Exergy Analysis of Heating, Refrigerating and Air Conditioning

Methods and Applications
 
 
Elsevier Science Publishing Co Inc
  • 1. Auflage
  • |
  • erschienen am 8. August 2015
  • |
  • 400 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-417211-1 (ISBN)
 
Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses.

Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples.

From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy analysis to these systems.



- Explains the fundamentals of energy/exergy for practitioners/researchers in HVAC&R fields for improving efficiency
- Covers environmental assessments and economic evaluations for a well-rounded approach to the subject
- Includes comprehensive case studies on both current and emerging systems/technologies
- Provides examples from a range of applications - from basic HVAC&R to more diverse processes such as industrial heating/cooling, cogeneration and trigeneration, and thermal storage
  • Englisch
  • USA
  • Für Beruf und Forschung
  • |
  • Practitioners and R&D engineers in heating, refrigerating, and air conditioning industries.
  • Höhe: 235 mm
  • |
  • Breite: 191 mm
  • 10,38 MB
978-0-12-417211-1 (9780124172111)
0124172113 (0124172113)
weitere Ausgaben werden ermittelt
1. Exergy and Its Ties to the Environment, Economics and Sustainability 2. Exergy and Exergy Assessments 3. Industrial Heating and Cooling Systems 4. Heat Pump Systems 5. Cogeneration, Multigeneration and Integrated Energy Systems 6. Heat Storage Systems 7. Renewable Energy-Based Building HVAC Systems 8. Exergy-Related Methods
Chapter 2

Energy and Exergy Assessments


Abstract


In this chapter, energetic and exergetic analyses, assessments, and evaluations of basic thermal components (such as heat exchangers, pumps, compressors, throttles, and turbines) and psychrometric processes (including sensible heating, sensible cooling, heating with humidification, cooling with dehumidification, evaporative cooling, and adiabatic mixing of air streams) are presented through the balance equations for mass, energy, entropy, and exergy. Their performance assessments are achieved by energy and exergy efficiencies and/or energetic and exergetic coefficients of performance. A case study is undertaken for an integrated system for heating, ventilating, air conditioning, and refrigeration applications, and their results are obtained through parametric studies for comparative energy and exergy assessments.

Keywords

Exergy

Energy

Efficiency

Heating

Cooling

Heating, ventilating, air conditioning, and refrigeration (HVACR)

Psychrometric processes

Nomenclature

Ex exergy rate (kW)

ex specific exergy (kJ/kg)

h specific enthalpy (kJ/kg)

 mass flow rate (kg/s)

P pressure (kPa)

Q heat transfer (kJ)

Q? heat rate (kW)

s specific entropy (kJ/kg K)

S entropy rate

T temperature (K or °C)

? density (kg/m3)

v specific volume (m3/kg)

 work rate (kW)

V volume (m3)

Greek symbols

? efficiency

? density (kg/m3)

? specific humidity or humidity ratio (kg/kg)

Subscripts

a air

c cooling

cd cooling with dehumidification

cond condenser

comp compressor

ct cooling tower

d/dest destruction

en energy

evap evaporator

ex exergy

gen generation

h heating

hh heating with humidification

in input

ref refrigerant

s source

sc space cooling

sh space heating

sys system

val valve

w water

0-17 state points

2.1 Introduction


Psychrometrics involves the use of thermodynamics to analyze conditions and processes involving moist air. A thorough understanding of psychrometrics is important in the heating, ventilating, air conditioning, and refrigeration (HVACR) community. Psychrometrics is used not only in assessing and designing heating and cooling processes and ensuring the comfort of building occupants but also in constructing building materials (e.g., insulation and roofing) and in assessing their stability and fire resistance (Dincer and Rosen, 2013).

Numerous researchers in their related publications and books (e.g., Dincer et al., 2007; Wepfer et al., 1979; Stecco and Manfrida, 1986; Dincer and Rosen, 2011; Dincer and Rosen, 2013; Kanoglu et al., 2007; Ratlamwala and Dincer, 2012) illustrate the application of exergy analysis to a variety of heating, ventilating, and air conditioning (HVAC) processes.

This chapter describes energy and exergy assessments of the components and psychrometric processes in HVAC systems and illustrates this material by assessing a novel integrated system for HVACR applications. The basic components in HVACR systems include heat exchangers, pumps, compressors, throttles, and turbines, and these are introduced, classified, and thermodynamically analyzed. This chapter also describes the energy and exergy assessments of psychrometric processes. Mass, energy, entropy, and exergy balances for all components and processes are provided.

In this chapter, kinetic and potential energy changes are considered to be negligible and all processes are assumed to be steady-flow and steady-state. Of course, transient processes can be assessed if required.

For a proposed integrated system involving psychrometric processes, thermodynamic analyses are performed. The energy and exergy efficiencies for individual components and the integrated system are calculated and parametric studies are performed that determine the impact on system performance of varying dead-state properties and system operating conditions.

2.2 Heat Exchangers (Heating/Cooling)


Closed heat exchangers (see Fig. 2.1) transfer heat from one fluid to another without the fluids coming in direct contact with each other. Heat transfer in a heat exchanger can occur without the fluid undergoing phase change or with phase change (e.g., from a liquid to a vapor, as in an evaporator, or from a vapor to a liquid, as in a condenser). The transfer of heat is driven by a temperature difference. In most HVACR applications, heat exchangers are selected to transfer either sensible or latent heat. Sensible heat applications involve heat transfer that results in a temperature change without phase change. Latent heat transfer involves a phase change of one of the liquids, for example, transferring heat to a liquid by condensing steam.

Figure 2.1 Closed heat exchanger.

Heat exchanger performance is commonly evaluated with one of two methods, which are described in the next two subsections.

2.2.1 Log Mean Temperature Difference Method


One method of evaluating heat exchanger performance is the logarithmic mean temperature difference method. When heat is exchanged between two fluids flowing through a heat exchanger, the rate of heat transfer may be expressed as

=UA?tm

  (2.1)

where U is the overall heat transfer coefficient from fluid to fluid, A is the heat transfer surface area of the heat exchanger associated with U, and ?tm is the log mean temperature difference (LMTD or ?tm).

For a heat exchanger with a constant U, the LMTD can be calculated as

tm=CfT1-T4-T2-T3lnT1-T4/T2-T3

  (2.2)

where Cf is a correction factor (less than 1.0) that is applied to heat exchanger configurations that are not truly counterflow. Figure 2.1 illustrates a temperature cross, where the outlet temperature of the heating fluid is less than the outlet temperature of the fluid while heated (T2 < T4). A temperature cross is only possible with a heat exchanger with a counterflow arrangement. The physical arrangement of the surface area affects the overall coefficient UA. Not every heat exchanger with identical surface area carry out equally for a given load. Henceforth, for specific applications, defining load conditions when selecting a heat exchanger is critical.

The load for each fluid stream can be calculated as

?=m?cpTin-Tout

  (2.3)

value of ?tm is an significant factor in selection of heat exchanger. For a given load, if ?tm has a high value, a comparatively minor heat exchanger surface area is necessary. The commercial effect is that the design of the heat exchanger must accommodate the forces and actions convoying with huge difference in temperatures. When the approach temperature is small i.e. the change in T2 and T4 is minor, ?tm is also insignificant and a fairly large A is obligatory.

2.2.2 e-NTU (Effectiveness Analysis)


An substitute method of assessing heat exchanger performance includes the calculation of exchanger heat transfer effectiveness e and number of exchanger transfer units (NTU). This method is grounded on the identical assumptions as the logarithmic mean temperature difference technique designated earlier.

Equations (2.1) and (2.2) for ?tm are more conveniently applied when inlet and outlet temperatures are known for both fluids. Though during most times, the temperatures of fluids leaving the heat exchanger are...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

161,84 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok