Mechanical Alloying

Energy Storage, Protective Coatings, and Medical Applications
 
 
Elsevier (Verlag)
  • 3. Auflage
  • |
  • erschienen am 30. April 2020
  • |
  • 484 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-818181-2 (ISBN)
 

Mechanical Alloying: Energy Storage, Protective Coatings, and Medical Applications, Third Edition is a detailed introduction to mechanical alloying that offers guidelines on the necessary equipment and facilities needed to carry out the process, also giving a fundamental background to the reactions taking place. El-Eskandarany, a leading authority on mechanical alloying, discusses the mechanism of powder consolidations using different powder compaction processes. A new chapter is included on utilization of the mechanically alloyed powders for thermal spraying.

Fully updated to cover recent developments in the field, this second edition also introduces new and emerging applications for mechanical alloying, including the fabrication of carbon nanotubes, surface protective coating and hydrogen storage technology. El-Eskandarany discusses the latest research into these applications and provides engineers and scientists with the information they need to implement these developments.

  • Guides readers through each step of the mechanical alloying process
  • Includes tables and graphs that are used to explain the stages of the milling processes
  • Presents a comprehensive update on the previous edition, including new chapters that cover emerging applications


A full Professor of Materials Science and Nanotechnology gained his Master and Doctor Degrees at Tohoku University, Japan. He worked as a Professor at Institute for Materials Research, Tohoku University, Japan, Professor at Faculty of Engineering, Al-Azhar University, Egypt. Until 2007, he worked as First-Under-Secretary of Egyptian Minster of Higher Education and Scientific Research, and the former Vice-President of The Academy of Scientific Research and Technology of Egypt. He has joined Kuwait Institute for Scientific Research to work as Senior Research Scientist in 2007. Since then, he works as Senior Research Scientist and Program Manager of Nanotechnology and Advanced Materials. He is the founder of Nanotechnology and Advanced Materials of KISR and the Project Leader of Establishing Nanotechnology Center in Kuwait. In 2018, he promoted to Principle Research Scientist. He has published more than 280 peer-reviewed papers in high-cited international scientific journals in the field of materials science, nanoscience and nanotechnology and more than 250 papers in the proceedings of several international conferences. He awarded six patents from the United States Patent and Trademark Office in the area of nanomaterials, protective coating and hydrogen storage nanocomposites. He is the author of six scientific books and received many national and international awards, two of them given by the His Excellency the Former Egyptian President and the other one given by His Highness The Prince of Kuwait.
  • Englisch
  • San Diego
  • |
  • USA
  • 115,90 MB
978-0-12-818181-2 (9780128181812)
weitere Ausgaben werden ermittelt
  • Cover
  • Title
  • Copyright
  • Dedication
  • Contents
  • About the author
  • Preface
  • Acknowledgment
  • 1 - Introduction
  • 1.1 - Advanced materials
  • 1.2 - Strategies used for fabrications of advanced materials
  • 1.3 - Mechanically assisted approach
  • 1.3.1 - Powder metallurgy
  • 1.3.2 - Ball milling
  • 1.3.3 - Mechanical alloying
  • 1.3.4 - Severe plastic deformation
  • 1.4 - Thermal approach
  • 1.4.1 - Rapid solidification
  • 1.4.2 - Droplet method: gas/water atomization
  • 1.4.3 - Thermal plasma processing
  • 1.4.4 - Vapor deposition
  • References
  • 2 - Characterizations of mechanically alloyed powders
  • 2.1 - Introduction
  • 2.2 - Examples of characterization techniques
  • 2.2.1 - Photon probe methods
  • 2.2.2 - Photon probe methods
  • 2.2.3 - Scanning probe methods
  • 2.2.4 - Thermodynamic methods
  • 3 - The history and necessity of mechanical alloying
  • 3.1 - History of story of mechanical alloying
  • 3.2 - Fabrications of ODS alloys
  • 3.2.1 - ODS Ni-base superalloys and Fe-base high-temperature alloys
  • 3.2.1.1 - INCONEL MA 754
  • 3.2.1.2 - INCONEL MA 6000
  • 3.2.1.3 - INCONEL MA 956
  • 3.3 - Fabrications of other advanced materials
  • 3.4 - Mechanical alloying, mechanical grinding, mechanical milling, and mechanical disordering
  • 3.5 - Types of ball mills
  • 3.5.1 - High-energy ball mills
  • 3.5.1.1 - Attritor or attrition ball mill
  • 3.5.1.2 - Shaker mills
  • 3.5.1.3 - RETSCH mixer mills MM 200 and MM 400
  • 3.5.1.4 - Super Misuni
  • 3.5.1.5 - Planetary ball mills
  • 3.5.1.6 - The uni-ball mill
  • 3.5.2 - Low-energy tumbling mill
  • 3.5.2.1 - Tumbler ball mill
  • 3.5.2.2 - Tumbler rod mill
  • 3.6 - Mechanism of mechanical alloying
  • 3.6.1 - Ball-powder-ball collision
  • 3.7 - Necessity of mechanical alloying
  • References
  • 4 - Controlling the powder-milling process
  • 4.1 - Factors affecting the MA/MD/MM
  • 4.1.1 - Types of ball mills
  • 4.1.2 - Shape of the milling vials
  • 4.1.3 - Impurities and the milling tools
  • 4.1.4 - Milling media
  • 4.1.5 - Milling speed
  • 4.1.6 - Milling time
  • 4.1.7 - Milling atmosphere
  • 4.1.8 - Milling environment
  • 4.1.9 - Ball-to-powder weight ratio
  • 4.1.10 - Milling temperature
  • References
  • 5 - Ball milling as a superior nanotechnological fabrication's tool
  • 5.1 - Introduction
  • 5.1.1 - Types of nanomaterials
  • 5.1.2 - Methods for preparing nanomaterials
  • 5.2 - Nanocrystalline materials
  • 5.2.1 - Influence of nanocrystallinity on mechanical properties: strengthening by grain size reduction
  • 5.3 - Formation of nanocrystalline materials by ball milling technique
  • 5.3.1 - Mechanism(s)
  • 5.3.1.1 - First stage
  • 5.3.1.2 - Second stage
  • 5.3.1.3 - Third stage
  • 5.4 - Selected examples
  • 5.4.1 - Formation of nanocrystalline NixMo100-x (x = 60 and 85 at.%)
  • 5.4.2 - Formation of nanocrystalline fcc metals
  • 5.5 - Effect of ball milling on the structure of carbon nanotubes
  • 5.6 - Pressing and sintering of powders materials
  • 5.6.1 - Classic powder metallurgy
  • 5.7 - Consolidation of nanocrystalline powders
  • 5.7.1 - Approaches used for consolidation of the ball-milled powders
  • 5.8 - Spark plasma sintering for consolidation of ball-milled nanocrystalline powders
  • 5.8.1 - Components and system configurations of SPS system
  • 5.8.2 - Powder specimen filling procedure
  • 5.8.3 - Procedure
  • 5.8.4 - Mechanism
  • 5.9 - Fabrication of nanodiamonds and carbon nanotubes by milling
  • 5.9.1 - Method
  • 5.9.1.1 - Materials and equipment
  • 5.9.1.2 - Nanodiamonds syntheses
  • 5.9.1.3 - Results
  • 5.9.1.4 - Discussion
  • References
  • 6 - Mechanochimical process for fabrication of 3D nanomaterials
  • 6.1 - Introduction
  • 6.2 - Reduction of Cu2O with Ti by room temperature rod milling
  • 6.3 - Properties
  • 6.3.1 - Structural changes with the milling time
  • 6.3.2 - Metallography
  • 6.3.3 - DTA measurements
  • 6.4 - Mechanism of MSSR
  • 6.5 - Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials by MSSR method
  • 6.5.1 - Properties of ball-milled powders
  • 6.5.1.1 - Structural changes with the milling time
  • 6.5.1.2 - Temperature change with the milling time
  • 6.5.1.3 - Hardness, toughness, and elastic moduli of consolidated WC and WC/MgO
  • 6.6 - c-BN
  • 6.6.1 - Synthesis of BN-nanotubes by RBM
  • 6.7 - NbN
  • References
  • 7 - Fabrication of nanocrystalline refractory materials
  • 7.1 - Introduction
  • 7.2 - Preparation challenges and difficulties
  • 7.3 - Synthesizing and properties of mechanically solid-state reacted tic powders
  • 7.3.1 - Consolidation ball-milled Ti55C45 nanopowder particles
  • 7.3.2 - Mechanical properties of consolidated Ti55C45
  • 7.3.2.1 - Microhardness
  • 7.3.2.2 - Elastic moduli
  • 7.4 - Other carbides produced by mechanical alloying
  • 7.4.1 - Fabrication of ß-SiC powders
  • 7.4.2 - Fabrication of nanocrystalline WC powders
  • 7.4.2.1 - Top-down approach combined with spark plasma sintering for fabrication of superhard bulk WC nanocrystalline materials
  • 7.4.3 - Fabrication of nanocrystalline ZrC powders
  • 7.4.4 - Fabrication of nanocrystalline TiN powders
  • 7.4.4.1 - Powder preparation
  • 7.4.4.2 - Powder consolidation
  • 7.4.4.3 - Results
  • References
  • 8 - Fabrication of and consolidation of hard nanocomposite materials
  • 8.1 - Introduction and background
  • 8.1.1 - Nanocomposites
  • 8.1.2 - Metal-matrix nanocomposites (MMNCs)
  • 8.2 - Fabrications methods of particulate MMNCs
  • 8.2.1 - SiC/Al MMNCs
  • 8.2.2 - Fabrication of SiCp/Al MMNCs by mechanical solid-state mixing
  • 8.2.2.1 - Properties of mechanically solid-state fabricated SiCp/Al nanocomposites
  • 8.2.2.2 - Mechanism of fabrication
  • 8.2.2.2.1 - Formation of agglomerates coarse composite SiCp/Al powder particles
  • 8.2.2.2.2 - Disintegration of the agglomerates composite SiCp/Al powder particles
  • 8.2.2.2.3 - Formation of nanocomposite SiCp/Al powder particles
  • 8.2.2.2.4 - Consolidation of nanocomposite SiCp/Al powder particles
  • 8.3 - WC-based nanocomposites
  • 8.3.1 - WC/Al2O3 nanocomposite
  • 8.3.2 - WC-5Co-1Cr-3MgO-0.7VC-0.3Cr3C2 nanocomposite
  • 8.3.3 - WC-5Co-1Cr-3MgO-0.7VC-0.3Cr3C2 nanocomposite
  • 8.4 - Fabrication of metal matrix/carbon nanotubes nanocomposites by mechanical alloying
  • References
  • 9 - Solid-state hydrogen storage nanomaterials for fuel cell applications
  • 9.1 - Introduction
  • 9.2 - Hydrogen energy
  • 9.2.1 - Hydrogen economy
  • 9.2.2 - Hydrogen storage
  • 9.2.2.1 - Gaseous storage method
  • 9.2.2.2 - Liquid storage method
  • 9.3 - Solid-state hydrogen storage
  • 9.3.1 - Nanomaterials for hosting hydrogen
  • 9.3.2 - Metal hydrides
  • 9.4 - Magnesium hydride as an example of solid-state hydrogen storage material
  • 9.4.1 - Traditional approach for synthesizing commercial MgH2
  • 9.4.2 - Synthesizing of nanocrystalline MgH2 powders by reactive ball milling
  • 9.4.2.1 - High-energy reactive ball milling
  • 9.4.2.2 - Low-energy reactive ball milling
  • 9.4.3 - Characterization of reacted ball-milled MgH2 powders
  • 9.4.3.1 - Structural change of Mg powders upon RBM under hydrogen gas
  • 9.4.3.2 - Morphological changes of Mg powders upon RBM under hydrogen gas
  • 9.4.3.3 - Thermal stability of MgH2 powders obtained after different stages of RBM
  • 9.4.3.4 - Effect of RBM time on the hydrogenation/dehydrogenation behavior of MgH2
  • 9.4.3.4.1 - Pressure-composition-temperature (PCT)
  • 9.4.3.4.2 - Hiden Isotherma
  • 9.4.3.4.3 - Experimental procedure
  • References
  • 10 - Mechanically induced-catalyzation for improving the behavior of MgH2
  • 10.1 - Introduction
  • 10.2 - Scenarios for improving the behavior of MgH2
  • 10.2.1 - Alloying elements for improving the hydrogenation/dehydrogenation kinetics of Mg-based alloys
  • 10.2.2 - Doping MgH2 with catalysts
  • 10.2.2.1 - Metal and metal alloys
  • 10.2.2.2 - New approach for doping MgH2 with pure metals
  • 10.2.2.3 - New intermetallic catalytic agents
  • 10.2.2.4 - Catalyzation with metal/metal oxide nanocomposite powders
  • 10.2.2.5 - Catalyzation with titanium carbide nanopowders
  • 10.2.3 - Catalyzation with metastable phases of Zr-based nanopowders
  • 10.2.3.1 - Mechanism of enhancing MgH2 kinetics upon doping with metallic glassy abrasive nanopowders
  • 10.3 - Combination of cold rolling and ball milling for improving the kinetics behavior of MgH2 powders
  • References
  • 11 - Implementation of MgH2-based nanocomposite for fuel cell applications
  • 11.1 - Introduction
  • 11.2 - Hydrogen reactors
  • 11.2.1 - Bulk nanocomposite MgH2/10 wt.% (8 Nb2O5/2 wt.% Ni) system
  • 11.2.1.1 - Implementation of nanocomposite MgH2/8 wt.% Nb2O5/2 wt.% Ni green compacts for fuel cell applications
  • References
  • 12 - Utilization of ball-milled powders for surface protective coating
  • 12.1 - Introduction
  • 12.2 - Thermal spraying
  • 12.2.1 - Combustion-based processes
  • 12.2.1.1 - High velocity oxygen thermal spraying (HVOF)
  • 12.2.1.2 - Utilization of ball-milled powders as feedstock materials for HVOF
  • 12.2.1.2.1 - HVOF reactive spraying of mechanically alloyed Ni-Ti-C powders
  • 12.2.1.2.2 - HVOF of nanostructured Cr3C2-Ni20Cr coatings
  • 12.2.1.2.3 - HVOF of nanocrystalline iron aluminide
  • 12.2.1.2.4 - High-feed-milled HVOF sprayed WC-Co coatings
  • 12.2.1.2.5 - HVOF sprayed diamond reinforced bronze coatings
  • 12.2.2 - Cold spray process
  • 12.2.2.1 - Advantages
  • 12.2.2.2 - Mechanism
  • 12.2.2.3 - Cold spraying of metastable powders obtained by mechanical alloying
  • 12.2.2.4 - Cold spraying of metal matrix reinforced with carbon nanotubes (CNTs)
  • 12.2.2.5 - Cold spraying of metal matrix reinforced with diamond powders
  • 12.2.2.6 - Cold spraying of metal matrix reinforced with tungsten carbide
  • 12.2.2.7 - Applications of cold spray coating feedstock powders
  • References
  • 13 - Mechanically induced solid-state amorphization
  • 13.1 - Introduction
  • 13.2 - Fabrication of amorphous alloys by mechanical alloying process
  • 13.3 - Crystal-to-glass transition
  • 13.3.1 - The metastable phase diagram
  • 13.4 - Mechanism of amorphization by mechanical alloying process
  • 10.4.1 - Structural changes with the milling time
  • 10.4.1.1 - X-ray analysis
  • 10.4.1.2 - TEM observations
  • 13.4.2 - Morphology and metallography changes with the milling time
  • 13.4.3 - Thermal stability
  • 13.4.3.1 - Amorphization process
  • 13.4.3.2 - Crystallization process
  • 13.4.3.3 - Mechanism
  • 13.4.3.3.1 Amorphization via TASSA process: the early stage of milling
  • 13.4.3.3.2 The intermediate stage of milling: the role of amorphization via TASSA and MDSSA processes
  • 13.4.3.3.3 The final stage of milling: the role of amorphization via MDSSA process
  • 13.5 - The glass-forming range
  • 13.6 - Amorphization via mechanical alloying when ?Hfor= Zero
  • mechanical solid-state amorphization of Fe50W50 binary system
  • 13.6.1 - Structural changes with the milling time
  • 13.6.2 - Magnetic studies
  • 13.6.3 - Thermal stability
  • 13.6.4 - Mechanism
  • 13.6.4.1 - The stage of composite FeW powder particles formation
  • 13.6.4.2 - The stage of formation of FeW solid solution
  • 13.6.4.3 - The stage of amorphous FeW formation
  • 13.7 - Special systems and applications
  • 13.7.1 - Amorphous austenitic stainless steel
  • 13.7.2 - Fabrication amorphous Fe52Nb48 special steel
  • 13.7.3 - Fe-Zr-B system
  • 13.8 - Difference between mechanical alloying and mechanical disordering in the amorphization reaction of Al50Ta50 in a rod...
  • 13.8.1 - Background
  • 13.8.2 - Procedure
  • 13.8.3 - Structural changes with milling time
  • 13.8.4 - Morphological changes with milling time
  • 13.8.5 - Thermal stability
  • 13.8.6 - Mechanism of formation of amorphous Al50Ta50 via MD method
  • 13.9 - Mechanically induced cyclic crystalline-amorphous transformations during mechanical alloying
  • 13.9.1 - Co-Ti binary system
  • 13.9.1.1 - Structural changes with the milling time
  • 13.9.1.2 - Thermal stability
  • 13.9.2 - Al-Zr binary system
  • 13.9.2.1 - Structural changes with the milling time
  • 13.9.2.2 - Thermal stability
  • 13.9.3 - Mechanism of amorphous-crystalline-amorphous cyclic phase transformations during ball milling
  • 13.10 - Consolidation of multicomponent metallic glassy alloy powders into full-dense bulk materials
  • 13.10.1 - Fabrication and consolidation of multicomponent Zr52Al6Ni8Cu14W20 metallic glassy alloy powders
  • 13.10.1.1 - Structural change
  • 13.10.1.2 - Thermal stability
  • 13.10.1.3 - Consolidation
  • 13.10.2 - Consolidation of mechanically alloyed Ti40.6Cu15.4Ni8.5Al5.5W30 metallic glassy alloy powders by SPS
  • 13.11 - Recent studies
  • References
  • 14 - Mechanical alloying for preparing nanocrystalline high-entropy alloys
  • 14.1 - Introduction
  • 14.1.1 - Traditional alloys
  • 14.1.2 - The birth of high-entropy alloys
  • 14.1.3 - Basic science behind the HEAs
  • 14.1.4 - Advantage and attractive properties of HEAs
  • 14.1.4.1 - Preparations
  • 14.1.4.2 - Properties
  • 14.2 - Preparations of nanocrystalline HEAs by mechanical alloying
  • 14.2.1 - Examples of recent HEAs systems prepared by mechanical alloying
  • 14.2.1.1 - Bulk nanocrystalline VNbMoTaW high-entropy alloy
  • 14.2.1.2 - High-entropy multicomponent WMoNbZrV alloy
  • 14.2.1.3 - High-pressure torsion-driven mechanical alloying of CoCrFeMnNi high-entropy alloy
  • 14.2.1.4 - Magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders
  • References
  • 15 - Biomedical applications of mechanically alloyed powders
  • 15.1 - Introduction
  • 15.2 - Metallic biomaterials
  • 15.3 - Mechanical alloying for fabrication of metallic biomaterials
  • 15.3.1 - Selected examples
  • 15.3.1.1 - Ti-based alloys
  • 15.3.1.1.1 - High strength, antibacterial, and biocompatible Ti-5Mo-5Ag alloy
  • 15.3.1.1.2 - Low-cost Ti-Mn-Nb alloys for biomedical applications
  • 15.3.1.1.3 - Low modulus titanium-niobium-tantalum-zirconium (TNTZ) alloy
  • 15.3.1.1.4 - ß-type Ti-Nb-Ta-Zr-xHaP (x = 0, 10) alloy
  • 15.3.1.1.5 - Ti-13Nb-13Zr alloy with radial porous Ti-HA coatings
  • 15.3.1.2 - Mg-based alloys
  • 15.3.1.2.1 - High-performance MgFe biodegradable alloy
  • 15.3.1.2.2 - Biodegradable Mg-Zn/HA composite
  • 15.3.1.2.3 - Nanocrystalline AZ31 magnesium alloy with titanium additive
  • 15.3.1.2.4 - Lamellar structured degradable magnesium-hydroxyapatite implants
  • References
  • Index
  • Back cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

238,00 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen