Principles of Nuclear Rocket Propulsion

 
 
Elsevier Reference Monographs (Verlag)
  • 1. Auflage
  • |
  • erschienen am 1. August 2016
  • |
  • 344 Seiten
 
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804530-5 (ISBN)
 

Principles of Nuclear Rocket Propulsion provides an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. While there are numerous texts available describing rocket engine theory and nuclear reactor theory, this is the first book available describing the integration of the two subject areas. Most of the book's emphasis is primarily on nuclear thermal rocket engines, wherein the energy of a nuclear reactor is used to heat a propellant to high temperatures and then expel it through a nozzle to produce thrust. Other concepts are also touched upon such as a section devoted to the nuclear pulse rocket concept wherein the force of externally detonated nuclear explosions is used to accelerate a spacecraft.

Future crewed space missions beyond low earth orbit will almost certainly require propulsion systems with performance levels exceeding that of today's best chemical engines. A likely candidate for that propulsion system is the solid core Nuclear Thermal Rocket or NTR. Solid core NTR engines are expected to have performance levels which significantly exceed that achievable by any currently conceivable chemical engine. The challenge is in the engineering details of the design which includes not only the thermal, fluid, and mechanical aspects always present in chemical rocket engine development, but also nuclear interactions and some unique materials restrictions.


  • Sorts and organizes information on various types of nuclear thermal rocket engines into a coherent curriculum
  • Includes a number of example problems to illustrate the concepts being presented
  • Features a companion site with interactive calculators demonstrating how variations in the constituent parameters affect the physical process being described
  • Includes 3D figures that may be scaled and rotated to better visualize the nature of the object under study


Dr. Emrich has worked at the NASA Marshall Center for over 27 years, starting in 1987 in Software Quality Assurance. Now a Senior Engineer, Emrich is working at the forefront of research that is propelling America's journey to Mars. Emrich conceived, designed and now operates the megawatt-class Nuclear Thermal Rocket Element Environment Simulator. In 2015, he became the second Marshall team member to win the coveted AIAA Engineer of the Year award. The award is presented to a member of AIAA who has made a recent individual contribution in the application of scientific and mathematical principles leading to a significant accomplishment or event.
He earned numerous college degrees including a bachelor's degree in mechanical engineering from Georgia Institute of Technology; a master's degree in nuclear engineering from the Massachusetts Institute of Technology; and a doctorate in mechanical and aerospace engineering from the University of Alabama in Huntsville, where he now teaches nuclear rocket propulsion for the Mechanical and Aerospace Engineering Department and mentors young engineers.
  • Englisch
  • Oxford
  • |
  • USA
  • 9,39 MB
978-0-12-804530-5 (9780128045305)
0128045302 (0128045302)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Principles of Nuclear Rocket Propulsion
  • Principles of Nuclear Rocket Propulsion
  • Copyright
  • Contents
  • Preface
  • Interactive Figures and Tables
  • 1 - INTRODUCTION
  • 1. OVERVIEW
  • 2. HISTORICAL PERSPECTIVE
  • 2.1 BACKGROUND
  • 2.2 NERVA
  • 2.3 PARTICLE BED REACTOR
  • 2.4 RUSSIAN NUCLEAR ROCKETS
  • REFERENCES
  • 2 - ROCKET ENGINE FUNDAMENTALS
  • 1. CONCEPTS AND DEFINITIONS
  • 2. NOZZLE THERMODYNAMICS
  • REFERENCE
  • 3 - NUCLEAR ROCKET ENGINE CYCLES
  • 1. NUCLEAR THERMAL ROCKET THERMODYNAMIC CYCLES
  • 1.1 HOT BLEED CYCLE
  • 1.2 COLD BLEED CYCLE
  • 1.3 EXPANDER CYCLE
  • 2. NUCLEAR ELECTRIC THERMODYNAMIC CYCLES
  • 2.1 BRAYTON CYCLE
  • 2.2 STIRLING CYCLE
  • REFERENCE
  • 4 - INTERPLANETARY MISSION ANALYSIS
  • 1. SUMMARY
  • 2. BASIC MISSION ANALYSIS EQUATIONS
  • 3. PATCHED CONIC EQUATIONS
  • 4. FLIGHT TIME EQUATIONS
  • REFERENCE
  • 5 - BASIC NUCLEAR STRUCTURE AND PROCESSES
  • 1. NUCLEAR STRUCTURE
  • 2. NUCLEAR FISSION
  • 3. NUCLEAR CROSS SECTIONS
  • 3.1 1/V REGION
  • 3.2 RESONANCE REGION
  • 3.3 UNRESOLVED RESONANCE REGION OR FAST REGION
  • 4. NUCLEAR FLUX AND REACTION RATES
  • 5. DOPPLER BROADENING OF CROSS SECTIONS
  • 6. INTERACTION OF NEUTRON BEAMS WITH MATTER
  • 7. NUCLEAR FUSION
  • REFERENCES
  • 6 - NEUTRON FLUX ENERGY DISTRIBUTION
  • 1. CLASSICAL DERIVATION OF NEUTRON-SCATTERING INTERACTIONS
  • 2. ENERGY DISTRIBUTION OF NEUTRONS IN THE SLOWING-DOWN RANGE
  • 3. ENERGY DISTRIBUTION OF NEUTRONS IN THE FISSION SOURCE RANGE
  • 4. ENERGY DISTRIBUTION OF NEUTRONS IN THE THERMAL ENERGY RANGE
  • 5. SUMMARY OF THE NEUTRON ENERGY DISTRIBUTION SPECTRUM
  • 7 - NEUTRON BALANCE EQUATION AND TRANSPORT THEORY
  • 1. NEUTRON BALANCE EQUATION
  • 1.1 LEAKAGE (L)
  • 1.2 FISSION PRODUCTION RATE (PF)
  • 1.3 SCATTERING PRODUCTION RATE (PS)
  • 1.4 ABSORPTION LOSS RATE (RA)
  • 1.5 SCATTERING LOSS RATE (RS)
  • 1.6 STEADY-STATE NEUTRON BALANCE EQUATION
  • 2. TRANSPORT THEORY
  • 3. DIFFUSION THEORY APPROXIMATION
  • REFERENCES
  • 8 - MULTIGROUP NEUTRON DIFFUSION EQUATIONS
  • 1. MULTIGROUP DIFFUSION THEORY
  • 2. ONE GROUP, ONE REGION NEUTRON DIFFUSION EQUATION
  • 3. ONE GROUP, TWO REGION NEUTRON DIFFUSION EQUATION
  • 3.1 CORE
  • 3.2 REFLECTOR
  • 3.3 CORE+REFLECTOR
  • 4. TWO GROUP, TWO REGION NEUTRON DIFFUSION EQUATION
  • 9 - THERMAL FLUID ASPECTS OF NUCLEAR ROCKETS
  • 1. HEAT CONDUCTION IN NUCLEAR REACTOR FUEL ELEMENTS
  • 2. CONVECTION PROCESSES IN NUCLEAR REACTOR FUEL ELEMENTS
  • 3. NUCLEAR REACTOR TEMPERATURE AND PRESSURE DISTRIBUTIONS IN AXIAL FLOW GEOMETRY
  • 4. NUCLEAR REACTOR FUEL ELEMENT TEMPERATURE DISTRIBUTIONS IN RADIAL FLOW GEOMETRY
  • 5. RADIATORS
  • REFERENCES
  • 10 - TURBOMACHINERY
  • 1. TURBOPUMP OVERVIEW
  • 2. PUMP CHARACTERISTICS
  • 3. TURBINE CHARACTERISTICS
  • REFERENCES
  • 11 - NUCLEAR REACTOR KINETICS
  • 1. DERIVATION OF THE POINT KINETICS EQUATIONS
  • 2. SOLUTION OF THE POINT KINETICS EQUATIONS
  • 3. DECAY HEAT REMOVAL CONSIDERATIONS
  • 4. NUCLEAR REACTOR TRANSIENT THERMAL RESPONSE
  • REFERENCES
  • 12 - NUCLEAR ROCKET STABILITY
  • 1. DERIVATION OF THE POINT KINETICS EQUATIONS
  • 2. REACTOR STABILITY MODEL INCLUDING THERMAL FEEDBACK
  • 3. THERMAL FLUID INSTABILITIES
  • REFERENCES
  • 13 - FUEL BURNUP AND TRANSMUTATION
  • 1. FISSION PRODUCT BUILDUP AND TRANSMUTATION
  • 2. XENON 135 POISONING
  • 3. SAMARIUM 149 POISONING
  • 4. FUEL BURNUP EFFECTS ON REACTOR OPERATION
  • 14 - RADIATION SHIELDING FOR NUCLEAR ROCKETS
  • 1. DERIVATION OF SHIELDING FORMULAS
  • 1.1 NEUTRON ATTENUATION
  • 1.2 PROMPT FISSION GAMMA ATTENUATION
  • 1.3 CAPTURE GAMMA ATTENUATION
  • 1.4 RADIATION ATTENUATION IN A MULTILAYER SHIELD
  • 2. RADIATION PROTECTION AND HEALTH PHYSICS
  • REFERENCES
  • 15 - MATERIALS FOR NUCLEAR THERMAL ROCKETS
  • 1. FUELS
  • 2. MODERATORS
  • 3. CONTROL MATERIALS
  • 4. STRUCTURAL MATERIALS
  • REFERENCES
  • 16 - NUCLEAR ROCKET ENGINE TESTING
  • 1. GENERAL CONSIDERATIONS
  • 2. FUEL ASSEMBLY TESTING
  • 3. ENGINE GROUND TESTING
  • REFERENCES
  • 17 - ADVANCED NUCLEAR ROCKET CONCEPTS
  • 1. PULSED NUCLEAR ROCKET (ORION)
  • 2. OPEN CYCLE GAS CORE ROCKET
  • 2.1 NEUTRONICS
  • 2.2 CORE TEMPERATURE DISTRIBUTION
  • 2.3 WALL TEMPERATURE CALCULATION
  • 2.4 URANIUM LOSS RARE CALCULATIONS
  • 3. NUCLEAR LIGHT BULB
  • 3.1 NEUTRONICS
  • 3.2 FUEL CAVITY TEMPERATURE DISTRIBUTION
  • 3.3 HEAT ABSORPTION IN THE NEON BUFFER LAYER
  • 3.4 HEAT ABSORPTION IN THE CONTAINMENT VESSEL
  • 3.5 HEAT ABSORPTION IN THE HYDROGEN PROPELLANT
  • REFERENCES
  • Problems
  • CHAPTER 2
  • CHAPTER 3
  • CHAPTER 4
  • CHAPTER 5
  • CHAPTER 6
  • CHAPTER 7
  • CHAPTER 8
  • CHAPTER 9
  • CHAPTER 10
  • CHAPTER 11
  • CHAPTER 12
  • CHAPTER 13
  • CHAPTER 14
  • CHAPTER 15
  • DESIGN PROBLEM
  • DETERMINE
  • ASSUMPTIONS
  • Appendix
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Back Cover

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

128,52 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok