Semiconductor Basics

A Qualitative, Non-mathematical Explanation of How Semiconductors Work and How They are Used
 
 
Standards Information Network (Verlag)
  • 1. Auflage
  • |
  • erschienen am 6. August 2020
  • |
  • 320 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-59711-7 (ISBN)
 
An accessible guide to how semiconductor electronics work and how they are manufactured, for professionals and interested readers with no electronics engineering background

Semiconductor Basics is an accessible guide to how semiconductors work. It is written for readers without an electronic engineering background. Semiconductors are the basis for almost all modern electronic devices. The author--an expert on the topic--explores the fundamental concepts of what a semiconductor is, the different types in use, and how they are different from conductors and insulators. The book has a large number of helpful and illustrative drawings, photos, and figures.

The author uses only simple arithmetic to help understand the device operation and applications. The book reviews the key devices that can be constructed using semiconductor materials such as diodes and transistors and all the large electronic systems based on these two component such as computers, memories, LCDs and related technology like Lasers LEDs and infrared detectors. The text also explores integrated circuits and explains how they are fabricated. The author concludes with some projections about what can be expected in the future. This important book:
* Offers an accessible guide to semiconductors using qualitative explanations and analogies, with minimal mathematics and equations
* Presents the material in a well-structured and logical format
* Explores topics from device physics fundamentals to transistor formation and fabrication and the operation of the circuits to build electronic devices and systems
* Includes information on practical applications of p-n junctions, transistors, and integrated circuits to link theory and practice

Written for anyone interested in the technology, working in semiconductor labs or in the semiconductor industry, Semiconductor Basics offers clear explanations about how semiconductors work and its manufacturing process.
weitere Ausgaben werden ermittelt
George Domingo, PhD, has worked in consulting and management, and as a teacher. He was Professor of Electrical Engineering - Solid State, Networks and Electronics at Northrop University, USA, for 11 years and spent 31 years in various roles in infrared systems for industry and for NASA's astronomical observatories.
  • Cover
  • Title Page
  • Copyright Page
  • Contents
  • Acknowledgements
  • Introduction
  • Chapter 1 The Bohr Atom
  • 1.1 Sinusoidal Waves
  • 1.2 The Case of the Missing Lines
  • 1.3 The Strange Behavior of Spectra from Gases and Metals
  • 1.4 The Classifications of Basic Elements
  • 1.5 The Hydrogen Spectrum Lines
  • 1.6 Light is a Particle
  • 1.7 The Atom's Structure
  • 1.8 The Bohr Atom
  • 1.9 Summary and Conclusions
  • Appendix 1.1 Some Details of the Bohr Model
  • Appendix 1.2 Semiconductor Materials
  • Appendix 1.3 Calculating the Rydberg Constant
  • Chapter 2 Energy Bands
  • 2.1 Bringing Atoms Together
  • 2.2 The Insulator
  • 2.3 The Conductor
  • 2.4 The Semiconductor
  • 2.5 Digression: Water Analogy
  • 2.6 The Mobility of Charges
  • 2.7 Summary and Conclusions
  • Appendix 2.1 Energy Gap in Semiconductors
  • Appendix 2.2 Number of Electrons and the Fermi Function
  • Chapter 3 Types of Semiconductors
  • 3.1 Semiconductor Materials
  • 3.2 Short Summary of Semiconductor Materials
  • 3.2.1 Silicon
  • 3.2.2 Germanium
  • 3.2.3 Gallium Arsenide
  • 3.3 Intrinsic Semiconductors
  • 3.4 Doped Semiconductors: n-Type
  • 3.5 Doped Semiconductors: p-Type
  • 3.6 Additional Considerations
  • 3.7 Summary and Conclusions
  • Appendix 3.1The Fermi Levels in Doped Semiconductors
  • Appendix 3.2 Why All Donor Electrons go to the Conduction Band
  • Chapter 4 Infrared Detectors
  • 4.1 What is Infrared Radiation?
  • 4.2 What Our Eyes Can See
  • 4.3 Infrared Applications
  • 4.4 Types of Infrared Radiation
  • 4.5 Extrinsic Silicon Infrared Detectors
  • 4.6 Intrinsic Infrared Detectors
  • 4.7 Summary and Conclusions
  • Appendix 4.1 Light Diffraction
  • Appendix 4.2 Blackbody Radiation
  • Chapter 5 The pn-Junction
  • 5.1 The pn-Junction
  • 5.2 The Semiconductor Diode
  • 5.3 The Schottky Diode
  • 5.4 The Zener or Tunnel Diode
  • 5.5 Summary and Conclusions
  • Appendix 5.1 Fermi Levels of a pn-Junction
  • Appendix 5.2 Diffusion and Drift Currents
  • Appendix 5.3 The Thickness of the Transition Region
  • Appendix 5.4 Work Function and the Schottky Diode
  • Chapter 6 Other Electrical Components
  • 6.1 Voltage and Current
  • 6.2 Resistance
  • 6.3 The Capacitor
  • 6.4 The Inductor
  • 6.5 Sinusoidal Voltage
  • 6.6 Inductor Applications
  • 6.7 Summary and Conclusions
  • Appendix 6.1 Impedance and Phase Changes
  • Chapter 7 Diode Applications
  • 7.1 Solar Cells
  • 7.2 Rectifiers
  • 7.3 Current Protection Circuit
  • 7.4 Clamping Circuit
  • 7.5 Voltage Clipper
  • 7.6 Half-wave Voltage Doubler
  • 7.7 Solar Cells Bypass Diodes
  • 7.8 Applications of Schottky Diodes
  • 7.9 Applications of Zener Diodes
  • 7.10 Summary and Conclusions
  • Appendix 7.1 Calculation of the Current Through an RC Circuit
  • Chapter 8 Transistors
  • 8.1 The Concept of the Transistor
  • 8.2 The Bipolar Junction Transistor
  • 8.3 The Junction Field-effect Transistor
  • 8.4 The Metal Oxide Semiconductor FET
  • 8.5 Summary and Conclusions
  • Appendix 8.1 Punch Trough
  • Chapter 9 Transistor Biasing Circuits
  • 9.1 Introduction
  • 9.2 Emitter Feedback Bias
  • 9.3 Sinusoidal Operation of a Transistor with Emitter Bias
  • 9.4 The Fixed Bias Circuit
  • 9.5 The Collector Feedback Bias Circuit
  • 9.6 Power Considerations
  • 9.7 Multistage Transistor Amplifiers
  • 9.8 Operational Amplifiers
  • 9.9 The Ideal OpAmp
  • 9.10 Summary and Conclusions
  • Appendix 9.1 Derivation of the Stability of the Collector Feedback Circuit
  • Chapter 10 Integrated Circuit Fabrication
  • 10.1 The Basic Material
  • 10.2 The Boule
  • 10.2.1 The Czochralski Method
  • 10.2.2 The Flow-zone Method
  • 10.3 Wafers and Epitaxial Growth
  • 10.4 Photolithography
  • 10.5 The Fabrication of a pnp Transistor on a Silicon Wafer
  • 10.6 A Digression on Doping
  • 10.6.1 Thermal Diffusion
  • 10.6.2 Implantation
  • 10.7 Resume the Transistor Processing
  • 10.7.1 The Contacts
  • 10.7.2 Metallization
  • 10.7.3 Multiple Interconnects
  • 10.8 Fabrication of Other Components
  • 10.8.1 The Integrated Resistor
  • 10.8.2 The Integrated Capacitor
  • 10.8.3 The Integrated Inductor
  • 10.9 Testing and Packaging
  • 10.10 Clean Rooms
  • 10.11 Additional Thoughts About Processing
  • 10.12 Summary and Conclusions
  • Appendix 10.1 Miller Indices in the Diamond Structure
  • Chapter 11 Logic Circuits
  • 11.1 Boolean Algebra
  • 11.2 Logic Symbols and Relay Circuits
  • 11.3 The Electronics Inside the Symbols
  • 11.3.1 Diode Implementation
  • 11.3.2 CMOS Implementation
  • 11.4 The Inverter or NOT Circuit
  • 11.5 The NOR Circuit
  • 11.6 The NAND Circuit
  • 11.7 The XNOR or Exclusive NOR
  • 11.8 The Half Adder
  • 11.9 The Full Adder
  • 11.10 Adding More than Two Digital Numbers
  • 11.11 The Subtractor
  • 11.12 Digression: Flip-flops, Latches, and Shifters
  • 11.13 Multiplication and Division of Binary Numbers
  • 11.14 Additional Comments: Speed and Power
  • 11.15 Summary and Conclusions
  • Appendix 11.1 Algebraic Formulation of Logic Modules
  • Appendix 11.2 Detailed Analysis of the Full Adder
  • Appendix 11.3 Complementary Numbers
  • Appendix 11.4 Dividing Digital Numbers
  • Appendix 11.5 The Author's Symbolic Logic Machine Using Relays
  • Chapter 12 VLSI Components
  • 12.1 Multiplexers
  • 12.2 Demultiplexers
  • 12.3 Registers
  • 12.4 Timing and Waveforms
  • 12.5 Memories
  • 12.5.1 Static Random-access Memory
  • 12.5.2 Dynamic Random-access Memory
  • 12.5.3 Read-only Memory
  • 12.5.4 Programable Read-only Memory
  • 12.6 Gate Arrays
  • 12.7 Summary and Conclusions
  • Appendix 12.1 A NAND implementation of a 2 to 1 MUX
  • Chapter 13 Optoelectronics
  • 13.1 Photoconductors
  • 13.2 PIN Diodes
  • 13.3 LASERs
  • 13.3.1 Laser Action
  • 13.3.2 Solid-state Lasers
  • 13.3.3 Semiconductor LASERs
  • 13.3.4 LASER Applications
  • 13.4 Light-emitting Diodes
  • 13.5 Summary and Conclusions
  • Appendix 13.1 The Detector Readout
  • Chapter 14 Microprocessors and Modern Electronics
  • 14.1 The Computer
  • 14.1.1 Computer Architecture
  • 14.1.2 Memories
  • 14.1.3 Input and Output Units
  • 14.1.4 The Central Processing Unit
  • 14.2 Microcontrollers
  • 14.3 Liquid Crystal Displays
  • 14.3.1 Liquid Crystal Materials
  • 14.3.2 Contacts
  • 14.3.3 Color Filters
  • 14.3.4 Thin-film Transistors
  • 14.3.5 The Glass
  • 14.3.6 Polarizers
  • 14.3.7 The Source of Light
  • 14.3.8 The Entire Operation
  • 14.4 Summary and Conclusions
  • Appendix 14.1 Keyboard Codes
  • Chapter 15 The Future
  • 15.1 The Past
  • 15.2 Problems with Silicon-based Technology
  • 15.3 New Technologies
  • 15.3.1 Nanotubes
  • 15.3.2 Quantum Computing
  • 15.3.3 Biocomputing
  • 15.4 Silicon Technology Innovations
  • 15.4.1 Process Improvements
  • 15.4.2 Vertical Integration
  • 15.4.3 The FinFET
  • 15.4.4 The Tunnel FET
  • 15.5 Summary and Conclusions
  • Epilogue
  • Appendix A Useful Constants
  • A.1 Fundamental Physical Constants
  • A.2 Basic Units
  • A.3 Derived Units
  • Appendix B Properties of Silicon
  • Appendix C List of Acronyms
  • Additional Reading and Sources
  • Index
  • EULA

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

71,99 €
inkl. 5% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen