Chemistry of Silica and Zeolite-Based Materials

Synthesis, Characterization and Applications
 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 4. Juli 2019
  • |
  • 464 Seiten
 
E-Book | ePUB mit Adobe-DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-0-12-817814-0 (ISBN)
 

Chemistry of Silica and Zeolite-Based Materials covers a wide range of topics related to silica-based materials from design and synthesis to applications in different fields of science and technology. Since silica is transparent and inert to the light, it is a very attractive host material for constructing artificial photosynthesis systems. As an earth-abundant oxide, silica is an ideal and basic material for application of various oxides, and the science and technology of silica-based materials are fundamentally important for understanding other oxide-based materials. The book examines nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, photonics, photosensors, photovoltaics, energy, environmental sciences, drug delivery, and health.

Written by a highly experienced and internationally renowned team from around the world, Chemistry of Silica and Zeolite-Based Materials is ideal for chemists, materials scientists, chemical engineers, physicists, biologists, biomedical sciences, environmental scientists, toxicologists, and pharma scientists.

---

'The enormous versatility of silica for building a large variety of materials with unique properties has been very well illustrated in this book.... The reader will be exposed to numerous potential applications of these materials - from photocatalytic, optical and electronic applications, to chemical reactivity in confined spaces and biological applications. This book is of clear interest not only to PhD students and postdocs, but also to researchers in this field seeking an understanding of the possible applications of meso and microporous silica-derived materials.' - Professor Avelino Corma, Institute of Chemical Technology (ITQ-CSIC) and Polytechnical University of Valencia, Spain

  • Discusses the most important advances in various fields using silica materials, including nanosolvation and confined molecules in silica hosts, catalysis and photocatalysis, and other topics

  • Written by a global team of experts from a variety of science and technology disciplines

  • Ideal resource for chemists, materials scientists, and chemical engineers working with oxide-based materials
  • Englisch
  • San Diego
  • |
  • USA
  • 13,03 MB
978-0-12-817814-0 (9780128178140)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Chemistry of Silica and Zeolite-Based Materials
  • Copyright Page
  • Contents
  • List of Contributors
  • About the Editors
  • Preface
  • 1 Synthesis and Applications of Periodic Mesoporous Organosilicas
  • 1.1 Introduction
  • 1.2 Synthesis of Periodic Mesoporous Organosilicas
  • 1.2.1 Fundamentals of Periodic Mesoporous Organosilica Synthesis
  • 1.2.2 Functional Periodic Mesoporous Organosilicas
  • 1.2.3 Control of the Arrangement of Organic Moieties in the Pore Walls
  • 1.3 Applications
  • 1.3.1 Light-Harvesting Antennae
  • 1.3.2 Periodic Mesoporous Organosilica-Based Photocatalysis
  • 1.3.3 Hole-Transporting Properties and Photovoltaic Devices
  • 1.3.4 Substrates for Laser Desorption/Ionization Mass Spectrometry
  • 1.3.5 Solid Supports for Metal Complex Catalysts
  • 1.3.5.1 Phenylene-Periodic Mesoporous Organosilica
  • 1.3.5.2 Phenylpyridin-Periodic Mesoporous Organosilica
  • 1.3.5.3 2,2´-Bipyridine-Periodic Mesoporous Organosilica
  • 1.3.5.4 Catalysis of Well-Defined Metal Complexes on 2,2´-Bipyridine-Periodic Mesoporous Organosilica
  • 1.4 Conclusion and Outlook
  • References
  • 2 Silica Hosts for Acid and Basic Organosilanes: Preparation, Characterization, and Application in Catalysis
  • 2.1 Introduction
  • 2.2 Functionalization of Mesoporous Silicas by Organosilanes Containing Acidic Groups
  • 2.2.1 Hybrid Materials Containing Strong -SO3H Acidic Centers
  • 2.2.1.1 Different Ways for Preparation of Functionalized Materials
  • 2.2.1.2 The Role of Additives in Silica Support
  • 2.2.1.3 Characterization of Surface Properties
  • 2.2.1.4 Application in Catalysis
  • 2.2.2 Hybrid Materials Containing Moderate Acidic -PO3H2 and Weak Acidic -COOH Groups
  • 2.2.2.1 Preparation and Characterization
  • 2.2.2.2 Application in Catalysis
  • 2.3 Functionalization of Mesoporous Silicas by Organosilanes Containing Basic Centers
  • 2.3.1 Preparation of Mesoporous Silicas Functionalized With Basic Species Containing Nitrogen
  • 2.3.2 Characterization of Surface Properties of Hybrid Materials Containing Basic Species
  • 2.3.3 Application in Catalysis
  • 2.4 Multifunctional Catalysts Based on Amino-Grafted Silica Hybrid Materials
  • 2.4.1 Base-BrØnsted Acid Pairs on Silica Surface
  • 2.4.2 Base-Lewis Acid Pairs on Silica Surface
  • 2.4.3 Base-Redox Pairs on Silica Surface
  • 2.4.4 Trifunctional Mesoporous Silica Containing Amine
  • 2.5 Transition Metals Anchored on Mesoporous Silicas Functionalized With Organosilanes
  • 2.5.1 Location of Organosilane
  • 2.5.2 Position of Metal Particles and Metal Dispersion
  • 2.5.3 Role of Mature of Functional Group in Organosilane
  • 2.6 Concluding Remarks
  • Acknowledgments
  • References
  • 3 Catalytic Interconversion of Sugars with Zeolite and Zeotype Materials
  • 3.1 Introduction
  • 3.2 Isomerization of Glucose
  • 3.2.1 Sn-Modified Zeolite Catalysts
  • 3.2.2 Other Zeolite Catalysts
  • 3.3 Isomerization of Xylose
  • 3.4 Isomerization of Erythrose
  • 3.5 Isomerization of Dihydroxyacetone
  • 3.5.1 Sn-Beta Zeolite
  • 3.5.2 Other Types of Zeolites
  • 3.6 Conclusions and Outlook
  • Acknowledgments
  • References
  • Further Reading
  • 4 The Microwave-Assisted Synthesis of Silica-Based Materials and Their Photocatalysis
  • 4.1 Introduction
  • 4.1.1 Electromagnetic Wave and Microwave
  • 4.1.2 Different Aspects of Energy and Matter Interactions
  • 4.1.3 Basic Principles of Microwave Heating
  • 4.1.4 Dielectric Heating
  • 4.2 Background of the Porous Materials
  • 4.2.1 Silica-Based Materials and Their Synthesis Methods
  • 4.2.2 Microwave-Assisted Synthesis Microporous Materials
  • 4.2.3 Microwave-Assisted Synthesis of Mesoporous Materials
  • 4.3 Effects of Microwave on Silica Materials
  • 4.3.1 Stirring, Ramp Rate, and Continuous Process
  • 4.3.2 Solvents Dielectric
  • 4.3.3 Activation Energy
  • 4.3.4 Template
  • 4.3.5 Effect of Crystallization
  • 4.4 Applications of Silica-Supported Metal Oxides Synthesized by Microwave-Assisted Method in Photocatalysis
  • 4.5 Conclusions
  • References
  • 5 Silica-Based Materials for Photocatalysis
  • 5.1 Introduction
  • 5.2 Structural Features of Zeolite Photocatalysts
  • 5.3 Photocatalytic Process in Zeolites
  • 5.4 Applications
  • 5.4.1 Pollutant Degradation
  • 5.4.2 H2 Production
  • 5.4.3 CO2 Reduction
  • 5.4.4 Others
  • 5.5 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 6 Photocatalytic Reactions on Transition Metal-Oxide Single Site Heterogeneous Catalysts Constructed Within Silica-Networks...
  • 6.1 Introduction
  • 6.2 Titanium-Oxide (Ti-Oxide) Single-Site Heterogeneous Photocatalysts
  • 6.2.1 Synthesis of Ti-Oxide Single-Site Photocatalyst Constructed within Zeolite
  • 6.2.2 Local Structure of Ti-Oxide Single-Site Photocatalysts
  • 6.2.2.1 XAFS Analysis of the Catalysts
  • 6.2.2.2 DR UV-Vis Analysis
  • 6.2.2.3 Photoluminescence Analysis
  • 6.2.2.4 FT-IR Analysis
  • 6.2.3 Photocatalytic Reactions on the Highly Dispersed Four-Coordinated Ti-Oxide Single-Site Heterogeneous Catalysts
  • 6.2.3.1 Photocatalytic Decomposition of NO
  • 6.2.3.2 Photocatalytic Reduction of CO2 with H2O to Form CH4, CH3OH, and O2
  • 6.2.4 Other Transition Metal-Oxides Single-Site Heterogeneous Photocatalysts constructed within Silica Networks of MCM-41
  • 6.2.4.1 Photocatalytic Reduction of N2O with CO on V-Oxide Single-Site Heterogeneous Catalyst
  • 6.2.4.2 Selective Photocatalytic Elimination of CO with O2 in H2-Rich Conditions on Mo-Oxide Single-Site Catalysts
  • 6.2.4.3 Photocatalytic Selective Elimination of CO with O2 in H2-Rich Condition on Cr-Oxide Single-Site Heterogeneous Catal...
  • 6.3 Conclusion
  • References
  • 7 Silica-Supported Immobilized Amine for CO2 Capture Processes: Molecular Insight by In Situ Infrared Spectroscopy
  • 7.1 Introduction
  • 7.1.1 Global Carbon Dioxide Emission
  • 7.1.2 Postcombustion CO2 Capture Technology
  • 7.2 SiO2 and Its Surface -OH/H2Os
  • 7.2.1 Properties of SiO2
  • 7.2.2 SiO2-Supported Immobilized Amine Sorbents
  • 7.2.3 Probing CO2 Diffusion by the Kinetics of Benzene Adsorption/Desorption
  • 7.3 Effects of Liquid H2O on Sorbent Stability
  • 7.4 The Molecular Structure of SiO2-Immobilized Amine Sorbents by Vibrational Spectroscopy
  • 7.5 CO2 Adsorption/Desorption on SiO2-Supported Amine-Functionalized Sorbents
  • 7.6 Degradation of Solid Amine Sorbents
  • 7.7 CO2 Capture Process for Solid Amine Sorbents
  • 7.8 Conclusions
  • Notes
  • Acknowledgment
  • References
  • 8 Silica-Based Catalysts for Fuel Applications
  • 8.1 Introduction
  • 8.2 SiC Structure and Manufacture
  • 8.3 ß-SiC Key Properties and Applications
  • 8.4 ß-SiC Catalytic Support for Fuel Production
  • 8.4.1 Reforming Process
  • 8.5 Steam Reforming
  • 8.6 Dry Reforming
  • 8.7 Tri-Reforming
  • 8.7.1 Liquid Fuel Production by Fischer-Tropsch Synthesis
  • 8.7.2 Production of Dimethyl Ether
  • 8.8 Remarks
  • References
  • 9 Photochromic Reactions in Nanospace: Host-Guest Interactions and Opportunity
  • 9.1 Introduction
  • 9.2 Effects of the Confinements of Photochromic Molecules into MPSs on Photochromic Reactions
  • 9.2.1 Azobenzene
  • 9.3 Spiropyran and Spirooxazine
  • 9.4 Preparation of Photochromic Hybrids Based on Mesoporous Silicas and Photochromic Dyes and Their Application
  • 9.4.1 Drug Delivery
  • 9.4.2 Photoinduced Adsorption
  • 9.5 Photoinduced Molecular Migration
  • 9.6 Conclusions and Future Perspectives
  • Acknowledgments
  • References
  • 10 Dyes Encapsulated Within Porous Aluminosilicates as Photocatalysts
  • 10.1 Introduction
  • 10.1.1 Inorganic Photocatalysts
  • 10.1.2 Organic Photocatalysts
  • 10.2 Zeolites and Related Regular Porous Aluminosilicates
  • 10.3 Incorporation Procedures
  • 10.4 Modification of Photophysical Properties by Zeolite Encapsulation
  • 10.5 Ruthenium(II) Trisbipyridyl [Ru(bpy)32+] Complex Encapsulated Inside Microporous Zeolites
  • 10.6 Triphenylpyrylium ion Encapsulated Inside Zeolite Y
  • 10.7 Phthalocyanines Encapsulated in Zeolites as Solid Singlet Oxygen Photosensitizers
  • 10.8 Conclusions and Future Prospects
  • References
  • 11 Application of Plasmon-Assisted Photochemistry and Photocatalytic Activities to Zeolitic Media
  • 11.1 Introduction
  • 11.2 Basics of Plasmons
  • 11.3 Plasmonic Photocatalysis
  • 11.4 Application to Zeolitic Media
  • 11.5 Future Perspective
  • References
  • Further Reading
  • 12 Silica-Based Materials for Bioanalytical Chemistry and Optoelectronics
  • 12.1 Introduction
  • 12.2 Silica Nanostructures and Mesostructures
  • 12.2.1 Ordered Mesoporous Materials
  • 12.2.2 Ordered Zeolites
  • 12.2.3 Amorphous Silica Nanostructures With Controllable Morphology
  • 12.2.4 Ordered Silica Diatoms
  • 12.3 Dye-Silica Conjugates
  • 12.3.1 Photosynthesis Mimic
  • 12.3.2 Silica-Based Sensors for Analytes
  • 12.3.3 Biological and Biomedical Applications
  • 12.4 Conclusion and Future Outlook
  • Acknowledgment
  • References
  • Appendix
  • 13 Dye Encapsulation Into One-Dimensional Zeolitic Materials for Optical Applications
  • 13.1 Introduction
  • 13.2 Antenna Systems
  • 13.2.1 Antenna Systems Based on Förster Through-Space Mechanism Between Dyes Into Linde Type L Included by Diffusional Appr...
  • 13.2.2 Antenna Systems Based on Dyes Occluded Into 1D Aluminophosphate by Crystallization Inclusion Approach (One-Pot Synth...
  • 13.3 Other Optical Properties
  • 13.4 Conclusion
  • Acknowledgments
  • References
  • 14 Electron Transfers Under Confinement in Channel-Type Zeolites
  • 14.1 Introduction
  • 14.2 Sorption
  • 14.3 Ionization of Guest Molecules
  • 14.3.1 Ionization in Pure Siliceous Zeolites
  • 14.3.2 Ionization in Nonacidic Al-containing Zeolites
  • 14.3.3 Sorption and Spontaneous Ionization in Acidic Zeolites
  • 14.3.3.1 Molecule Sterical Hindrance
  • 14.3.3.2 Effect of Al, Ga, and B Framework Substitution on the Framework Acidity and Ionization
  • 14.3.3.3 NIR Region: Electron Signature
  • 14.3.3.4 Subsequent Electron Transfer or Not
  • 14.4 Conclusions
  • References
  • 15 Electronic and Molecular Motions in Silica-Material Hosts
  • 15.1 Introduction
  • 15.2 Electronic and Charge-Transfer Processes
  • 15.2.1 Host-Guest Electron-Transfer Reactions of Molecules Encapsulated in Silica-Material Hosts
  • 15.2.2 Guest-Guest Electron-Transfer Reactions of Molecules Encapsulated in Silica-Material Hosts
  • 15.2.3 Intramolecular Charge-Transfer Reactions of Molecules Encapsulated in Silica-Material Hosts
  • 15.2.3.1 Molecules Without Excited Twisted Structure Interacting With SMHs
  • 15.2.3.2 Molecules With Excited Twisted Structure
  • 15.3 Applications
  • 15.4 Concluding Remarks and Outlook
  • Acknowledgment
  • References
  • 16 Electronic Confinement Effect in Silica-Based Materials
  • 16.1 Introduction
  • 16.2 Quantum Confinement in Semiconductor Crystals
  • 16.3 Electronic Confinement Model in Silica-based Materials
  • 16.3.1 Ensemble Average and Single-Molecule Studies
  • 16.3.2 Electronic Confinement Effect on Charge Transfer Reactions
  • 16.4 Implications
  • Acknowledgment
  • References
  • 17 Mesostructured Silica-Based Materials as Host for Optically Active Semiconductors
  • 17.1 Introduction
  • 17.2 Mesoporous Silica Matrices as Hosts for Classical Semiconductors
  • 17.3 Hybrid Organic-Inorganic Semiconductors Stabilized within Mesoporous Silica Matrices
  • 17.4 Conclusions
  • References
  • 18 Photoactive Metal-Containing Zeolitic Materials for Sensing and Light-to-Chemical Energy Conversion
  • 18.1 Introduction
  • 18.2 Preparation and Characterization of Metal-Sulfide Quantum Dots in Zeolites
  • 18.3 Preparation CdS QDs by Wet Chemistry Methods
  • 18.3.1 Sulfidation in Na2S Aqueous Solutions
  • 18.3.2 Sulfidation by Thermal Decomposition of Thio-Containing Molecules
  • 18.3.3 Radiolytic Preparation of CdS QDs in Zeolite
  • 18.4 Formation of MeS/Zeolites Composites by Sulfidation Under H2S by Dry Chemistry Approach
  • 18.4.1 Control of QDs Formation by the Zeolite Chemistry
  • 18.4.2 Structure and Composition of Oligomeric CdS in Zeolite
  • 18.5 Photo-Applications of Metal Sulfides Stabilized in Zeolite
  • 18.5.1 Photovoltaic Applications
  • 18.5.2 Photocatalytic Application of QD/Zeolite for Hydrogen Production
  • 18.5.3 Photoluminescent Metal Clusters for Imaging, Lighting and Sensing Applications
  • 18.5.4 Plasmonic Chemistry With Metal/Zeolite Composites
  • 18.6 Summary and Outlook
  • Acknowledgments
  • References
  • 19 Characterization of Amorphous Silica-Based Materials Using DFT Computational Methods
  • 19.1 Introduction
  • 19.2 The Challenge of the Construction and Characterization of an Amorphous Silica Model
  • 19.3 Silica in Hydrated Conditions
  • 19.4 Surface Defects, One of the Origins of the Reactivity of Silica
  • 19.5 Other Silica-Based Models
  • the Effect of Doping
  • 19.6 The Study of the Adsorption Properties
  • 19.7 Amorphous Silica-Based Catalysts
  • 19.8 Conclusions and Perspectives
  • Acknowledgments
  • References
  • 20 Zeolites and Mesoporous Silica: From Greener Synthesis to Surface Chemistry of Environmental and Biological Interactions
  • 20.1 Introduction
  • 20.2 Greener, Sustainable Synthesis of Zeolites, and Mesoporous Silica
  • 20.2.1 Overview of Strategies to Improve Sustainability
  • 20.2.2 Organic Template-Free Synthesis of Zeolites
  • 20.2.3 Seed-Assisted Template-Free Synthesis
  • 20.2.4 Reducing the Environmental Impact of the Surfactant in Mesoporous Silica Synthesis
  • 20.2.5 Ionothermal Synthesis of Zeolites and Mesoporous Silica
  • 20.2.6 Solvent-Free Synthesis of Zeolites With Mechanochemical Prereactions
  • 20.2.7 Future Outlook for Greener, Sustainable Synthesis of Zeolites and Mesoporous Silica
  • 20.3 Adsorption of Natural Organic Matter and Proteins on Mesoporous Silica Nanomaterials
  • 20.3.1 Overview
  • 20.3.2 Surface Adsorption of Natural Organic Matter on Mesoporous Silica
  • 20.3.3 Protein Adsorption on Mesoporous Silica
  • 20.3.4 Lessons Learned About Adsorption of Natural Organic Matter and Proteins on Mesoporous Silica
  • Acknowledgments
  • References
  • 21 Engineered Stimuli-Responsive Nanoparticles for the Interaction With Biological Structures
  • 21.1 Introduction
  • 21.2 Synthesis and Characterization of Bifunctional Hybrid Mesoporous Silica Nanoparticles Potentially Useful for Drug Targ...
  • 21.3 Characterization of MSN-FOL Materials
  • 21.4 Biological Tests of Cisplatin-Loaded, Folic Acid-Functionalized MSNs (Cp-MSN-FOL) Toward FR-Expressing Tumor Cells
  • 21.5 Conclusion
  • References
  • 22 Focal Treatment in Prostate Cancer With Anti-PSMA Labelled Mesoporous Silica Nanoparticles
  • 22.1 Introduction
  • 22.2 Silica Nanoparticles for Docetaxel Delivery
  • 22.2.1 Organic-Inorganic Nanoparticles
  • 22.2.2 Core-Shell Nanoparticles
  • 22.3 Anti-PSMA Antibody Labeled Mesoporous Silica Nanoparticles for Targeted Delivery of Docetaxel
  • 22.3.1 Preparation of Anti-PSMA/Docetaxel-Loaded Mesoporous Silica Nanoparticles
  • 22.3.2 Cell Internalization Study
  • 22.3.3 Cytotoxicity Study
  • 22.4 Conclusions and Future Trends
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: ePUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

232,05 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe-DRM
siehe Systemvoraussetzungen
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen