Shallow Geothermal Systems - Recommendations on Design, Construction, Operation and Monitoring

Recommendations on Design, Construction, Operation and Monitoring
 
 
Ernst & Sohn (Verlag)
  • erschienen am 13. Mai 2016
  • |
  • 312 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-3-433-60668-1 (ISBN)
 
The recommendations summarise the state of the art. Their aim is the proper exploitation of the ground for geothermal purposes without adversely affecting the ground or the groundwater on the one hand and the operation of the system and nearby buildings on the other. The recommendations should be used during consulting, design, installation and operation in order to achieve optimum and sustainable use of the ground at a specific location. Authorities responsible for supervising and approving projects can use the recommendations as a guide when taking decisions and making stipulations.
The Geothermal Energy Study Group was set up in Bochum in 2004 and became the joint DGGV/DGGT study group in 2007. Some 20 specialists from universities, authorities and engineering consultants are active in the group and meet two or three times a year.
 
Die Empfehlungen fassen den Stand der Technik zusammen. Das Ziel ist die fachgerechte Erschließung des Untergrunds für geothermische Zwecke sowie die Vermeidung von Schäden für den Boden und das Grundwasser einerseits und für den Betrieb der Anlage sowie der Bebauung andererseits. Die Empfehlungen sollen als Arbeitshilfe die optimale und nachhaltige geothermische Nutzung des Untergrunds am konkreten Standort in Beratung, Planung, Bauausführung und Betrieb begleiten. Die Fach- und Genehmigungsbehörden erhalten die Möglichkeit, sich bei ihren Entscheidungen und Vorgaben an den Empfehlungen zu orientieren.
1. Auflage
  • Englisch
  • Berlin
  • |
  • Deutschland
Ernst, Wilhelm & Sohn
  • 11,58 MB
978-3-433-60668-1 (9783433606681)
3433606684 (3433606684)
weitere Ausgaben werden ermittelt
The study group Geothermie is a joint study group working since March 2007. Its members are of the section Hydrology of the Deutsche Geologischen Geselschaft - Geologische Vereinigung e.V. (DGGV, formerly DGG) and the section Ingenieurgeologie of the Deutsche Gesellschaft für Geotechnik e.V. (DGGT) and the DGGV.
Der Arbeitskreis Geothermie ist seit März 2007 gemeinsamer Arbeitskreis der Fachsektion Hydrogeologie der Deutschen Geologischen gesellschaft - Geologische Vereinigung e.V (DGGV, früher DGG) und der Fachsektion Ingenieurgeologie der Deutschen Gesellschaft für Geotechnik (DGGT) und der DGGV.
1. Einleitung
2. Grundlagen
3. Geothermische Anlagen
4. Rechtliche Grundlagen
5. Grundlagen der Planung
6. Bohrungen und Ausbau
7. Planung, Herstellung und Betrieb geschlossener Systeme
8. Planung, Herstellung und Betrieb offener Systeme
9. Risikopotenziale
Literatur
Glossar

List of Figures


Fig. 1.0.1 Geothermal energy production forecast for Germany up to 2020; position as of October 2009

Fig. 2.2.1 Principle of heat conduction in a body of rock

Fig. 2.2.2 Effective thermal conductivity of quartz and water depending on the total porosity

Fig. 2.2.3 Effective thermal conductivity of quartz and air depending on the total porosity

Fig. 2.2.4 Effective thermal conductivity of quartz and ice depending on the total porosity

Fig. 2.2.5 Models for determining the effective thermal conductivity

Fig. 2.2.6 Types of underground water

Fig. 2.2.7 Relationship between thermal conductivity of water and temperature

Fig. 2.2.8 Relationship between specific heat capacity csp of water and temperature at standard pressure

Fig. 2.2.9 Relationship between kinematic viscosity of water and temperature

Fig. 2.2.10 Relationship between relative density of water and temperature

Fig. 2.3.1 Schematic diagram showing how solar and terrestrial heat flows create the solar energy zone, geosolar transition zone and terrestrial zone

Fig. 2.3.2 Annual course of temperature in solar energy and geosolar transition zones using the example of Berlin; city outskirts, 20-30% ground sealing

Fig. 2.3.3 Annual course of temperature in solar energy and geosolar transition zones using the example of Berlin; city centre, >60% ground sealing

Fig. 2.4.1 Climate zones to DIN 4710

Fig. 2.4.2 Heat extraction potential depending on climate zone

Fig. 2.6.1 Scheme of a BHE and the heat-affected area without groundwater flow (a) and with a predominant groundwater flow direction (b)

Fig. 3.0.1 How a heat pump works

Fig. 3.1.1 Schematic drawings showing the arrangements of the different systems

Fig. 3.1.2 Schematic drawing of a typical U-pipe BHE system with connection to horizontal pipework laid in the ground, as is frequently the case - also below buildings

Fig. 3.1.3 Schematic drawing of a U-pipe BHE with connection to horizontal pipework laid in a manhole

Fig. 3.1.4 Schematic drawing of a coaxial BHE with connection to horizontal pipework laid in the ground

Fig. 3.1.5 Schematic drawing of a coaxial BHE with connection to horizontal pipework laid in a manhole

Fig. 3.1.6 Sketch showing the principle of a BHE system for a detached house

Fig. 3.1.7 Sketch showing the principle of a horizontal collector for a detached house

Fig. 3.1.8 Sketch showing the principle of a well system for a detached house

Fig. 3.1.9 Sketch showing the principle of the heat pipe

Fig. 3.1.10 Installing a horizontal collector

Fig. 3.1.11 Installing a Slinky-type trench collector

Fig. 3.1.12 The design principle of the geothermal energy basket

Fig. 3.1.13 Installing a geothermal energy basket

Fig. 3.1.14 Thermal piles beneath a high-rise building

Fig. 3.1.15 Site photograph of and a schematic section through a thermal pile installation integrated into an interlocking bored cast-in-place pile wall

Fig. 3.1.16 Sketch showing the principle of a thermal pile installation

Fig. 3.1.17 Heat exchanger pipes threaded through pile reinforcement

Fig. 3.1.18 Routing the pipes from thermal piles in a ground slab for a high-rise building

Fig. 3.1.19 Horizontal connections between thermal piles and manifold

Fig. 3.2.1 Schematic drawing of a production well with submersible pump in the form of a gravel filter well

Fig. 3.2.2 The principle of a geothermal well installation in unconfined groundwater, shown for heat extraction

Fig. 3.2.3 The principle of a geothermal production and injection well installation in confined groundwater, shown for heat extraction

Fig. 3.2.4 Steam escaping from the 'New Hope' gallery in Bad Ems, Germany

Fig. 3.2.5 Water-bearing old mine working

Fig. 3.2.6 Iron precipitation at the point where mine water discharges into this channel

Fig. 3.2.7 Sketch showing the principle behind using geothermal energy in flooded mines when the mine water can escape freely

Fig. 3.2.8 Sketch showing the principle behind using geothermal energy in flooded mines in the case of a deep piezometric surface

Fig. 3.3.1 Numerical simulation of a BTES

Fig. 3.3.2 Situation during construction of the BTES system at Crailsheim, Germany, prior to completing the reinstatement works

Fig. 6.1.1 Drilling rig for pneumatic DTH hammer method

Fig. 6.2.1 Reel carriage with built-in drive and loaded with 400 m of pipe for double U-pipe BHE

Fig. 6.3.1 Geometrical borehole deviation for a drilling rig inclined at 1°, 2° and 3°

Fig. 6.3.2 Checking the verticality of a borehole for a BHE produced using the DTH hammer drilling method

Fig. 6.3.3 Schematic view of drilling without a drill stabiliser

Fig. 6.3.4 Properly selected drill string, wellhead and type of driving for controlled vertical drilling with a small drill string bending radius

Fig. 6.3.5 Schematic view of a drill string with a stabiliser

Fig. 6.3.6 Borehole deviation due to change of rock formation: Owing to the steep angle of the change of competence, the drill bit follows the incompetent stratum

Fig. 6.3.7 Borehole widening and initial wandering of a drilling tool at a change of competence at a shallow angle in the rock formation

Fig. 6.3.8 (a) How a change of competence in the rock formation leads to the creation of a dog-leg in the borehole. (b) Deviation of a borehole due to the drilling tool passing through several competent/incompetent transitions

Fig. 6.5.1 Schematic view of a GRT

Fig. 6.5.2 Compact, mobile GRT unit

Fig. 6.5.3 Chronological evolution of flow and return temperatures plus the mean temperature in the thermal transfer fluid during a GRT

Fig. 6.5.4 Example of the regression for evaluating a GRT result

Fig. 6.5.5 Schematic section through a double U-pipe BHE with associated partial thermal resistances (without dynamic resistances)

Fig. 6.5.6 Diagram of a typical GRT measuring curve and its first-order derivative

Fig. 6.5.7 Example of different conductivities for the rocks surrounding a BHE

Fig. 6.5.8 Comparison of the temperatures based on line and cylinder source theories; calculated with Numericallnt GeoLogik software

Fig. 6.5.9 Measurements taken on a double U-pipe BHE and a cylindrical geothermal energy basket

Fig. 6.5.10 Evaluation of measurements taken on a double U-pipe BHE

Fig. 6.5.11 Evaluation of measurements taken on a double U-pipe BHE

Fig. 6.5.12 Evaluation of measurements taken on a cylindrical geothermal energy basket

Fig. 6.5.13 Evaluation by means of time-based superposition with fluctuating electricity supply during the GRT; calculated with TRT 1.1 GeoLogik Software

Fig. 6.5.14 Sensitivity analysis for the thermal conductivity parameter in a GRT; calculated with TRT 1.1 GeoLogik Software

Fig. 6.5.15 Sensitivity analysis for the volumetric heat capacity parameter in a GRT; calculated with TRT 1.1 GeoLogik Software

Fig. 6.5.16 Sensitivity analysis for the heating output parameter in a GRT; calculated with TRT 1.1 GeoLogik Software

Fig. 6.5.17 Sensitivity analysis for the thermal conductivity parameter in a GRT; calculated with TRT 1.1 GeoLogik Software

Fig. 6.5.18 Resistances for a BHE

Fig. 6.5.19 Installing a coaxial BHE based on glass-fibre/copper cables supplied on a reel

Fig. 6.5.20 EGRT measuring results for a 150 m deep BHE

Fig. 6.5.21 Evaluated EGRT measuring results with well log

Fig. 6.5.22 EGRT measuring results for a project near Hamburg

Fig. 6.5.23 Thermal conductivity-depth profiles of two EGRTs with a local, limited groundwater influence

Fig. 7.1.1 Pressure losses depending on the flow rate for double U-pipe BHEs with 32 × 2.9 mm2 and 40 × 3.7 mm2 pipes. thermal transfer fluid = water @ 4 °C, BHE length = 120 m

Fig. 7.1.2 Pressure losses depending on the BHE length for typical double U-pipe BHEs with thermal transfer fluid = water @ 4 °C, flow rate = 2 m3 h-1 (turbulent flow) and associated power consumption of recirculating pump (assumed degree of efficiency: 25%)

Fig. 7.1.3 Guideline figures for embedding the heat exchanger pipework with examples of grouting pipes (grey) and common borehole diameters

Fig. 7.1.4 Examples of BHE bottom end...

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

97,99 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok