Sustainable Hydrogen Production

 
 
Elsevier (Verlag)
  • 1. Auflage
  • |
  • erschienen am 5. August 2016
  • |
  • 492 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-801748-7 (ISBN)
 

Sustainable Hydrogen Production provides readers with an introduction to the processes and technologies used in major hydrogen production methods. This book serves as a unique source for information on advanced hydrogen generation systems and applications (including integrated systems, hybrid systems, and multigeneration systems with hydrogen production). Advanced and clean technologies are linked to environmental impact issues, and methods for sustainable development are thoroughly discussed.

With Earth's fast-growing populations, we face the challenge of rapidly rising energy needs. To balance these we must explore more sustainable methods of energy production. Hydrogen is one key sustainable method because of its versatility. It is a constituent of a large palette of essential materials, chemicals, and fuels. It is a source of power and a source of heat. Because of this versatility, the demand for hydrogen is sure to increase as we aim to explore more sustainable methods of energy.

Furthermore, Sustainable Hydrogen Production provides methodologies, models, and analysis techniques to help achieve better use of resources, efficiency, cost-effectiveness, and sustainability. The book is intellectually rich and interesting as well as practical. The fundamental methods of hydrogen production are categorized based on type of energy source: electrical, thermal, photonic, and biochemical. Where appropriate, historical context is introduced. Thermodynamic concepts, illustrative examples, and case studies are used to solve concrete power engineering problems.


  • Addresses the fundamentals of hydrogen production using electrical, thermal, photonic, and biochemical energies
  • Presents new models, methods, and parameters for performance assessment
  • Provides historical background where appropriate
  • Outlines key connections between hydrogen production methods and environmental impact/sustainable development
  • Provides illustrative examples, case studies, and study problems within each chapter


Ibrahim Dincer is the Editor-in-Chief of four journals, including the International Journal of Energy Research and International Journal of Exergy. He has authored numerous books and many journal articles, and is the recipient of several awards. He has most recently been recognized as one of 2014's Most Influential Scientific Minds in Engineering. This honour, presented by Thomson Reuters, is given to researchers who rank among the top 1% most cited for their subject field and year of publication, earning the mark of exceptional impact. Currently, he is a Professor with the Department of Automotive, Mechanical and Manufacturing Engineering of Faculty of Engineering and Applied Science at the University of Ontario Institute of Technology
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 55,50 MB
978-0-12-801748-7 (9780128017487)
0128017481 (0128017481)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Sustainable Hydrogen Production
  • Copyright
  • Contents
  • Preface
  • Acknowledgments
  • Chapter 1: Fundamental Aspects
  • 1.1. Introduction
  • 1.2. Physical Quantities and Unit Systems
  • 1.3. Ideal-Gas Theory
  • 1.4. Equations of State
  • 1.5. The Laws of Thermodynamics
  • 1.6. Exergy
  • 1.7. Thermodynamic Analysis Through Energy and Exergy
  • 1.7.1. Mass Balance Equation
  • 1.7.2. Energy Balance Equation
  • 1.7.3. Entropy Balance Equation
  • 1.7.4. Exergy Balance Equation
  • 1.7.5. Formulations for System Efficiency
  • 1.7.6. Cost Accounting of Exergy
  • 1.8. Exergoeconomic Analysis
  • 1.8.1. EXCEM Method
  • 1.8.2. SPECO Method
  • 1.9. Exergoenvironmental Analysis
  • 1.10. Exergosustainability Assessment
  • 1.11. Case Study 1: Exergosustainability Assessment of a Concentrated Photovoltaic-Thermal System for Residential Cogeneration
  • 1.11.1. Assumptions
  • 1.11.2. Thermodynamic Analysis
  • 1.11.3. Environmental Impact Analysis
  • 1.11.4. Economic Analysis
  • 1.11.5. Exergosustainability Analysis
  • 1.11.6. Results
  • 1.11.7. Closing Remark
  • 1.12. Case Study 2: Exergosustainability Assessment of a High-Temperature Steam Photo-Electrolysis Plant
  • 1.12.1. Assumptions
  • 1.12.2. Thermodynamic Analysis
  • 1.12.3. Environmental Impact Analysis
  • 1.12.4. Economic Analysis
  • 1.12.5. Exergosustainability Analysis
  • 1.12.6. Results
  • 1.12.7. Closing Remarks
  • 1.13. Concluding Remarks
  • References
  • Study Problems
  • Chapter 2: Hydrogen and Its Production
  • 2.1. Introduction
  • 2.2. Hydrogen and the Environment
  • 2.3. Hydrogen and Sustainability
  • 2.4. Hydrogen Properties
  • 2.5. Green Hydrogen Sources
  • 2.6. Hydrogen Production Methods
  • 2.7. Hydrogen Storage and Distribution
  • 2.8. Fuel Cells
  • 2.8.1. Proton Exchange Membrane Fuel Cells
  • 2.8.2. Phosphoric Acid Fuel Cells
  • 2.8.3. Solid Oxide Fuel Cells
  • 2.8.4. Alkaline Fuel Cells
  • 2.8.5. Molten Carbonate Fuel Cells
  • 2.8.6. Direct Methanol Fuel Cells
  • 2.8.7. Direct Ammonia Fuel Cells
  • 2.9. Hydrogen Applications
  • 2.10. Concluding Remarks
  • References
  • Study Problems
  • Chapter 3: Hydrogen Production by Electrical Energy
  • 3.1. Introduction
  • 3.2. Fundamentals of Electrochemical Hydrogen Production
  • 3.2.1. Thermodynamic Analysis of Electrochemical Reactions
  • 3.2.2. Kinetics and Transport Process Analyses
  • 3.2.3. Efficiency Formulations for Electrolyzers
  • 3.3. Alkaline Electrolyzers
  • 3.4. PEM Electrolyzers
  • 3.5. Solid Oxide Electrolyzers With Oxygen Ion Conduction
  • 3.6. Solid Oxide Electrolyzers With Proton Conduction
  • 3.7. Chloralkali Electrochemical Process for Chlorine and Hydrogen Production
  • 3.8. Other Electrochemical Methods of Hydrogen Production
  • 3.9. Integrated Systems for Hydrogen Production by Electrical Energy
  • 3.9.1. Hydroelectric Hydrogen
  • 3.9.2. Wind PEM Electrolyzer Systems
  • 3.9.3. Geothermally Driven Electrolysis Systems
  • 3.9.4. Ocean Energy Systems Integrated With Water Electrolysis
  • 3.9.5. Solar Thermal and Biomass Power Generators Integrated With Water Electrolysis
  • 3.9.6. Solar Photovoltaic Water Electrolysis Systems
  • 3.10. Concluding Remarks
  • References
  • Study Problems
  • Chapter 4: Hydrogen Production by Thermal Energy
  • 4.1. Introduction
  • 4.2. Fundamentals of Thermochemical Hydrogen Production
  • 4.2.1. Thermodynamic Analysis of Thermochemical Reactions
  • 4.2.2. Chemical Kinetics Aspects
  • 4.2.3. Efficiency Formulations
  • 4.3. Water Thermolysis
  • 4.4. Pure Thermochemical Water Splitting Cycles
  • 4.4.1. Historical Perspective
  • 4.4.2. Prototypical Reactions for Thermochemical Cycles
  • 4.4.3. Two-Step Thermochemical Cycles
  • 4.4.4. Thermochemical Cycles With More Than Two Steps
  • 4.4.5. Sulfur-Iodine Cycle
  • 4.4.5.1. Bunsen Reaction Unit
  • 4.4.5.2. Hydriodic Acid Decomposer
  • 4.4.5.3. Sulfuric Acid Decomposer
  • 4.4.5.4. Sulfur-Iodine Plant Development
  • 4.4.5.5. The products from R6 are heated up to the HI decomposition temperature, which is about 900 K
  • heating occurs in ...
  • 4.5. Hybrid Thermochemical Cycles
  • 4.5.1. Electrochemical Closure Processes for Thermochemical Cycles
  • 4.5.1.1. Bayern-Hoechst-Uhde Process
  • 4.5.1.2. Electrolysis of Hydrobromic Acid
  • 4.5.1.3. Hydrogen Iodide Electrolysis
  • 4.5.1.4. Sulfurous Acid Electrolysis
  • 4.5.1.5. Cuprous Chloride Electrolysis
  • 4.5.2. Representative Hybrid Thermochemical Cycles
  • 4.5.3. Hybrid Sulfur Cycle
  • 4.5.3.1. Electrochemical Cell
  • 4.5.3.2. Sulfuric Acid Thermolysis Reactor
  • 4.5.3.3. Hybrid Sulfur Plant Development
  • 4.5.4. Magnesium-Chlorine Cycle
  • 4.5.4.1. Electrochemical Process
  • 4.5.4.2. Hydrolysis Process and Reactor
  • 4.5.4.3. Chlorination Reactor
  • 4.5.4.4. Dry hydrochloric Acid Capture Process and System
  • 4.5.4.5. Flowsheet Development of Magnesium-Chlorine Cycle
  • 4.5.5. Copper-Chlorine Cycle
  • 4.5.5.1. Electrochemical Process and Cell Development
  • 4.5.5.2. Hydrolysis Reaction and Process
  • 4.5.5.3. Copper-Chlorine Plant Development
  • 4.6. Gasification and Reforming for Green Hydrogen Production
  • 4.6.1. Steam Reforming
  • 4.6.2. Gasification
  • 4.7. Integrated Systems for Green-Thermal Hydrogen Production
  • 4.7.1. Nuclear-Based Systems
  • 4.7.1.1. Mark 10 Nuclear Hydrogen Production Plant
  • 4.7.1.2. Nuclear-Based Sulfur-Iodine Plant
  • 4.7.1.3. Nuclear-Based Hybrid Sulfur Plant
  • 4.7.1.4. Nuclear-Based Magnesium-Chlorine Plant
  • 4.7.1.5. Nuclear-Based Copper-Chlorine Cycle for Hydrogen Production
  • 4.7.2. Solar-Thermal-Based Systems
  • 4.7.2.1. Solar-Thermal-Based Magnesium-Chlorine Plant
  • 4.7.2.2. Solar Thermal-Based Copper-Chlorine Plant
  • 4.7.3. Biomass-Based Systems
  • 4.7.4. Clean Coal Process-Based Systems
  • 4.8. Concluding Remarks
  • References
  • Study Problems
  • Chapter 5: Hydrogen Production by Photonic Energy
  • 5.1. Introduction
  • 5.2. Fundamentals of Photonic Hydrogen Production
  • 5.2.1. Photons and Electromagnetic Radiation
  • 5.2.1.1. Blackbody Radiation
  • 5.2.1.2. Exergy of Photonic Radiation
  • 5.2.2. Photophysical and Photochemical Processes
  • 5.3. Systems With Homogeneous Photocatalysis
  • 5.3.1. Homogeneous Photocatalysis Processes
  • 5.3.2. Case Study: A Supramolecular Photocatalyst
  • 5.3.2.1. Photocatalyst and Process Description
  • 5.3.2.2. Catalyst Preparation
  • 5.3.2.3. Test Reactor for Homogeneous Photocatalysis Research
  • 5.3.2.4. Modeling of the Photocatalytic Process
  • 5.4. Systems With Heterogeneous Photocatalysis
  • 5.4.1. Heterogeneous Photocatalysis Processes
  • 5.4.2. Heterogeneous Photocatalysts
  • 5.4.3. Case Study: An Engineered Heterogeneous Photocatalyst
  • 5.4.3.1. Heterogeneous Photocatalyst Development
  • 5.4.3.2. Modeling of the Photocatalytic Process
  • 5.5. Photoelectrochemical Cells
  • 5.5.1. Photoelectrochemical Process Description
  • 5.5.2. Dye-Sensitized Tandem Photoelectrolysis Cell
  • 5.5.3. Efficiency Definitions
  • 5.5.4. Case Study 1: Development of a Novel Polymeric Membrane PEC
  • 5.5.5. Case Study 2: Photoelectrochemical Cell for Chloralkali Process
  • 5.6. Hybrid Photocatalysis Systems
  • 5.6.1. Hydrogen-Oxygen Generating Process
  • 5.6.2. Hybrid Photoelectrochemical Chloralkali Process
  • 5.6.3. Hybrid Photoelectrochemical Process for Cu-Cl Cycle
  • 5.7. Integrated Photonic Energy-Based Hydrogen Production System
  • 5.7.1. Solar-Through Photocatalytic Reactor Integrated with PV-Electrolysis
  • 5.7.2. Integrated Photocatalytic Systems with Heliostat Field-Central Receiver Concentrators
  • 5.7.2.1. Lab-Scale Proof-of-Concept System with Miniature Solar Tower
  • 5.7.2.2. Large-Scale Concept System of Solar-Tower-Based Photocatalysis
  • 5.7.3. Integrated Chloralkali Photoelectrochemical Cell with Water Desalination
  • 5.8. Concluding Remarks
  • References
  • Study Problems
  • Chapter 6: Hydrogen Production by Biochemical Energy
  • 6.1. Introduction
  • 6.2. Biochemical Processes
  • 6.3. Integrated System for Green Biochemical Hydrogen Production
  • 6.3.1. Biogas Facility Integrated With Natural Gas Reforming
  • 6.3.2. Conceptual System Integration of Microbial Electrolysis With PV-Arrays
  • 6.3.3. Integrated Bioethanol-Based Systems
  • 6.4. Concluding Remarks
  • References
  • Study Problems
  • Chapter 7: Other Hydrogen Production Methods
  • 7.1. Introduction
  • 7.2. Photo-Thermochemical Water Splitting
  • 7.3. Photo-Electro-Thermochemical Water Splitting
  • 7.4. Radio-Thermochemical Water Splitting
  • 7.5. Coal Hydrogasification for Hydrogen Production
  • 7.6. Nuclear-Based Natural Gas Reforming for Hydrogen Production
  • 7.7. Solar Fuel Reforming for Hydrogen Production
  • 7.8. Electrolysis in Molten Alkali Hydroxides for Hydrogen Production
  • 7.9. Green Hydrogen From Ammonia
  • 7.9.1. Ammonia Synthesis
  • 7.9.2. Ammonia Storage and Distribution
  • 7.9.3. Hydrogen Generation from Ammonia
  • 7.10. Concluding Remarks
  • References
  • Study Problems
  • Chapter 8: Novel Systems and Applications of Hydrogen Production
  • 8.1. Introduction
  • 8.2. Fossil and Biofuels Based Novel Hydrogen Production Options
  • 8.2.1. Methanol Steam Reforming by an Innovative Microchannel Catalyst Support
  • 8.2.2. Reaction-Integrated Novel Gasification Process
  • 8.2.3. Novel Oxidative Hydrogen Production From Methanol
  • 8.2.4. Chemical-Looping Reforming and Steam Reforming with CO2 Capture by Chemical-Looping Combustion
  • 8.2.5. Hydrogen and Oxygen Cogeneration Using Sorption-Enhanced Reforming Process
  • 8.3. Water Decomposition-Based Novel Hydrogen Production Options
  • 8.3.1. Decoupled Catalytic Hydrogen Evolution from a Molecular Metal Oxide Redox Mediator
  • 8.3.2. Low-Temperature, Manganese Oxide-Based, Thermochemical Water-Splitting Cycle
  • 8.3.3. Aluminum-Based Hydrogen Production Using Sodium Hydroxide as a Catalyst
  • 8.3.4. Tungsten Disulfide as a New Hydrogen Evolution Catalyst for Water Decomposition
  • 8.3.5. Membrane-Less Electrolyzer for Hydrogen Production
  • 8.3.6. Nanosilicon: Splitting Water without Light, Heat, or Electricity
  • 8.3.7. Hydrogen Production from Sunlight and Rainwater
  • 8.4. Solar-Based Novel Hydrogen Production Options
  • 8.4.1. Water Photolysis via Perovskite Photovoltaics
  • 8.4.2. Biomass Valorization and Hydrogen Production in a PEC
  • 8.4.3. Splitting Water with an Isothermal Redox Cycle
  • 8.4.4. WSe2 2-D Thin Films for Photoelectrochemical Hydrogen Production
  • 8.4.5. Novel Nanoscale Semiconductor Photocatalyst for Solar Hydrogen Production
  • 8.4.6. Photoelectrochemical Hydrogen Production Using Novel Carbon-Based Material
  • 8.5. Biomass and Biological-Based Novel Hydrogen Production Options
  • 8.5.1. Hydrogen Production from Biomass by in Vitro Metabolic Engineering
  • 8.5.2. Biological Hydrogen Production from Starch Wastewater
  • 8.5.3. Thermal-Chemical Conversion of Biomass to Hydrogen
  • 8.5.4. Biological Hydrogen Production from Corn Syrup Waste
  • 8.6. Other Novel Hydrogen Production Options
  • 8.6.1. Hydrogen Production Using Hydrolysis of Alane and Activated Aluminum
  • 8.6.2. Novel Hydrogen Generator and Storage Based on Metal Hydrides
  • 8.6.3. Hydrogen Production Based on a Ca-Cu Chemical Cycle
  • 8.6.4. Hydrogen Production Using Radiowave and Microwave Energy
  • 8.7. Concluding Remarks
  • References
  • Study Problems
  • Conversion Factors
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

119,00 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok