Zebrafish: Cellular and Developmental Biology, Part B Developmental Biology

Zebrafish: Cellular and Developmental Biology, Part B Developmental Biology
 
 
Academic Press
  • 4. Auflage
  • |
  • erschienen am 13. Juni 2016
  • |
  • 660 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-805206-8 (ISBN)
 

The Zebrafish: Cellular and Developmental Biology, Part B Developmental Biology, the second volume on the topic in the Methods in Cell Biology series, looks at methods for analyzing cellular and developmental biology of zebrafish. Chapters cover such topics as cell biology and developmental and neural biology.


  • Covers sections on model systems and functional studies, imaging-based approaches, and emerging studies
  • Chapters written by experts in the field
  • Contains cutting-edge material on the topic of zebrafish and developments relating to their cellular and developmental biology
  • New, two part Fourth Edition in this important volume
0091-679X
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 13,84 MB
978-0-12-805206-8 (9780128052068)
0128052066 (0128052066)
weitere Ausgaben werden ermittelt
  • Front Cover
  • The Zebrafish: Cellular and Developmental Biology, Part B Developmental Biology
  • Series Editors
  • The Zebrafish: Cellular and Developmental Biology, Part B Developmental Biology
  • Copyright
  • Dedication
  • Contents
  • Contributors
  • Preface
  • 1 - Methods to study maternal regulation of germ cell specification in zebrafish
  • INTRODUCTION
  • 1. STAGES OF MATERNAL GERM PLASM REGULATION AND SPECIFICATION
  • 1.1 Recruitment and Transport of Germ Plasm in the Oocyte
  • 1.2 Germ Plasm Localization and Germ Cell Specification in the Early Embryo
  • 2. STUDYING THE DYNAMIC LOCALIZATION OF GERM PLASM RNAS
  • 2.1 Detection of Endogenous Germ Plasm RNAs
  • 2.2 Injection of Exogenous RNAs Into Oocytes and Embryos
  • 2.3 Live Visualization of Labeled RNAs
  • 3. STUDYING MOLECULAR REQUIREMENTS THROUGH LOSS-OF-FUNCTION APPROACHES
  • 3.1 Morpholino Technology in Oocytes and 1-Celled Embryos
  • 3.2 Genetic Mutations to Study Maternal Functions Including Germ Cell Specification
  • 4. UTILITY OF TRANSGENIC FISH TO STUDY GERM CELL DEVELOPMENT
  • 4.1 Transgenic Reporter Lines to Examine Stage- and Gender-Specific Germ Cells
  • 4.2 Other Considerations for Constructing Transgenic Lines
  • CONCLUSION
  • REFERENCES
  • 2 - Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes
  • INTRODUCTION
  • 1. SPECIFICATION OF THE PPR AND PATTERNING THE PPR INTO SPECIFIC PLACODES (FIG. 2)
  • 1.1 Signaling Pathways Orchestrating PPR Specification
  • 1.1.1 Fine regulation of bone morphogenetic protein activity during gastrulation defines the neural border
  • 1.1.2 Fibroblast growth factor signaling promotes PPR identity
  • 1.1.3 Wnt and retinoic acid signaling and the PPR domain
  • 1.2 A Gene Regulatory Network Underlying PPR Specification (Fig. 2A)
  • 1.3 Anteroposterior Regionalization of the PPR (Fig. 2B)
  • 2. CRANIAL PLACODE MORPHOGENESIS AND NEUROGENESIS (FIG. 3)
  • 2.1 Olfactory Placode
  • 2.2 Trigeminal Placode
  • 2.3 Otic Placode
  • CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 3 - Oligodendrocyte differentiation
  • INTRODUCTION
  • 1. ZEBRAFISH AS A MODEL TO STUDY OLIGODENDROCYTE DIFFERENTATION
  • 2. INSIGHTS INTO OLIGODENDROCYTE DEVELOPMENT AND MYELINATION USING ZEBRAFISH
  • 2.1 Transgenic Reporter Lines
  • 2.2 Live Imaging
  • 2.3 Forward Genetic Screens
  • 2.4 Chemical Screens
  • 2.5 Reverse Genetics
  • 3. ZEBRAFISH AS MODEL TO STUDY REMYELINATION
  • FUTURE DIRECTIONS AND CONCLUSIONS
  • REFERENCES
  • 4 - Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish
  • INTRODUCTION
  • 1. THE PERIPHERAL AUTONOMIC NERVOUS SYSTEM
  • 1.1 Overview
  • 1.2 Molecular Pathways Underlying PSNS Development in Vertebrates
  • 1.2.1 Formation and fate-restriction of neural crest cells
  • 1.2.2 Migration of sympathoadrenal cells to regions adjacent the dorsal aorta
  • 1.2.3 Neuronal and noradrenergic differentiation of sympathoadrenal progenitors
  • 1.2.4 Sculpting the PSNS and establishing synaptic connections
  • 1.2.5 Summary
  • 2. THE ZEBRAFISH AS A MODEL SYSTEM FOR STUDYING PSNS DEVELOPMENT
  • 2.1 Overview
  • 2.2 Development of the PSNS in Zebrafish
  • 2.2.1 Neural crest origin and migration pathways in PSNS development
  • 2.2.2 Gene expression in migrating sympathoadrenal progenitors
  • 2.2.3 Neuronal differentiation and coalescence into sympathetic ganglia
  • 2.2.4 Differentiation of noradrenergic neurons
  • 2.2.5 Modeling of sympathetic ganglia
  • 2.3 Mutations Affecting PSNS Development
  • 2.3.1 Introduction
  • 2.3.2 Mutations affecting PSNS development
  • 3. ZEBRAFISH AS A NOVEL MODEL FOR STUDYING NEUROBLASTOMA
  • 3.1 Overview of Neuroblastoma
  • 3.1.1 Pathogenesis and genetics
  • 3.1.2 Prognosis and current treatment options
  • 3.2 Studying Neuroblastoma Pathogenesis in Zebrafish
  • 3.2.1 Introduction
  • 3.2.2 Zebrafish model of neuroblastoma
  • 3.2.3 Features of the zebrafish Tg(dbh:MYCN) neuroblastoma model
  • 3.2.4 ALK accelerates MYCN-induced tumorigenesis
  • 3.2.5 Future studies of PSNS-derived tumor oncogenes and tumor suppressors
  • CONCLUSION
  • Acknowledgments
  • REFERENCES
  • 5 - Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract
  • INTRODUCTION
  • 1. GENETIC AND ENVIRONMENTAL INTERACTIONS DURING ENTERIC NERVOUS SYSTEM DEVELOPMENT
  • 1.1 Genetic Interactions Can Contribute to Enteric Aganglionosis
  • 1.2 Environmental Interactions Are Important for Normal Enteric Nervous System Development
  • 1.3 Genes Involved in Enteric Nervous System Development Can Also Pattern Development of Other Tissues
  • 2. INTERACTIONS BETWEEN THE ENTERIC NERVOUS SYSTEM AND THE IMMUNE SYSTEM
  • 2.1 Deriving Zebrafish Germ Free Reveals the Importance of Host-Associated Microbiota
  • 2.2 Specific Microbial Species Can Promote or Suppress Intestinal Inflammation
  • 2.3 Microbiota Can Influence Enteric Nervous System Development and Function
  • 2.4 Activation of Inflammatory Pathways Can Alter Enteric Nervous System Development
  • 2.5 Epigenetic Modification Can Affect Intestinal Barrier Function, Inflammation, and Enteric Nervous System Development
  • 2.6 Secretory Cells of the Intestinal Epithelium May Interact With Glia to Facilitate Reception of Microbial Signals
  • 2.7 Intestinal Secretory Cells Can Influence Development of Enteric Neurons
  • 2.8 Measuring Serotonin in Living Zebrafish Will Help Elucidate Its Role in Modulating Intestinal Function
  • 3. INTERACTIONS BETWEEN THE ENTERIC NERVOUS SYSTEM AND EFFECTOR CELLS
  • 3.1 Muscle Integrity Is Important for Intestinal Motility
  • 3.2 Interstitial Cells of Cajal Exhibit Temporal Expression of Defining Markers
  • 3.3 Visualizing Intestinal Cells in Real Time in Living Zebrafish Will Promote a Deeper Understanding of Intestinal Cell Intera ...
  • 4. FUTURE PROSPECTS
  • Acknowledgments
  • REFERENCES
  • 6 - Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course
  • INTRODUCTION
  • 1. IMAGING METHODS FOR ANALYSIS OF THE ZEBRAFISH EAR AND LATERAL LINE
  • 1.1 Live Imaging of the Early Zebrafish Otic Vesicle
  • 1.1.1 Imaging otic cilia, ciliary movement, and early otolith formation
  • 1.1.1.1 Method
  • 1.2 Fluorescent Dyes and Antibodies for Marking Otic and Lateral Line Structures
  • 1.2.1 Phalloidin Staining
  • 1.2.1 Phalloidin Staining
  • 1.2.1.1 Method
  • 1.3 Transgenic Lines for Labeling Otic and Lateral Line Structures
  • 1.4 Confocal Microscopy of the Zebrafish Ear
  • 1.4.1 Method
  • 1.5 Light-Sheet Microscopy of the Zebrafish Ear
  • 1.5.1 Mounting
  • 1.5.2 Image Acquisition and Analysis
  • 1.6 Gene Expression Markers for Otic Structures
  • 1.6.1 Method: In Situ Hybridization for Genes Expressed in the Ear
  • 2. EXPERIMENTAL MANIPULATION OF OTIC DEVELOPMENT
  • 2.1 Treatment of Embryos With Small Molecule Modulators
  • 2.1.1 Method
  • 2.2 Heat Shock-Driven Mis-expression Using Transgenic Embryos
  • 2.2.1 Method
  • 2.3 Dissection and Transplantation of Otic Tissue
  • 3. DISSECTION AND IMAGING OF THE ADULT EAR AND OTOLITHS
  • 3.1 Method
  • 4. BEHAVIORAL ANALYSIS
  • 4.1 Observational Tests for Inner Ear or Lateral Line Defects
  • 4.2 Vestibular Righting Reflex
  • 4.3 Dorsal Light Reflex
  • 4.4 Rheotaxis
  • 4.5 Open Field Test and Movement Tracking
  • 4.6 Auditory-Evoked Startle Response
  • 4.7 Vestibulo-ocular Reflex
  • 5. SMALL MOLECULE SCREENING
  • 5.1 Ototoxin Protection Assay
  • 5.1.1 Method
  • 5.2 In Situ Hybridization Screen
  • 6. ZEBRAFISH MODELS OF HUMAN DEAFNESS AND VESTIBULAR DISORDERS
  • 7. FUTURE DIRECTIONS
  • Acknowledgments
  • REFERENCES
  • 7 - Imaging collective cell migration and hair cell regeneration in the sensory lateral line
  • INTRODUCTION
  • 1. LATERAL LINE DEVELOPMENT
  • 2. IN VIVO IMAGING OF LATERAL LINE PRIMORDIUM MIGRATION
  • 2.1 Transgenic Lines
  • 2.2 Anesthetizing the Embryos
  • 2.2.1 Untreated embryos
  • 2.2.2 Treated embryos
  • 2.3 Embryo Mounting for Imaging
  • 2.4 Confocal Time-Lapse Imaging of the Lateral Line Primordium
  • 2.5 Post Time-Lapse Analysis
  • 2.5.1 When embryos are kept alive
  • 2.5.2 When embryos are fixed (for in situ hybridization, immunohistochemistry, etc.)
  • 3. LIVE LABELING OF LATERAL LINE CELLS
  • 3.1 Labeling Lateral Line With Vital Dyes
  • 3.1.1 BODIPY 505/515 and BODIPY-ceramide staining
  • 3.1.2 DASPEI and FM lipophilic dyes
  • 3.2 Cell Lineage Tracing and Clonal Analysis Behavior
  • 3.2.1 Transplantations
  • 3.2.2 mRNA and DNA microinjections
  • 3.2.3 Photoconvertible fluorescent proteins
  • 4. NONVITAL TISSUE LABELING OF LATERAL LINE CELLS
  • 4.1 Nuclear Labeling with 4´,6-Diamidino-2-Phenylindole
  • 4.2 Alkaline Phosphatase Staining
  • 4.3 Phalloidin Staining
  • 5. INTERPRETATION OF COMMON PHENOTYPES
  • 6. HAIR CELL REGENERATION
  • 7. LONG-TERM TIME-LAPSE ANALYSES OF REGENERATING NEUROMASTS
  • 7.1 Immobilization
  • 7.2 Hair Cell Death
  • 7.3 Time-Lapse Analysis and Tracking of Support Cells During Regeneration
  • 7.3.1 Spatial sampling (setting up the Z-stack)
  • 7.3.2 Recording time and time sampling
  • 7.3.3 Suggested parameters for time-lapse recordings of regenerating neuromasts
  • 7.4 Image Processing and Lineage Tracking
  • 7.5 Cell Movement Analysis
  • 7.5.1 Parameters
  • 7.6 Spatial Analysis of the Origin of Support and Hair Cell Progenitors in Fixed Larvae
  • 7.7 BrdU Incorporation
  • 7.8 Immunohistochemistry
  • 7.9 Data Acquisition, Processing, and Analysis
  • 7.10 Statistical Analyses of Spatial Distribution
  • 7.10.1 Quadrant analysis
  • 7.10.2 Distance from center analysis
  • CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 8 - Analysis of the retina in the zebrafish model
  • INTRODUCTION
  • 1. DEVELOPMENT OF THE ZEBRAFISH RETINA
  • 1.1 Early Morphogenetic Events
  • 1.2 Neurogenesis
  • 1.3 Nonneuronal Tissues
  • 2. ANALYSIS OF THE VISUAL SYSTEM IN WILD TYPE AND MUTANTS
  • 2.1 Histological Analysis
  • 2.2 The Use of Molecular Markers
  • 2.2.1 Antibodies
  • 2.2.2 mRNA probes
  • 2.2.3 Lipophilic tracers
  • 2.2.4 Fluorescent proteins
  • 2.2.5 Viral tracers
  • 2.3 Analysis of Lineage Relationships
  • 2.4 Analysis of Cell and Tissue Interactions
  • 2.5 Optogenetic Approaches
  • 2.6 Tests of Mechanical Integrity of the Retina
  • 2.7 Analysis of Cell Proliferation
  • 2.8 Behavioral Studies
  • 2.9 In Vivo Studies of Neuronal Activity
  • 2.10 Electrophysiological Analysis of Retinal Function
  • 2.11 Biochemical Approaches
  • 2.12 Small Molecule Screens
  • 2.13 In Vivo Analysis of the Adult Retina
  • 3. ANALYSIS OF GENE FUNCTION IN THE ZEBRAFISH RETINA
  • 3.1 Reverse Genetic Approaches
  • 3.1.1 Loss-of-function analysis
  • 3.1.2 Approaches to gene overexpression
  • 3.2 Forward Genetics
  • 3.2.1 Mutagenesis approaches
  • 3.2.2 Breeding schemes
  • 3.2.3 Phenotype detection methods
  • 3.2.4 Mutant strains available
  • SUMMARY
  • Acknowledgments
  • REFERENCES
  • 9 - Strategies for analyzing cardiac phenotypes in the zebrafish embryo
  • INTRODUCTION
  • 1. REGULATION OF HEART SIZE
  • 2. REGULATION OF CARDIAC MORPHOLOGY
  • 3. REGULATION OF CARDIAC FUNCTION
  • 4. SUMMARY
  • REFERENCES
  • 10 - Chemical approaches to angiogenesis in development and regeneration
  • INTRODUCTION
  • 1. HIGH-THROUGHPUT SCREENING FOR SMALL MOLECULES WITH PROANGIOGENIC ACTIVITY USING PRIMARY CELL CULTURE OF TG[FLK:GFP] ZEBRAFI ...
  • 2. VALIDATION OF PROANGIOGENIC COMPOUNDS IN VIVO USING PRE-INHIBITED VASCULAR STRUCTURE OF ZEBRAFISH EMBRYO BY VRI
  • 3. SUMMARY
  • 4. METHOD
  • 4.1 Preparation of Zebrafish Embryo Primary Cells
  • 4.2 Microscopic Imaging and Manual Image Analysis
  • 4.3 Zebrafish Angiogenesis Pre-inhibition Model
  • Acknowledgments
  • REFERENCES
  • 11 - Quantitative methods for studying hemostasis in zebrafish larvae
  • INTRODUCTION
  • 1. METHODS
  • 1.1 Laser-Mediated Endothelial Injury
  • 1.1.1 Laser and microscope setup
  • 1.1.2 Fish preparation
  • 1.1.3 Venous laser ablation
  • 1.1.4 Arterial laser ablation
  • 1.1.5 Analysis
  • 1.2 Thrombocyte Quantitation
  • 1.2.1 Camera and microscope setup
  • 1.2.2 Embryo preparation
  • 1.2.3 Movie capture and analysis
  • 1.3 Fluorescein Isothiocyanate-Labeled Fibrinogen Infusion
  • 1.3.1 Fluorescein isothiocyanate-fibrinogen labeling
  • 1.3.2 Fish preparation
  • 1.3.3 Infusion and analysis
  • CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 12 - Zebrafish kidney development
  • INTRODUCTION
  • 1. STRUCTURE OF THE ZEBRAFISH PRONEPHROS
  • 2. FORMATION OF THE PRONEPHROS
  • 2.1 Origin of the Nephrogenic Mesoderm
  • 2.2 Early Nephrogenic Domains of the Intermediate Mesoderm
  • 2.3 Differentiation of the Tubular Epithelium
  • 2.4 Nephron Patterning and Segmentation
  • 2.5 Formation of the Glomerulus
  • 2.6 Formation of the Cloaca
  • 2.7 Pronephric Nephron Morphogenesis and Mesonephric Development
  • 3. METHODS TO STUDY PRONEPHROS FUNCTION
  • 3.1 Embryo Dissociation
  • 3.2 Isolation of Fluorescently Labeled Cells by Fluorescence-Activated Cell Sorting
  • 3.3 A Simple Assay for Glomerular Filtration
  • 3.3.1 Embryos
  • 3.3.2 Adults
  • 3.4 Time Lapse Imaging of Fluorescent Protein Transgenic Embryos
  • 3.4.1 Materials
  • 3.4.2 Methods
  • 3.4.2.1 Embryo mounting for imaging
  • 3.4.2.2 Imaging methods
  • 3.5 Gentamicin-Induced Kidney Tubule Injury in Embryos and Adults
  • 3.5.1 Embryos
  • 3.5.2 Adults
  • 3.6 Adult Kidney Isolation
  • 3.7 Nonlethal Surgical Access to the Adult Kidney
  • 3.8 Detecting and Imaging Zebrafish Cilia
  • 3.8.1 Materials
  • 3.8.2 Solutions
  • 3.8.3 Methods
  • 3.8.4 Fixation
  • 3.8.5 Antibody staining
  • 3.8.6 Mounting the sample for confocal microscopy
  • 3.8.7 Visualization of cilia with HRP/DAB
  • 3.9 Histological Sectioning of Whole Mount-Stained Embryos
  • 3.10 Electron Microscopy Methods for Zebrafish
  • 3.10.1 Materials
  • 3.10.2 Methods
  • CONCLUSIONS
  • Acknowledgments
  • REFERENCES
  • 13 - Zebrafish pancreas as a model for development and disease
  • INTRODUCTION
  • 1. MOLECULAR MECHANISMS OF SECONDARY ISLET FORMATION
  • 1.1 Secondary Islets Are Regulated by Notch Signaling
  • 1.2 Retinoic Acid Regulation of Secondary Islets
  • 1.3 Transcription Factors Impacting Secondary Islets
  • 1.4 Role of Cystic Fibrosis Transmembrane Conductance Regulator in Pancreas Development
  • 2. PHYSIOLOGY AND ASSESSMENT OF GLUCOSE HOMEOSTASIS IN ZEBRAFISH
  • 2.1 Glucose Levels During Embryonic and Larval Stages
  • 2.2 Glucose Assays in Adult Zebrafish
  • 2.3 Beta Cell Responses to Nutrients
  • 2.4 Glucose Uptake and Insulin Resistance
  • 2.5 Visualization of Calcium Signaling in Islet Cells
  • 3. DIABETES AND RELATED DISEASE MODELS IN ZEBRAFISH
  • 3.1 Perturbations Primarily Affecting Islet Functions
  • 3.1.1 Morpholino knockdown of neurod
  • 3.1.2 hnf1ba mutants
  • 3.1.3 pdx1 mutants
  • 3.1.4 Insulin C43G transgenics
  • 3.2 Models of Diabetes-Associated Peripheral Effects
  • 3.2.1 Induction of IR through insulin injection
  • 3.2.2 dnIGFIR transgenics
  • 3.2.3 Insra/insrb knockout
  • 3.2.4 Glut12 morphant
  • 3.2.5 Fgf1 knockout
  • 4. METHODS TO STUDY BETA CELL BIOLOGY AND PHYSIOLOGY
  • 4.1 Distinguishing Dorsal and Ventral Bud Cells
  • 4.2 Detection of Apoptosis in the Islet
  • 4.2.1 Protocol
  • Equipment and material
  • Solutions
  • Overfeeding protocol
  • TUNEL assay with antibody immunostaining
  • Image analysis
  • Representative results
  • 4.3 Measurement of Glucose Levels in Nutrient-Stimulated Larvae
  • 4.3.1 Protocol
  • Equipment and material
  • Solutions
  • Sample feeding and collection
  • Extract preparation
  • Option I. Sonication
  • Option II. Bead homogenization
  • Glucose assay
  • Representative results
  • 5. FUTURE DIRECTIONS
  • Acknowledgments
  • REFERENCES
  • 14 - Endoderm specification and liver development
  • INTRODUCTION
  • 1. REVIEW OF THE LITERATURE
  • 1.1 Endoderm Progenitor Specification and Differentiation
  • 1.2 Liver Specification and Growth
  • 1.2.1 Genetic markers of hepatogenesis
  • 1.2.2 Specific signals involved in liver formation
  • 1.2.2.1 Wnt signaling
  • 1.2.3 Fibroblast growth factor and bone morphogenetic protein signaling
  • 1.2.4 Retinoic acid signaling
  • 1.2.5 Epigenetic factors regulating liver development
  • 1.3 Biliary Differentiation
  • 1.4 Hepatic Stellate Cells
  • 2. EMBRYONIC AND LARVAL PROTOCOLS TO ANALYZE LIVER FORMATION
  • 2.1 Chemical Screens
  • 2.2 Fluorescence Activated Cell Sorting
  • 3. LIVER INJURY AND REGENERATION PROTOCOLS
  • 3.1 Genetic Ablation
  • 3.2 Acetaminophen Injury
  • 3.3 Mechanical Injury
  • SUMMARY
  • REFERENCES
  • 15 - Emerging tools to study proteoglycan function during skeletal development
  • INTRODUCTION
  • ADDING FUNCTION TO STRUCTURE: RESPONSIVE ARCHITECTURE AND PGS
  • TOO MUCH OF A BAD THING: PGS AND DISEASE
  • PAS DE DEUX: BIOCHEMISTRY AND CELL BIOLOGY OF PG SYNTHESIS
  • 1. XYLOSE: WHERE THE "PROTEO-" MEETS THE "-GLYCAN"
  • 2. ADDING SUGAR LIKE A KID AFTER HALLOWEEN
  • 3. DON'T BE A QUITTER: POSTTRANSLATIONAL MODIFICATIONS OF POSTTRANSLATIONAL MODIFICATIONS
  • 4. BREAK IT DOWN FOR ME, FELLAS
  • 5. ADDING FUNCTION TO STRUCTURE BY UNDERSTANDING PG-LOSS ANIMAL MODELS
  • 5.1 The Old PG: Just Another Blockhead
  • 5.2 PGs Regulate the Timing of Skeletal Development
  • 5.3 The New PG: Regulator of Growth Factor Signalling
  • 6. HERE'S LOOKING AT YOU, PG
  • 6.1 X-ray fluorescence Imaging
  • 6.2 Fourier Transform Infrared Imaging
  • CONCLUSION
  • Acknowledgments
  • REFERENCES
  • 16 - Generation and analysis of zebrafish melanoma models
  • INTRODUCTION
  • 1. GENETIC MODELS OF MELANOMA IN ZEBRAFISH
  • 1.1 The BRAFV600E Zebrafish Melanoma Models
  • 1.2 The BRAFV600E miniCoopR system
  • 1.3 The mitf Zebrafish Melanoma Model
  • 2. CELL LINE MODELS OF MELANOMA IN ZEBRAFISH
  • 2.1 Generating Cell Lines
  • 2.2 Genetically Modifying Zebrafish Cell Lines
  • 2.3 Transplantation and Visualization Techniques
  • 3. ANALYSIS OF MELANOMAS
  • 3.1 Histological Analysis
  • 3.2 Genomic Analysis
  • 4. PERSPECTIVES
  • Acknowledgments
  • REFERENCES
  • 17 - Learning and memory in zebrafish (Danio rerio)
  • INTRODUCTION
  • 1 The Rapidly Evolving Field of Zebrafish Learning and Memory Research
  • 2 Why Study Learning and Memory?
  • 3 How Could Zebrafish Contribute to Our Understanding of the Mechanisms of Learning and Memory?
  • 4 Behavior, the Bottleneck
  • 5 Ethology: A Fruitful Guiding Principle in Designing Learning Tasks
  • 6 What Motivates Zebrafish?
  • 7 The Perceptual Demands of the Learning Task: Focus on Visual Stimuli
  • 8 What Can Zebrafish Learn: Simple Two-Cue Association Versus Complex Relational Learning?
  • 9 How Can We Make Associative Learning Tasks High Throughput?
  • 10 Memory: Not a Blank Slate Any Longer for the Zebrafish
  • 11 Using the Zebrafish Larva for the Analysis of Learning and Memory
  • 12 The Screening Strategy
  • 13 The Devil Is in the Details
  • 14 Biased Focus
  • SUMMARY
  • Acknowledgments
  • REFERENCES
  • 18 - Working with zebrafish at postembryonic stages
  • INTRODUCTION
  • 1. PART I: POSTEMBRYONIC STAGING
  • 1.1 Meaningfully Reporting Developmental Progress
  • 1.1.1 Named stages
  • 1.1.2 Standardized standard length
  • 1.2 Problems With Using Size and Age as Proxies for Developmental State
  • 1.2.1 Age is unacceptable as a proxy for development
  • 1.2.2 Size alone is a poor proxy for development, but can add valuable information to stage
  • 1.3 Variation in Growth and Developmental Timing
  • 1.4 Customizing Staging for Particular Applications
  • 1.5 Efficient Staging
  • 1.6 Sample Collection
  • 2. PART II: REARING FISH FOR USE AT POSTEMBRYONIC STAGES
  • 2.1 General Recommendations
  • 2.1.1 Food guidelines
  • 2.1.2 Rotifer rearing and preparation
  • 2.1.3 Supplementation with brine shrimp
  • 2.2 Fish-Rearing Protocols
  • 2.2.1 Embryo rearing
  • 2.2.2 Larva rearing: static water
  • 2.2.3 Larva rearing: flowing water
  • 2.2.4 Juvenile and adult rearing
  • 2.3 Working With Slow-Growing or Developmentally Compromised Fish
  • 3. RECIPES
  • Acknowledgments
  • REFERENCES
  • Volumes in Series
  • Index
  • A
  • B
  • C
  • D
  • E
  • F
  • G
  • H
  • I
  • J
  • K
  • L
  • M
  • N
  • O
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • W
  • X
  • Y
  • Z
  • Color Plate
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

145,18 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok