Rare Earth and Transition Metal Doping of Semiconductor Materials

Synthesis, Magnetic Properties and Room Temperature Spintronics
 
 
Woodhead Publishing
  • 1. Auflage
  • |
  • erschienen am 23. Januar 2016
  • |
  • 470 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-08-100060-1 (ISBN)
 

Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge.

This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures.

Part One of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics.


      • Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devices
      • Analyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronics
      • Details the properties of semiconductors for spintronics
      • Englisch
      • San Diego
      Elsevier Science
      • 18,60 MB
      978-0-08-100060-1 (9780081000601)
      008100060X (008100060X)
      weitere Ausgaben werden ermittelt
      • Front Cover
      • Related titles
      • Rare Earth and Transition Metal Doping of Semiconductor Materials
      • Copyright
      • Contents
      • List of contributors
      • Woodhead Publishing Series in Electronic and Optical Materials
      • One - Theory of magnetism in III-V semiconductors
      • 1 - Computational nanomaterials design for nanospintronics: room-temperature spintronics applications
      • 1.1 Introduction
      • 1.2 Disordered dilute magnetic semiconductors
      • 1.2.1 p-d exchange and double exchange mechanisms
      • 1.2.2 Reliable calculation of TC
      • 1.2.3 Toward high TC
      • 1.3 Spinodal nanodecomposition and high blocking temperature
      • 1.3.1 Mixing energy
      • 1.3.2 Chemical pair interaction
      • 1.3.3 Simulation of the spinodal nanodecomposition: Dairiseki phase versus Konbu phase
      • 1.3.3.1 Dairiseki phase
      • 1.3.3.2 Konbu phase
      • 1.3.4 Superparamagnetic blocking phenomena
      • 1.4 Rare-earth impurities in gallium nitride
      • 1.4.1 High-efficiency light emission
      • 1.4.2 High-density doping
      • 1.4.3 Zener's p-f exchange interaction
      • 1.4.4 Circularly polarized luminescence
      • 1.4.5 Summary
      • 1.5 MgO-based high-TC nanospintronics
      • References
      • 2 - Electronic structure of magnetic impurities and defects in semiconductors: a guide to the theoretical models
      • 2.1 Introduction
      • 2.2 Electronic structure of transition-metal and rare-earth elements in semiconductors
      • 2.2.1 Basic energy level scheme
      • 2.2.2 Multiplet splittings for f electrons and Hund's rules
      • 2.3 Computational methods dealing with strongly correlated electrons
      • 2.3.1 Failures of density functional theory
      • 2.3.2 Hubbard U correction: LDA+U and SIC
      • 2.3.3 Hybrid functionals
      • 2.3.4 The GW method
      • 2.3.5 Dynamic mean field theory
      • 2.3.6 Concluding remarks
      • 2.4 Magnetism
      • 2.4.1 Magnetic moments, ferromagnetic and antiferromagnetic coupling
      • 2.4.1.1 Introductory remarks
      • 2.4.1.2 Mapping of total energy differences on a Heisenberg model
      • 2.4.1.3 Liechtenstein's linear response theory
      • 2.4.1.4 Disordered local moments theory
      • 2.4.2 Spatial fluctuations of magnetic moments
      • 2.4.3 Percolation theory
      • 2.4.4 Effects of different underlying electronic structure methods
      • 2.4.5 Calculating critical temperatures
      • 2.4.6 Spinodal decomposition
      • 2.4.7 d0 magnetism: role of defects in magnetism
      • 2.4.8 Model exchange mechanisms
      • 2.5 Case study: Gd in GaN
      • 2.5.1 Introduction and experimental literature
      • 2.5.2 Models for explaining the magnetism
      • 2.5.2.1 Sphere of influence model
      • 2.5.2.2 s-f coupling model
      • 2.5.2.3 Ga vacancies
      • 2.5.2.4 Critique of the vacancy model
      • 2.5.2.5 Interstitials
      • 2.5.2.6 Analysis of exchange interactions
      • 2.5.2.7 Ga-vacancy clusters
      • 2.5.2.8 Results of percolation theory
      • 2.5.2.9 Fermi-level pinning near clusters
      • 2.5.3 Growth simulations of clustering
      • 2.5.3.1 Experimental evidence for clustering and role of extended defects
      • 2.5.3.2 Discussion
      • 2.5.4 Summary
      • Acknowledgments
      • References
      • 3 - Energetics, atomic structure, and magnetics of rare earth-doped GaN bulk and nanoparticles
      • 3.1 Introduction
      • 3.2 Methods of calculation
      • 3.3 Doping of bulk GaN with Eu and codoping with Si
      • 3.3.1 Pure GaN and bulk GaN doped with Eu
      • 3.3.2 Codoping of Si and Eu in bulk GaN
      • 3.4 Doping of rare earths in GaN nanoparticles
      • 3.4.1 Doping of GaN nanoparticles with Eu and codoping with Si
      • 3.4.2 Doping of GaN nanoparticles with Gd and Nd
      • 3.5 Conclusions
      • Acknowledgments
      • References
      • Two - Magnetic semiconductors based on rare earth/transition metals
      • 4 - Prospects for rare-earth-based dilute magnetic semiconductor alloys and hybrid magnetic rare-earth/semiconductor hetero ...
      • 4.1 Introduction
      • 4.1.1 Objectives and background
      • 4.1.2 Properties of rare-earth ions relevant to formation of dilute magnetic semiconductors
      • 4.1.3 Chapter organization
      • 4.2 Single-phase magnetic semiconductor alloys based on rare earths
      • 4.2.1 Magnetic semiconductors with isovalent rare-earth incorporation
      • 4.2.1.1 Rare-earth alloys based on II-VI semiconductor lattice
      • 4.2.1.2 Rare-earth alloys based on III-V and group-IV semiconductor lattice
      • 4.2.1.3 Advanced tetrahedrally bonded structures
      • 4.2.1.4 Alloys based on IV-VI semiconductor lattice
      • 4.2.2 Homogeneous magnetic alloys based on heterovalent rare-earth incorporation
      • 4.2.2.1 Alloys based on III-V semiconductor lattice
      • 4.2.2.2 Alloys based on II-VI semiconductor lattice
      • 4.2.2.3 Final comment on heterovalent incorporation of rare earths
      • 4.3 Inhomogeneous and mixed-phase magnetic rare-earth systems
      • 4.4 Heterostructures of semiconductor and magnetic rare-earth compounds
      • 4.4.1 Superlattice and multilayer semiconductor/rare-earth combinations
      • 4.4.2 Digital alloys using rare-earth compounds
      • 4.4.3 Complex rock-salt/zinc-blende composites involving rare earths
      • 4.5 Rare-earth-based layered chalcogenides and pnictides, including mixed anion systems
      • 4.5.1 Example of dilute magnetic semiconductors with 122 structure
      • 4.5.2 Example of dilute magnetic semiconductor with 1111 structure
      • 4.5.3 General prospects for layered rare-earth-based pnictides, chalcogenides, and oxide systems
      • 4.6 Spintronic possibilities with antiferromagnetic rare-earth compounds
      • 4.7 Conclusions
      • References
      • 5 - Electron spin resonance studies of GaAs:Er,O
      • 5.1 Introduction and previous studies
      • 5.2 Sample preparations
      • 5.3 Electron spin resonance results in Kobe
      • 5.3.1 Fundamental properties of GaAs:Er,O (GA05544, without charge carrier) studied by electron spin resonance [18]
      • 5.3.2 Zn codoping (hole carriers) effect on electron spin resonance [19]
      • 5.3.3 Electron spin resonance study of Er concentration dependence
      • 5.3.3.1 GaAs:Er,O without charge carrier [20,21]
      • 5.3.3.2 GaAs:Er,O with charge carriers [26]
      • 5.4 Discussion and proposed models
      • 5.4.1 Origin of A, B, and C electron spin resonance centers
      • 5.4.2 Er pair model
      • 5.4.3 Proposed model for the trap level
      • 5.5 Summary
      • References
      • 6 - Gadolinium-doped gallium-nitride: synthesis routes, structure, and magnetism
      • 6.1 Introduction
      • 6.1.1 A brief overview for GaN:Gd
      • 6.2 General considerations and experimental methods
      • 6.2.1 Generals remarks about magnetic properties
      • 6.2.2 SQUID magnetometry
      • 6.2.3 XAS-based techniques
      • 6.3 GaN:Gd samples with colossal magnetic moments
      • 6.3.1 MBE-grown wurtzite GaN:Gd/SiC(0001)
      • 6.3.2 Gd ion-implanted wurtzite molecular beam epitaxy GaN:Gd/Si(0001)
      • 6.4 Gd ion implantation into various GaN samples
      • 6.4.1 Gd ion implantation into zincblende MBE-grown GaN/SiC(001)
      • 6.4.2 Gd ion implantation into wurtzite molecular beam epitaxy grown GaN/Si(111)
      • 6.4.3 Gd ion implantation into wurtzite molecular beam epitaxy grown GaN/AlGaN-based HEMT on Si(111)
      • 6.4.4 Discussion of the magnetic properties of Gd-implanted GaN samples
      • 6.5 Synchrotron-based investigations on molecular beam epitaxy grown GaN:Gd
      • 6.5.1 Molecular beam epitaxy GaN:Gd on SiC(0001)
      • 6.5.2 PAMBE GaN:Gd grown on MOCVD GaN buffer on Al2O3(0001)
      • 6.6 Summary of magnetic properties of GaN:Gd
      • References
      • 7 - MOCVD growth of Er-doped III-N and optical-magnetic characterization
      • 7.1 Introduction
      • 7.2 MOCVD growth of Er-doped III-N films
      • 7.2.1 MOCVD growth of GaN:Er films
      • 7.2.2 MOCVD growth of InGaN:Er films
      • 7.2.3 III-N:Er growth on alternative substrates
      • 7.3 Optical properties
      • 7.3.1 Photoluminescence characterization
      • 7.3.2 Electroluminescent devices
      • 7.4 Magnetic properties of III-N:Er thin films
      • 7.4.1 Magnetic properties of GaN:Er
      • 7.4.1.1 Strain-induced effects
      • 7.4.2 Magnetic properties of InGaN:Er
      • 7.4.3 Influence of light on magnetic properties
      • 7.5 Summary
      • Acknowledgments
      • References
      • 8 - Growth of Eu-doped GaN and its magneto-optical properties
      • 8.1 Introduction
      • 8.2 Growth of Eu-doped GaN by OMVPE
      • 8.2.1 OMVPE growth of Eu-doped GaN
      • 8.2.2 Effects of growth conditions and device structures on Eu luminescence properties
      • 8.3 Nature of Eu incorporation into GaN: structural, optical, and magneto-optical properties
      • 8.3.1 Overview of Eu sites and local defect assignment of the majority center
      • 8.3.2 Evaluation of the magneto-optical properties of Eu1
      • 8.4 Summary and conclusions
      • Acknowledgments
      • References
      • 9 - Optical and magnetic characterization of III-N:Nd grown by molecular beam epitaxy
      • 9.1 Introduction
      • 9.2 Molecular beam epitaxy growth
      • 9.2.1 III-nitrides:Nd background
      • 9.2.2 III-nitrides:Nd molecular beam epitaxy growth
      • 9.2.3 III-nitrides:Nd material characterization
      • 9.3 Optical characterization
      • 9.3.1 Background
      • 9.3.2 Conventional photoluminescence studies
      • 9.3.3 Combined excitation-emission spectroscopy
      • 9.4 Magnetic properties
      • 9.4.1 Magnetization measurements of Nd:GaN samples grown by molecular beam epitaxy
      • 9.4.2 Properties of Nd:GaN samples prepared by diffusion
      • 9.4.3 Magnetic optical measurements of Nd:GaN samples by molecular beam epitaxy
      • 9.5 Applications to quantum sciences
      • 9.6 Conclusions
      • References
      • Three - Properties of magnetic semiconductors for spintronics
      • 10 - Transition metal and rare earth doping in GaN
      • 10.1 Introduction
      • 10.2 Classic exchange mechanisms
      • 10.2.1 Donor impurity band exchange
      • 10.2.1.1 Theoretical models for ferromagnetism in dilute magnetic semiconductors
      • 10.2.2 Density functional theory studies of Ga1-xGdxN
      • 10.3 MOCVD growth of Ga1-xTMxN and Ga1-xRExN
      • 10.3.1 Experimental results for Ga1-xFexN
      • 10.4 Experimental studies for Ga1-xCrxN
      • 10.4.1 Rare earth doping of GaN
      • 10.5 LEDs containing nitride dilute magnetic semiconductors
      • 10.5.1 GaMnN-based light emitting diodes
      • 10.5.2 GaN:Gd spin light emitting diodes
      • 10.6 Conclusions
      • References
      • 11 - Gadolinium-doped III-nitride diluted magnetic semiconductors for spintronics applications
      • 11.1 Introduction
      • 11.2 Growth and structural properties of Gd-doped III-nitride semiconductors
      • 11.3 Properties of Gd-doped III-nitride semiconductors
      • 11.3.1 Magnetic and optical properties of single layers
      • 11.3.2 Effect of low-temperature growth
      • 11.3.3 Effect of superlattice structures on magnetic properties
      • 11.3.4 Si codoping effect on magnetic and electric properties
      • 11.3.5 Properties of nanorod structures
      • 11.4 Properties of Dy-doped GaN
      • 11.4.1 Magnetic and optical properties
      • 11.4.2 Magnetic circular dichroism
      • 11.5 Spintronic device application
      • 11.6 Summary
      • References
      • 12 - Ferromagnetic behavior in transition metal-doped III-N semiconductors
      • 12.1 Introduction
      • 12.2 Transition metal-doping of III-V nitride films by diffusion
      • 12.2.1 Structural and magnetic characterization of Mn-doped GaN films
      • 12.2.2 Electrical characterization of Mn:GaN films
      • 12.2.3 Structural and magnetic characterization of Mn-doped InGaN films
      • 12.2.4 Structural and magnetic characterization of Fe-doped GaN films
      • 12.3 Mn doping of GaN films by MOCVD
      • 12.4 Fermi level engineering of magnetic behavior of GaMnN
      • 12.4.1 Codoping of GaMnN with either silicon or magnesium
      • 12.4.2 Charge transfer through heterojunction interfaces
      • 12.5 Room-temperature spintronic device based on GaMnN
      • 12.6 Summary and concluding remarks
      • Acknowledgments
      • References
      • 13 - Bipolar magnetic junction transistors for logic applications
      • 13.1 Introduction
      • 13.2 Spin diodes
      • 13.3 Bipolar magnetic junction transistor
      • 13.4 Applications
      • Acknowledgments
      • References
      • Index
      • A
      • B
      • C
      • D
      • E
      • F
      • G
      • H
      • I
      • K
      • L
      • M
      • N
      • O
      • P
      • Q
      • R
      • S
      • T
      • V
      • W
      • X
      • Z
      • Back Cover

      Dateiformat: EPUB
      Kopierschutz: Adobe-DRM (Digital Rights Management)

      Systemvoraussetzungen:

      Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

      Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

      E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

      Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

      Weitere Informationen finden Sie in unserer E-Book Hilfe.


      Dateiformat: PDF
      Kopierschutz: Adobe-DRM (Digital Rights Management)

      Systemvoraussetzungen:

      Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

      Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

      E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

      Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

      Weitere Informationen finden Sie in unserer E-Book Hilfe.


      Download (sofort verfügbar)

      226,10 €
      inkl. 19% MwSt.
      Download / Einzel-Lizenz
      ePUB mit Adobe DRM
      siehe Systemvoraussetzungen
      PDF mit Adobe DRM
      siehe Systemvoraussetzungen
      Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
      E-Book bestellen

      Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok