Geothermal Power Generation

Developments and Innovation
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 25. Mai 2016
  • |
  • 854 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-08-100344-2 (ISBN)
 

Geothermal Power Generation: Developments and Innovation provides an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security.

As geothermal resources are considered renewable and can be used to generate baseload electricity while producing very low levels of greenhouse gas emissions, they can play a key role in future energy needs.

This book, edited by a highly respected expert, provides a comprehensive overview of the major aspects of geothermal power production. The chapters, contributed by specialists in their respective areas, cover resource discovery, resource characterization, energy conversion systems, and design and economic considerations.

The final section provides a range of fascinating case studies from across the world, ranging from Larderello to Indonesia. Users will find this to be an essential text for research and development professionals and engineers in the geothermal energy industry, as well as postgraduate researchers in academia who are working on geothermal energy.


  • Provides readers with a comprehensive and systematic overview of geothermal power generation
  • Presents an update to the advanced energy technologies that are urgently required to meet the challenges of economic development, climate change mitigation, and energy security
  • Edited by a world authority in the field, with chapters contributed by experts in their particular areas
  • Includes comprehensive case studies from across the world, ranging from Larderello to Indonesia
  • Englisch
  • London
Elsevier Science
  • 22,10 MB
978-0-08-100344-2 (9780081003442)
0081003447 (0081003447)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Geothermal Power Generation
  • Related titles
  • Geothermal Power Generation: Developments and Innovation
  • Contents
  • Woodhead Publishing Series in Energy
  • Author biographies
  • Preface
  • 1 - Introduction to geothermal power generation
  • One - Resource exploration, characterization and evaluation
  • 2 - Geology of geothermal resources
  • 2.1 Introduction
  • 2.2 Heat flow and plate tectonics
  • 2.2.1 Geothermal systems and plate tectonics
  • 2.3 Geologic techniques
  • 2.4 Hydrothermal alteration
  • 2.5 Volcanic-hosted systems
  • 2.5.1 Liquid-dominated geothermal systems
  • 2.5.2 Vapor-dominated geothermal systems
  • 2.6 Sediment-hosted geothermal systems
  • 2.7 Extensional tectonic geothermal systems
  • 2.8 Unconventional geothermal resources
  • 2.9 Conclusions
  • References
  • 3 - Geophysics and resource conceptual models in geothermal exploration and development
  • 3.1 Introduction
  • 3.2 Geophysics in the context of geothermal decision risk assessment
  • 3.3 Geothermal resource conceptual models
  • 3.4 Geothermal resource models with elements that differ from those in Fig. 3.1
  • 3.4.1 Detecting magma in geothermal exploration
  • 3.4.2 Deep conductively heated stratigraphic reservoirs
  • 3.4.3 Geothermal prospects with "hidden" or "blind" reservoirs
  • 3.5 Formation properties and geophysical methods
  • 3.6 Choosing geophysical methods and designing surveys for geothermal applications
  • 3.7 Resistivity methods
  • 3.8 MT surveys
  • 3.9 TEM resistivity sounding for correction of MT static distortion
  • 3.10 Awibengkok MT model and validation
  • 3.11 Using MT to build conceptual models and define resource areas and targets
  • 3.12 Deep low-resistivity zones
  • 3.13 Gravity methods for exploration and development
  • 3.13.1 Repeat precision gravity
  • 3.14 Magnetic methods
  • 3.15 Seismic monitoring
  • 3.16 Reflection/refraction seismic methods
  • 3.17 Borehole wireline logs
  • 3.17.1 Borehole image logs
  • 3.17.2 Borehole formation logs
  • 3.17.3 Gamma logs
  • 3.17.4 Resistivity logs and alternative clay analyses
  • 3.18 SP method
  • 3.19 Geophysics management issues
  • Acknowledgments
  • References
  • 4 - Application of geochemistry to resource assessment and geothermal development projects
  • 4.1 Introduction
  • 4.2 Early-phase resource assessment
  • 4.2.1 Liquid geothermometers and impacting processes
  • 4.2.1.1 Silica in geothermal fluid, temperatures, and mixing
  • 4.2.1.2 Cation geothermometers and water:rock equilibration
  • 4.2.2 Noncondensable gas geochemistry and gas geothermometers in geothermal systems
  • 4.3 Contributions to conceptual models
  • 4.3.1 Reservoir temperatures
  • 4.3.2 Water sources and recharge
  • 4.3.2.1 Distinguishing water sources using stable isotopes
  • 4.3.2.2 Distinguishing water sources using gases
  • 4.3.2.3 Distinguishing geothermal fluids and reservoir processes using water types
  • 4.3.3 Mixing
  • 4.3.4 Upflow and outflow
  • 4.3.5 Reservoir layers
  • 4.3.6 Boiling
  • 4.4 Geochemical contributions to geothermal power project design
  • 4.4.1 Noncondensable gas
  • 4.4.2 Potential geothermal emissions of concern
  • 4.4.3 Scaling
  • 4.4.4 Carbonate
  • 4.4.5 Silica and silicates
  • 4.4.6 Steam purity
  • 4.4.7 Corrosion
  • 4.5 Geochemical tools for geothermal reservoir operation and maintenance
  • 4.6 Summary
  • References
  • 5 - Geothermal well drilling
  • 5.1 Introduction
  • 5.2 Getting started
  • 5.3 Casing design
  • 5.3.1 Grade
  • 5.3.2 Tension
  • 5.3.3 Burst
  • 5.3.4 Collapse
  • 5.3.5 Weight
  • 5.4 Mud program
  • 5.5 Directional program
  • 5.6 Wellhead design and blow-out preventer systems
  • 5.7 Cementing program
  • 5.8 Cement placement
  • 5.8.1 Conventional cementing
  • 5.8.2 Inner string cementing
  • 5.8.3 Liner cementing
  • 5.8.4 Squeeze cementing and plug cementing
  • 5.8.5 Multistage cementing
  • 5.8.6 Reverse cementing
  • 5.9 Hydraulic and bit program
  • 5.9.1 Bits
  • 5.9.1.1 Roller cone bits
  • 5.9.1.2 Drag bits
  • 5.9.1.3 Impregnated diamond bits
  • 5.10 Drilling curve
  • 5.11 Mud logging
  • 5.12 Drilling rig selection and special considerations
  • 5.13 Cost estimate
  • Acknowledgments
  • References
  • 6 - Characterization, evaluation, and interpretation of well data
  • 6.1 Upward convective flow in reservoirs
  • 6.2 Pressure and temperature profile analysis
  • 6.2.1 Feed zone locations
  • 6.2.2 Estimating reservoir pressure and temperature
  • 6.2.3 Plotting reservoir pressure and temperature with depth
  • 6.2.4 Temperature transient analysis
  • 6.3 Injection testing
  • 6.4 Discharge tests
  • 6.5 Pressure transient tests
  • 6.5.1 Well-test interpretation
  • 6.5.1.1 Compressibility
  • 6.5.1.2 Viscosity
  • 6.5.2 Example
  • 6.6 Wellbore heat loss
  • 6.6.1 Single-phase flow
  • 6.6.1.1 Production
  • 6.6.1.2 Injection
  • 6.6.1.3 Example of single-phase calculations
  • 6.6.2 Two-phase flow
  • 6.7 Summary
  • References
  • 7 - Reservoir modeling and simulation for geothermal resource characterization and evaluation
  • 7.1 Review of resource estimation methods
  • 7.1.1 Introduction
  • 7.1.2 Stored heat calculation
  • 7.1.3 Australian standard
  • 7.1.4 Exergy
  • 7.1.5 Computer modeling
  • 7.2 Computer modeling methodology
  • 7.2.1 Basic equations
  • 7.2.2 Numerical techniques
  • 7.2.3 Equations of state
  • 7.3 Computer modeling process
  • 7.3.1 Conceptual modeling and computer modeling
  • 7.3.2 Interaction with geological and other geoscience models
  • 7.3.3 Model design
  • 7.3.4 Boundary conditions
  • 7.3.5 Natural state, production history, and future scenarios
  • 7.3.6 Dual-porosity versus single-porosity models
  • 7.3.7 Model calibration
  • 7.4 Recent modeling experiences
  • 7.4.1 Introduction
  • 7.4.2 Dual porosity
  • 7.4.3 Boundary conditions
  • 7.4.4 Modeling EGS
  • 7.4.5 TOUGHREACT, scaling, and other chemical processes
  • 7.5 Current developments and future directions
  • 7.5.1 Model calibration
  • 7.5.1.1 Long run-times
  • 7.5.1.2 Runs fail to finish
  • 7.5.1.3 Large number of parameters
  • 7.5.1.4 Parameter refinement
  • 7.5.1.5 Excess enthalpy
  • 7.5.2 Uncertainty predictions and data worth analysis
  • 7.5.2.1 Systematic errors and inconsistencies
  • 7.5.2.2 Uncertainty in model parameters
  • 7.5.2.3 Discretization errors
  • 7.5.2.4 Measurement errors
  • 7.5.2.5 Data worth analysis
  • 7.5.3 Simulator improvements
  • References
  • Two - Energy conversion systems
  • 8 - Overview of geothermal energy conversion systems: reservoir-wells-piping-plant-reinjection
  • 8.1 Introduction
  • 8.2 It begins with the reservoir
  • 8.3 Getting the energy out of the reservoir
  • 8.4 Connecting the wells to the power station
  • 8.5 Central power station
  • 8.6 Geofluid disposal
  • 8.7 Conclusions and a look ahead
  • References
  • 9 - Elements of thermodynamics, fluid mechanics, and heat transfer applied to geothermal energy conversion systems*
  • 9.1 Introduction
  • 9.2 Definitions and terminology
  • 9.3 First law of thermodynamics for closed systems
  • 9.4 First law of thermodynamics for open steady systems
  • 9.5 First law of thermodynamics for open unsteady systems
  • 9.6 Second law of thermodynamics for closed systems
  • 9.6.1 Clausius statement
  • 9.6.2 Kelvin-Planck statement
  • 9.6.3 Clausius inequality
  • 9.6.4 Existence of entropy
  • 9.6.5 Principle of entropy increase (PEI)
  • 9.7 Second law of thermodynamics for open systems
  • 9.8 Exergy and exergy destruction
  • 9.9 Thermodynamic state diagrams
  • 9.10 Bernoulli equation
  • 9.11 Pressure loss calculations
  • 9.11.1 Liquid-only flows
  • 9.11.2 Steam-only flows
  • 9.11.3 Steam-liquid water flow, low-to-medium steam quality
  • 9.11.4 Steam-liquid water flow, high steam quality
  • 9.12 Principles of heat transfer applied to geothermal power plants
  • 9.13 Example analyses for elements of geothermal power plants
  • 9.13.1 Production well
  • 9.13.2 Separator
  • 9.13.3 Flash vessel
  • 9.13.4 Pipelines
  • 9.13.5 Turbine
  • 9.13.6 Condenser
  • 9.13.7 Preheater and evaporator
  • 9.14 Conclusions
  • Sources of further information
  • References
  • 10 - Flash steam geothermal energy conversion systems: single-, double-, and triple-flash and combined-cycle plants
  • 10.1 Flash steam cycles
  • 10.1.1 Single flash
  • 10.1.2 Double and triple flash
  • 10.1.3 Silica scaling
  • 10.1.3.1 Control of solubility
  • 10.1.3.2 Control of precipitation kinetics
  • 10.1.3.3 Solids separation
  • 10.2 Mixed and combined cycles
  • 10.2.1 Mixed cycles
  • 10.2.2 Combined cycles
  • 10.2.2.1 Air-cooled combined cycles
  • 10.2.2.2 Water-cooled combined cycles
  • 10.3 Cogeneration and coproduction from flashed brines
  • 10.3.1 Thermal energy
  • 10.3.2 Fluids
  • 10.3.3 Solids
  • 10.4 Equipment research and development
  • 10.4.1 Gathering systems and separator stations
  • 10.4.1.1 Separator station design options
  • 10.4.1.2 Separator and demister design options
  • 10.4.1.3 Reboilers
  • 10.4.1.4 Vent stations and turbine bypass
  • 10.4.1.5 Brine injection pumps
  • 10.4.2 Steam turbines
  • 10.4.2.1 Condensing steam turbines
  • 10.4.2.2 Wellhead and backpressure turbines
  • 10.4.2.3 Biphase turbines
  • 10.4.2.4 Supercritical cycles
  • 10.4.3 Condensers
  • 10.4.3.1 Direct-contact condenser improvements
  • 10.4.4 Cooling system considerations for flash plants
  • 10.4.4.1 Water cooled
  • 10.4.4.2 Air cooled
  • 10.4.4.3 Hybrid cooling
  • 10.4.5 Noncondensable gas removal systems
  • 10.4.5.1 Ejectors
  • 10.4.5.2 Liquid ring vacuum pumps
  • 10.4.5.3 Turbocompressors
  • 10.4.5.4 Other NCG removal strategies
  • 10.4.6 Environmental systems - H2S abatement
  • 10.5 Summary
  • References
  • 11 - Direct steam geothermal energy conversion systems: dry steam and superheated steam plants
  • 11.1 Introduction
  • 11.1.1 Early applications
  • 11.1.2 Unit size
  • 11.1.3 Power cycle
  • 11.1.4 Steam quality
  • 11.1.5 Steam systems
  • 11.1.6 Turbines
  • 11.1.7 Condensers
  • 11.1.8 Gas removal systems
  • 11.1.9 Cooling systems
  • 11.1.10 Plant auxiliaries
  • 11.1.11 Engineering materials
  • 11.2 Power cycle
  • 11.2.1 Overview
  • 11.2.2 Optimization of turbine inlet conditions
  • 11.2.3 Optimization of turbine exhaust pressure and cooling system
  • 11.2.4 Optimization around the concentration of noncondensable gases
  • 11.3 Steam quality
  • 11.3.1 Geothermal steam
  • 11.3.2 Vapor
  • 11.3.3 Liquid and solid constituents
  • 11.3.4 Noncondensable gases
  • 11.3.5 Chemical constituents
  • 11.4 Steam systems
  • 11.4.1 Steam pretreatment
  • 11.4.1.1 Scrubbers
  • 11.4.1.2 Steam desuperheating and washing
  • 11.4.1.3 Inertial demisters
  • 11.4.2 Steam piping
  • 11.4.2.1 Piping material
  • 11.4.2.2 Arrangement considerations
  • 11.4.2.3 Condensate management
  • 11.4.2.4 Flow measurement devices
  • 11.5 Turbine-generators
  • 11.5.1 Steam turbines in geothermal service
  • 11.5.1.1 Turbine size and configuration
  • 11.5.1.2 Last-stage blades
  • 11.5.2 Steam path considerations
  • 11.5.2.1 Blade profile and shape
  • 11.5.2.2 Integral shrouds
  • 11.5.2.3 Moisture removal
  • 11.5.3 Design features for geothermal applications
  • 11.5.3.1 Design for scale prevention/mitigation
  • 11.5.3.2 Moisture limit in turbine exhaust steam
  • 11.5.3.3 Moisture removals and stage drain management
  • 11.5.3.4 Material enhancements for wear parts
  • 11.5.4 Materials selection for turbine internals
  • 11.5.4.1 Rotors
  • 11.5.4.2 Rotating blades
  • 11.5.4.3 Stationary blades
  • 11.5.4.4 Corrosion and erosion protection
  • 11.5.5 Generators
  • 11.5.5.1 Cooling
  • 11.5.5.2 Corrosion protection
  • 11.5.6 Designing for efficiency and reliability
  • 11.6 Condensers
  • 11.6.1 Water-cooled direct contact condensers
  • 11.6.2 Water-cooled surface condensers
  • 11.6.3 Multipressure condensers
  • 11.6.4 Noncondensable gas cooling zones and external coolers
  • 11.6.5 Air-cooled condensers
  • 11.6.6 Designing for efficiency and reliability
  • 11.7 Gas removal systems
  • 11.7.1 Function
  • 11.7.2 Steam jet ejectors
  • 11.7.3 Ejector condensers
  • 11.7.4 Liquid ring vacuum pumps
  • 11.7.5 Axial or radial compressors
  • 11.7.6 Hybrid systems
  • 11.7.7 Design for efficiency and reliability
  • 11.7.7.1 Number of stages
  • 11.7.7.2 Stage equipment selection
  • 11.7.7.3 Installed spare capacity for rotating equipment
  • 11.7.7.4 Instrumentation
  • 11.7.7.5 Motive steam pressure
  • 11.8 Cooling systems
  • 11.8.1 Evaporative cooling
  • 11.8.2 Dry and hybrid cooling
  • 11.8.3 Cooling systems and project optimization
  • 11.8.4 Cooling system piping
  • 11.9 Plant auxiliaries
  • 11.9.1 Auxiliary cooling
  • 11.9.2 Compressed air
  • 11.9.3 Fire protection
  • 11.9.4 Design features for geothermal applications
  • 11.10 Engineering materials
  • 11.10.1 Power plant materials in geothermal service
  • 11.10.2 Steam service
  • 11.10.3 Condensate service
  • 11.10.4 Noncondensable gas service
  • 11.10.5 Cooling water service
  • 11.10.6 Auxiliary services
  • 11.10.7 Electrical equipment
  • 11.11 Summary
  • Relevant literature
  • 12 - Total flow and other systems involving two-phase expansion
  • 12.1 Total flow
  • 12.1.1 Introduction
  • 12.1.2 Previous work
  • 12.1.3 Screw expanders
  • 12.1.4 Screw expander-turbine combinations
  • 12.1.4.1 Single-flash systems
  • 12.1.4.2 Double-flash systems
  • 12.1.4.3 Parallel screw expander and turbine
  • 12.1.5 Turbines
  • 12.1.5.1 The biphase turbine
  • 12.1.5.2 Axial flow turbines
  • 12.1.5.3 Radial inflow turbines
  • 12.1.5.4 Radial outflow (reaction) turbines
  • 12.1.6 Conclusion
  • 12.2 Alternative systems for power recovery based on two-phase expansion
  • 12.2.1 Engineered geothermal systems with water as the power plant working fluid
  • 12.2.2 Binary systems using organic working fluids
  • 12.2.2.1 Binary system for medium enthalpy sources
  • 12.2.2.2 Trilateral flash cycle and wet organic Rankine cycle systems
  • 12.2.3 Conclusion
  • References
  • Bibliography
  • 13 - Binary geothermal energy conversion systems: basic Rankine, dual-pressure, and dual-fluid cycles
  • 13.1 Introduction
  • 13.2 Binary power cycle
  • 13.3 Binary cycle performance
  • 13.3.1 Performance metrics
  • 13.3.2 Thermal efficiency
  • 13.3.3 Second law efficiency
  • 13.3.4 Efficiency metrics versus power
  • 13.3.5 Limitations on performance
  • 13.4 Types of binary cycles
  • 13.4.1 Subcritical boiling cycles
  • 13.4.2 Trilateral cycle
  • 13.4.3 Supercritical cycle
  • 13.5 Selection of working fluid
  • 13.5.1 Single-component working fluids
  • 13.5.2 Mixed working fluids
  • 13.6 Cycle performance comparison
  • 13.7 Design considerations
  • 13.7.1 Geothermal heat exchangers
  • 13.7.2 Heat rejection
  • 13.7.3 Operation at "off-design" conditions
  • 13.8 Economic considerations
  • References
  • 14 - Combined and hybrid geothermal power systems
  • 14.1 Introduction and definitions
  • 14.2 General thermodynamic considerations
  • 14.3 Combined single- and double-flash systems
  • 14.4 Combined flash and binary systems
  • 14.5 Geothermal-fossil hybrid systems
  • 14.5.1 Fossil-fueled superheated geothermal steam plants
  • 14.5.2 Coal-fired plants with geothermal-heated feedwater
  • 14.5.3 Compound hybrid geothermal-fossil plants
  • 14.5.4 Gas turbine-topped geothermal flash-steam hybrid plant with superheating
  • 14.5.5 Geothermal-biomass hybrid plants
  • 14.5.6 Geopressure thermal-hydraulic hybrid systems
  • 14.6 Geothermal-solar hybrid systems
  • 14.6.1 Geothermal-concentrating solar power hybrid plants
  • 14.6.2 Geothermal-photovoltaic hybrid plants
  • 14.7 Conclusions
  • Nomenclature
  • References
  • Additional reading
  • Three - Design and economic considerations
  • 15 - Waste heat rejection methods in geothermal power generation
  • 15.1 Introduction: overview and scope
  • 15.2 Condensers in geothermal power plants
  • 15.2.1 General
  • 15.2.2 Impact on thermodynamic efficiency
  • 15.2.3 Noncondensable gases
  • 15.3 Water-cooled condensers
  • 15.3.1 General
  • 15.3.2 Types of condensers
  • 15.3.2.1 Direct-contact
  • 15.3.2.2 Shell-and-tube
  • 15.3.3 Heat dissipation
  • 15.3.3.1 Once-through cooling systems
  • 15.3.3.2 The cooling tower
  • 15.3.4 Operation and maintenance
  • 15.4 Air-cooled condensers
  • 15.4.1 General
  • 15.4.2 Types of condensers
  • 15.4.2.1 Direct-contact
  • 15.4.2.2 Integral-fin
  • 15.4.3 Operation and maintenance
  • 15.5 Evaporative (water- and air-cooled) condensers
  • 15.5.1 General
  • 15.5.2 Heat transfer considerations
  • 15.5.3 Condenser configuration
  • 15.5.4 Operation and maintenance
  • 15.6 Concluding summary and future trends
  • References
  • 16 - Silica scale control in geothermal plants-historical perspective and current technology1
  • 16.1 Introduction
  • 16.2 Geochemistry of silica
  • 16.3 Thermodynamics of silica solubility
  • 16.4 Silica precipitation kinetics
  • 16.5 Silica scaling experience in geothermal power production
  • 16.6 Historical techniques for silica/silicate scale inhibition
  • 16.7 Current scale control techniques at high supersaturation
  • 16.8 Case study for scale control in a combined-cycle plant design
  • 16.9 Pilot-plant testing for bottoming cycle optimization
  • 16.10 Guidelines for optimum pH-mod system design
  • 16.10.1 Brine flow measurement and control
  • 16.10.2 Control system and acid delivery response time
  • 16.10.3 pH measurement
  • 16.10.4 Acid-mixing and corrosion-resistant materials
  • 16.11 Summary
  • References
  • 17 - Environmental benefits and challenges associated with geothermal power generation
  • 17.1 Introduction
  • 17.2 Environmental, social, and cultural benefits and challenges of geothermal power generation
  • 17.2.1 Environmental impacts of geothermal projects
  • 17.2.1.1 Air quality
  • 17.2.1.2 Geologic impacts
  • 17.2.1.3 Water use and water quality
  • 17.2.1.4 Solid wastes
  • 17.2.1.5 Land use
  • 17.2.1.6 Forest ecosystem and biodiversity
  • 17.2.2 Social impacts of geothermal projects
  • 17.2.2.1 Local employment
  • 17.2.2.2 Development funds
  • 17.2.2.3 Community development assistance
  • 17.2.2.4 Resettlement
  • 17.2.3 Cultural impacts of geothermal projects
  • 17.2.4 Summary of benefits and challenges from geothermal projects
  • 17.3 Developing an environmentally sound and socially responsible project
  • 17.3.1 Conduct an environmental impact assessment
  • 17.3.2 Develop a comprehensive environmental management plan
  • 17.3.3 Conduct a social impact assessment
  • 17.3.4 Facilitate social acceptability
  • 17.3.5 Implement a comprehensive monitoring program
  • 17.4 Geothermal energy in the context of sustainable development
  • 17.5 Conclusions
  • References
  • 18 - Project permitting, finance, and economics for geothermal power generation
  • 18.1 Introduction
  • 18.1.1 Chapter structure
  • 18.1.2 Renewable energy finance
  • 18.1.3 Power generation and finance
  • 18.1.3.1 Finance, hedging, and risk management
  • 18.2 Finance background
  • 18.2.1 Financing arrangements
  • 18.2.2 Project structure
  • 18.3 Recent evidence in geothermal drilling and construction
  • 18.4 Cost and financing issues
  • 18.4.1 Actors and roles
  • 18.4.2 Exploration phase
  • 18.4.3 Construction and operation phases
  • 18.4.4 Decommissioning and site reclamation
  • 18.5 Permitting land use and interconnection
  • 18.5.1 Regulatory permit process
  • 18.5.2 Typical project approval process
  • 18.5.3 Involvement of various levels of governance
  • 18.6 Long-term economic and financing security
  • 18.6.1 Risks and risk indemnification
  • 18.6.2 Types of expected risk for merchant plants
  • 18.6.2.1 Risk and market participation
  • 18.6.2.2 Project risk
  • 18.6.2.3 Structural risk
  • 18.6.3 Financing tools
  • 18.6.4 Finance vs accounting issues
  • 18.6.4.1 Accounting standards
  • 18.6.4.2 Investment tax credits
  • 18.6.4.3 Booking reserves
  • 18.6.5 Levelized costs of energy and levelized avoided cost of energy
  • 18.6.5.1 Limits to LCOE assumptions
  • 18.6.5.2 Merchant vs public projects
  • 18.6.5.3 Geothermal siting and financial variables
  • 18.6.5.4 Well drilling costs
  • 18.6.5.5 Finance scenarios and timing
  • 18.6.5.6 Implied costs of regulation
  • 18.7 Conclusions
  • References
  • 18. Appendix A
  • Four - Case studies
  • 19 - Larderello: 100years of geothermal power plant evolution in Italy
  • Prologue: historical outline on geothermal development in Italy up to 1960, with particular reference to the boraciferous r ...
  • From prehistory to the end of eighteenth century
  • The chemical industry of Larderello in the nineteenth century
  • The chemical and geo-power industries from 1900 to 1960
  • Concluding remarks
  • Essential references for the prologue
  • 19.1 Introduction: background of geothermal power generation
  • 19.1.1 Situation in Larderello in the late 1800s
  • 19.1.2 First attempts to convert thermal energy into mechanical energy
  • 19.2 1900-1910: first experiments of geo-power generation and initial applications
  • 19.2.1 Rise of Ginori and new company policies
  • 19.2.2 First cycle that converted thermal into electric energy
  • 19.2.3 Problems yet to solve
  • 19.3 1910-1916: first geothermal power plant of the world, experimental generation, and start of geo-power production at the com ...
  • 19.3.1 Designing a new plant for the production of electricity
  • 19.3.2 Producing and selling electricity becomes more than a side business
  • 19.3.3 Numerous plant engineering problems needing solution
  • 19.4 1917-1930: consolidation of geoelectric power production at the industrial scale and start of a new technology: the direct- ...
  • 19.4.1 Connection with the university
  • 19.4.2 Increasing retrieved steam
  • 19.4.3 New plants to produce electricity are conceived and developed
  • 19.5 1930-1943: toward a balanced economic importance of chemical production and geo-power generation
  • 19.5.1 "Complete" use of steam
  • 19.5.2 New developments in plant engineering
  • 19.5.3 Development of a booming market: electricity for railway transportation
  • 19.5.4 A new company is created
  • 19.6 1944-1970: destruction, reconstruction, relaunching, and modification of the geo-power system
  • 19.6.1 Situation at the end of World War II
  • 19.6.2 Larderello 3 power plant
  • 19.6.3 New machinery to create and maintain vacuum
  • 19.6.4 Optimal vacuum
  • 19.6.5 New types of condensers and gas coolants
  • 19.6.6 Power station arrangement
  • 19.6.7 Chemical production decline
  • 19.6.8 Travale and Mount Amiata: new areas for geothermal development
  • 19.6.9 New engineering developments
  • 19.6.10 Nationalization of electricity production
  • 19.7 1970-1990: from reinjection of spent fluids and processing of steam to the renewal of all power units and remote control of ...
  • 19.7.1 Reinjection of geothermal fluids: initial experiences and results
  • 19.7.2 The oil crises and further development of geothermal research
  • 19.7.3 Standardized production units
  • 19.7.4 Remote control of power plants
  • 19.7.5 Steam washing
  • 19.8 1990-2014: recent technological advancements, with special regard to the "AMIS Project," new materials, and environmental a ...
  • 19.8.1 Reduction of hydrogen sulfide and mercury impact: AMIS Project
  • 19.8.2 Visual impact
  • 19.8.3 Improved efficiency of the generation system
  • 19.8.4 Hybrid power plant technologies
  • 19.9 Other geothermal areas
  • 19.9.1 Ischia
  • 19.9.2 Latera
  • Acknowledgments
  • References
  • 20 - Fifty-five years of commercial power generation at The Geysers geothermal field, California: the lessons learned
  • 20.1 Introduction
  • 20.2 Background
  • 20.3 The fledgling years (1960-69)
  • 20.4 Geothermal comes of age (1969-79)
  • 20.5 The geothermal rush (1979-86)
  • 20.6 The troubled era (1986-95)
  • 20.7 The watershed years (1995-98)
  • 20.8 Stability at last (1998-2004)
  • 20.9 Renewed optimism (2004-15)
  • 20.10 The future (beyond 2015)
  • 20.11 Lessons learned
  • Acknowledgments
  • References
  • 21 - Indonesia: vast geothermal potential, modest but growing exploitation
  • 21.1 Introduction
  • 21.2 Geological background
  • 21.3 Vast geothermal potential
  • 21.4 History of geothermal development in Indonesia
  • 21.5 Geothermal law and other geothermal regulations
  • 21.5.1 Geothermal Law No. 27 in 2003
  • 21.5.2 Government Regulation No. 59 in 2007
  • 21.5.3 Pricing policy
  • 21.5.4 Presidential Decree No. 4 in 2010
  • 21.6 National energy condition and policy
  • 21.6.1 National energy condition
  • 21.6.2 National energy policy
  • 21.6.3 Main policy in renewable energy
  • 21.6.4 Power utilities
  • 21.7 Geothermal energy role in the National Energy Mix
  • 21.8 Geothermal development plan
  • 21.9 Geothermal exploitation growth
  • 21.9.1 Installed power and ongoing projects
  • 21.9.2 Geothermal drilling and field development
  • 21.9.2.1 Kamojang (235MW)
  • 21.9.2.2 Sibayak (13.3MW)
  • 21.9.2.3 Lahendong (80MW)
  • 21.9.2.4 Ulu Belu (110MW)
  • 21.9.2.5 Lumut Balai
  • 21.9.2.6 Hulu Lais
  • 21.9.2.7 Sungai Penuh
  • 21.9.2.8 Kotamobagu
  • 21.9.2.9 Tompaso
  • 21.9.2.10 Iyang-Argopuro
  • 21.9.2.11 Gunung Salak and Darajat
  • 21.9.2.12 Sarulla
  • 21.9.2.13 Karaha Bodas
  • 21.9.2.14 Dieng
  • 21.9.2.15 Patuha
  • 21.9.2.16 Wayang Windu
  • 21.9.2.17 Bedugul (Bali)
  • 21.9.2.18 Ulumbu (10MW)
  • 21.9.2.19 Mataloko
  • 21.9.2.20 Tulehu, Maluku
  • 21.9.2.21 Cibuni
  • 21.9.2.21 Ciater
  • 21.9.2.22 Muara Labuh
  • 21.9.2.23 Rajabasa
  • 21.9.2.24 Rantau Dedap
  • 21.9.2.25 Exploration stage of new geothermal project
  • 21.10 Challenges in geothermal development
  • 21.10.1 The pricing policy
  • 21.10.2 Long-term benefit
  • 21.10.3 Fiscal incentive
  • 21.10.4 Feed-in tariff
  • 21.10.5 Geothermal fund
  • 21.10.6 Government guarantee
  • 21.11 Future planning of geothermal development
  • 21.12 Conclusions
  • Acknowledgments
  • References
  • Bibliography
  • 22 - New Zealand: a geothermal pioneer expands within a competitive electricity marketplace
  • 22.1 Reform of the NZ electricity generation and supply industry
  • 22.2 Geothermal resource management
  • 22.3 Geothermal: a Maori treasure being actively and innovatively used
  • 22.3.1 Traditional involvement by Maori
  • 22.3.2 The British arrive
  • 22.3.3 Commercial use of geothermal
  • 22.3.4 Sustainability
  • 22.4 Geothermal developments-2000 to 2015
  • 22.5 Field review of geothermal power, tourism, and direct use developments
  • 22.5.1 Wairakei
  • 22.5.2 Tauhara
  • 22.5.3 Ohaaki
  • 22.5.4 Rotokawa
  • 22.5.5 Mokai
  • 22.5.6 Kawerau
  • 22.5.7 Ngatamariki
  • 22.5.8 Ngawha
  • 22.6 Geothermal outlook
  • References
  • 23 - Central and South America: significant but constrained potential for geothermal power generation
  • 23.1 Central America
  • 23.1.1 General information
  • 23.1.2 Central America geologic information
  • 23.1.2.1 Central America location
  • 23.1.2.2 Tectonic plates
  • 23.1.2.3 Seismic hazard
  • 23.1.2.4 Seismicity
  • 23.1.2.5 Volcanoes
  • 23.1.3 Costa Rica
  • 23.1.3.1 Introduction
  • 23.1.3.2 Identified geothermal areas
  • Rincón de la Vieja
  • Other geothermal areas
  • 23.1.3.3 Geothermal plants in operation
  • Current installed capacity
  • 23.1.3.4 Future geothermal development
  • 23.1.3.5 Constrained potential for geothermal growth
  • 23.1.4 El Salvador
  • 23.1.4.1 Introduction
  • 23.1.4.2 Geothermal plants in operation
  • 23.1.4.3 Future geothermal development in El Salvador
  • 23.1.4.4 Constrained potential for geothermal growth
  • 23.1.5 Guatemala
  • 23.1.5.1 Introduction
  • 23.1.5.2 Geothermal plants in operation in Guatemala
  • 23.1.5.3 Future geothermal development in Guatemala
  • 23.1.5.4 Constrained potential for geothermal growth
  • 23.1.6 Honduras
  • 23.1.6.1 Introduction
  • 23.1.6.2 Identified geothermal areas
  • 23.1.6.3 Future geothermal development in Honduras
  • 23.1.6.4 Constrained potential for geothermal growth
  • 23.1.7 Nicaragua
  • 23.1.7.1 Introduction
  • 23.1.7.2 Geothermal plants in operation
  • 23.1.7.3 Future geothermal development
  • 23.1.7.4 Constrained potential for geothermal growth
  • 23.1.8 Panama
  • 23.1.8.1 Introduction
  • 23.1.8.2 Identified geothermal areas
  • 23.1.8.3 Future geothermal development
  • 23.1.8.4 Constrained potential for geothermal growth
  • 23.2 South America
  • 23.2.1 South America general information
  • 23.2.1.1 Tectonic plates
  • 23.2.1.2 Seismic hazard
  • 23.2.1.3 Seismicity
  • 23.2.1.4 Volcanoes
  • 23.2.2 Argentina
  • 23.2.2.1 Introduction
  • 23.2.2.2 Identified geothermal areas
  • Copahue geothermal area
  • Domuyo geothermal area
  • Tuzgle-Tocomar geothermal area
  • Termas de Río Hondo geothermal area
  • 23.2.2.3 Future geothermal development in Argentina
  • 23.2.2.4 Constrained potential for geothermal growth
  • 23.2.3 Bolivia
  • 23.2.3.1 Introduction
  • 23.2.3.2 Identified geothermal areas
  • 23.2.3.3 Future geothermal development
  • 23.2.3.4 Constrained potential for geothermal growth
  • 23.2.4 Chile
  • 23.2.4.1 Introduction
  • 23.2.4.2 Identified geothermal areas
  • Puchuldiza geothermal area
  • Apacheta geothermal area
  • El Tatio geothermal area
  • Calabozos geothermal area
  • Nevados de Chillán geothermal area
  • Cordón Caulle geothermal area
  • 23.2.4.3 Future geothermal development
  • 23.2.4.4 Constrained potential for geothermal growth
  • 23.2.5 Colombia
  • 23.2.5.1 Introduction
  • 23.2.5.2 Identified geothermal areas in Colombia
  • 23.2.5.3 Future geothermal development in Colombia
  • 23.2.5.4 Constrained potential for geothermal growth
  • 23.2.6 Ecuador
  • 23.2.6.1 Exploration studies
  • 23.2.6.2 Identified geothermal areas in Ecuador
  • Tufiño-Chiles-Cerro Negro geothermal area
  • Chachimbiro geothermal area
  • Chacana geothermal area
  • Chalpatán geothermal area
  • Chalupas geothermal area
  • 23.2.6.3 Future geothermal development in Ecuador
  • 23.2.6.4 Constrained potential for geothermal growth
  • 23.2.7 Peru
  • 23.2.7.1 Exploration studies
  • 23.2.7.2 Identified geothermal areas in Peru
  • 23.2.7.3 Future geothermal development in Peru
  • 23.2.7.4 Constrained potential for geothermal growth
  • 23.3 Final remarks
  • Acknowledgments
  • References
  • 24 - Mexico: thirty-three years of production in the Los Azufres geothermal field
  • 24.1 Geothermal power in Mexico
  • 24.2 Main features of the Los Azufres field
  • 24.3 Geothermal production
  • 24.4 Power plants and output
  • 24.5 Perspectives
  • Acknowledgments
  • References
  • 25 - Enhanced geothermal systems: review and status of research and development
  • 25.1 Introduction
  • 25.2 Characterization of geothermal energy systems
  • 25.3 Reservoir types applicable for EGS development
  • 25.4 Treatments to enhance productivity of a priori low-permeable rocks
  • 25.4.1 Thermal stimulation
  • 25.4.2 Chemical stimulation
  • 25.4.3 Hydromechanical stimulation
  • 25.4.3.1 Massive water injection treatments
  • 25.4.3.2 Hydraulic-proppant treatments
  • 25.4.4 Multistage treatment
  • 25.5 Environmental impact of EGS treatments
  • 25.5.1 Induced seismicity
  • 25.5.2 Measures to mitigate seismic events
  • 25.5.2.1 Traffic light system
  • 25.5.2.2 Cyclic treatments
  • 25.5.3 Processes with treatment fluids
  • 25.5.4 Connecting drinking water horizons
  • 25.6 Sustainable operation
  • 25.6.1 Auxiliary energy
  • 25.6.2 Flow control, monitoring systems
  • 25.7 Outlook
  • References
  • 26 - Geothermal energy in the framework of international environmental law
  • 26.1 Introduction
  • 26.1.1 Definitions and environmental components
  • 26.1.1.1 Environment
  • 26.1.1.2 Environmental components
  • The natural environment
  • The social environment
  • 26.1.2 What is sustainable development?
  • 26.1.2.1 Context and definition
  • 26.1.2.2 Sustainable development as a goal
  • 26.1.2.3 Rules of sustainable development management
  • 26.1.2.4 Sustainable development challenges and achievements
  • 26.1.2.5 Sustainable development in the European Union
  • 26.1.2.6 Sustainable development in Latin America and the Caribbean
  • Argentina
  • Brazil
  • Chile
  • Colombia
  • Costa Rica
  • Mexico
  • The Organization of Eastern Caribbean States (OECS)
  • Panama
  • Peru
  • 26.1.2.7 Sustainable development in North America
  • 26.1.2.8 Origin and development of environmental international law
  • 26.1.2.9 Main international treaties on international environmental law
  • UN Conference on the Human Environment in Stockholm in 1972
  • UN Conference on Environment and Development
  • 26.1.2.10 Second Earth Summit
  • 26.1.2.11 Johannesburg Summit
  • 26.1.2.12 International environmental law definition
  • 26.2 Environmental international law and geothermal energy
  • 26.2.1 Land subsidence
  • 26.2.2 Well drilling
  • 26.2.3 Natural surrounding sounds
  • 26.2.4 Surface water
  • 26.2.5 Soils
  • 26.2.6 Flora
  • 26.2.7 Fauna
  • 26.2.8 Landscape
  • 26.2.9 Archeological patrimony
  • 26.2.10 Social environment/context
  • 26.2.11 Advantages and disadvantages of geothermal energy
  • 26.3 Environmental features in public and private companies developing geothermal projects
  • green sells
  • 26.3.1 Introduction
  • 26.3.2 Traditional environmental management and current environmental management in companies
  • 26.3.3 Important motives for companies to take environmental factors into account
  • 26.3.3.1 Environmental factors
  • 26.3.3.2 Legal factor
  • 26.3.3.3 Social factor
  • 26.3.3.4 Technical factor
  • 26.3.3.5 Economic factor
  • 26.3.3.6 The case of geothermal energy
  • 26.3.4 Environmental management tools: Environmental Impact Assessment
  • 26.3.5 Environmental management mechanisms
  • 26.3.6 International Organization for Standardization (ISO)
  • 26.3.7 Eco-management and Audit Scheme (EMAS)
  • 26.4 Global interest in geothermal energy
  • 26.4.1 Early international conferences
  • 26.4.2 International organizations related to energy issues
  • 26.5 Conclusion
  • References
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • Z
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

178,50 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok