarket simulation tool STEK STichting Emissiepreventie Koudetechniek TDA total display area TDEC total daily energy consumption TDK two-dimensional kinetic TEC total energy consumption TEEV thermistor-type electronic expansion valve TEV thermostatic expansion valve TEWI total equivalent warming impact TFC thermostatic flow control TP correction factor for influence of indoor relative humidity in cabinets TPI temperature performance indicator UNEP United Nations Environment Programme UNFCCC United Nations Framework Convention on Climate Change US EPA United States Environmental Protection...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

140,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok