Molecular Nutrition of Amino Acids and Proteins

A Volume in the Molecular Nutrition Series
 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 8. Juni 2016
  • |
  • 368 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
978-0-12-802375-4 (ISBN)
 

The Molecular Nutrition of Amino Acids and Proteins provides an in-depth look at the involvement and role of amino acids and proteins in molecular nutrition. Editor Dominique Dardevet has assembled a collection of chapters written by leading researchers and top professors that provide the reader with a comprehensive understanding of amino acids and proteins.

The book provides an introduction to the fundamentals of amino acids and proteins as well as the composition of food. It then delves into the molecular biology of the cell and genetic machinery and its function. The Molecular Nutrition of Amino Acids and Proteins also features reference guides for terms and bullet-point summaries, making it readily accessible to novices while still providing the most up-to-date and detailed information that experienced researchers need.


  • Provides a gentle introduction to the subject by first addressing nutritional information and then building in molecular aspects, clearly establishing fundamental information for the reader
  • Facilitates reader comprehension by including succinct summary points in each chapter
  • Contains a glossary of definitions that allows readers to easily reference terms
  • Provides both a deep and broad understanding of the subject by containing overviews as well as detail-focused chapters
  • Englisch
  • Saint Louis
  • |
  • USA
Elsevier Science
  • 9,17 MB
978-0-12-802375-4 (9780128023754)
0128023759 (0128023759)
weitere Ausgaben werden ermittelt
  • Front Cover
  • The Molecular Nutrition of Amino Acids and Proteins
  • Copyright Page
  • Contents
  • List of Contributors
  • Preface
  • I. General and Introductory Aspects
  • 1 Bioactive Peptides Derived From Food Proteins
  • 1.1 Physiological Effects of Food-Derived Peptides
  • 1.2 In Vivo Evidence of Food-Derived Peptide Effects
  • 1.3 Bioactive Peptides Released During Digestion
  • 1.4 Peptide Bioavailability
  • 1.5 Conclusion
  • References
  • 2 Protein Intake Throughout Life and Current Dietary Recommendations
  • 2.1 Introduction
  • 2.2 Current Estimates for Protein and Amino Acid Requirements Throughout Life
  • 2.3 Theoretical and Practical Limitations and Uncertainties
  • 2.4 Evidence for Defining Requirements Based on Meals Rather Than an Average Daily Intake in Older People
  • 2.5 Toward Other Criteria to Define Requirements, Using Health-Related Parameters?
  • 2.6 Current Dietary Intake of Protein and Amino Acids
  • 2.7 Conclusion and Perspectives
  • References
  • 3 Cellular Mechanisms of Protein Degradation Among Tissues
  • 3.1 Introduction
  • 3.2 Proteolytic Systems
  • 3.2.1 Ca2+-Dependent Proteolysis
  • 3.2.2 Caspases
  • 3.2.3 The Ubiquitin-Proteasome System
  • 3.2.3.1 Ubiquitination
  • 3.2.3.2 Proteasome Degradation
  • 3.2.4 Autophagy
  • 3.2.5 Metalloproteinases
  • 3.3 Skeletal Muscle Proteolysis
  • 3.3.1 UPS: The Main Player for Myofibrillar Protein Degradation
  • 3.3.1.1 Role of the E1 Enzyme
  • 3.3.1.2 Role of E2 Enzymes
  • 3.3.1.3 Role of E3 Enzymes
  • 3.3.1.4 Role of the Proteasome
  • 3.3.2 Autophagy-Lysosome System in Skeletal Muscle
  • 3.3.2.1 Role of Cathepsins
  • 3.3.2.2 Autophagy: A Crucial Pathway for Muscle Mass Maintenance
  • 3.3.3 Functional Cooperation of Proteolytic Systems for Myofibrillar Protein Degradation
  • 3.4 Proteolysis in Viscera
  • 3.4.1 Liver and Autophagy: For Regulation of Energy Metabolism
  • 3.4.2 A Major Role of Autophagy in Small Intestine
  • 3.4.2.1 For Amino Acids Supply to Peripheral Tissues
  • 3.4.2.2 For Regulation of the Epithelial Barrier
  • 3.5 Concluding Remarks
  • Acknowledgments
  • References
  • 4 Cellular and Molecular Mechanisms of Protein Synthesis Among Tissues
  • 4.1 Introduction
  • 4.1.1 Molecular Basics of Protein Synthesis
  • 4.1.2 Introduction of the Intracellular Regulation of Protein Synthesis
  • 4.1.3 Endogenous and Exogenous Regulators of Protein Synthesis
  • 4.2 Cellular and Molecular Regulation of Hypertrophy
  • 4.3 Myogenesis: The Development and Regeneration of Muscle
  • 4.4 Applied Implications of Protein Synthesis In Vivo
  • 4.5 Conclusions and Summary of Key Points
  • Disclosures
  • References
  • 5 Role of Amino Acid Transporters in Protein Metabolism
  • 5.1 Amino Acid Transporters: Structure and Molecular Function
  • 5.2 AA Transporters and Cellular Function
  • 5.2.1 Cellular Nutrient Supply
  • 5.2.2 Nutrient Sensing
  • 5.2.2.1 AA Transporters as AA Sensors
  • 5.2.2.2 AA Transporters Upstream of Intracellular AA Sensors
  • 5.2.3 Cell-Cell Communication
  • 5.3 AA Transporters in Whole-Body Nutrition
  • 5.3.1 Absorption of AA and Peptides
  • 5.3.2 Interorgan Nitrogen Flow
  • 5.4 AA Transporters in Mammalian Embryonic Development and Growth
  • 5.5 AA Transporters and the Immune Response
  • 5.6 AA and Peptide Transporters as Therapeutic Targets
  • Acknowledgment
  • References
  • II. Cellular Aspects of Protein and Amino Acids Metabolism in Anabolic and Catabolic Situations
  • 6 Amino Acids and Exercise: Molecular and Cellular Aspects
  • 6.1 Introduction
  • 6.2 Regulation of the Size of Human Muscle Mass
  • 6.3 Exercise Mode
  • 6.4 Protein Type
  • 6.5 Dose Response of MPS to Protein Ingestion Following Resistance Exercise
  • 6.6 Timing and Distribution
  • 6.7 The Influence of the Aging Process
  • 6.8 The Role of the Essential and Branched-Chain Amino Acids
  • 6.9 The Mechanistic Target of Rapamycin Complex 1 (mTORC1)
  • 6.10 Resistance Exercise, Amino Acids, and mTORC1
  • 6.11 Future Directions
  • 6.12 Conclusion
  • References
  • 7 Protein Metabolism in the Elderly: Molecular and Cellular Aspects
  • 7.1 Aging and Sarcopenia
  • 7.2 Protein Metabolism in the Aging Body
  • 7.3 Age-Related Changes in Nutrient Sensitivity
  • 7.4 Regulation of mTOR Signaling in Aging
  • 7.5 The Role of Physical Activity During Aging
  • 7.6 Aging and Changes in Endocrine Function
  • 7.7 Molecular Dysregulation of Protein Metabolism During Aging
  • References
  • 8 Specificity of Amino Acids and Protein Metabolism in Obesity
  • 8.1 Introduction: Fat-Free Mass in Obesity
  • 8.2 Insulin Resistance and Protein Metabolism
  • 8.3 Lipotoxicity and Muscle Protein Metabolism
  • 8.4 Role of Adipose and Muscular Cytokines in the Cross-Talk Between Muscle and Adipose Tissue
  • 8.5 Sarcopenic Obesity and Metabolic Impairments
  • 8.6 BCAA Levels and Metabolism in Obesity
  • 8.7 Conclusion
  • References
  • 9 Feeding Modulation of Amino Acid Utilization: Role of Insulin and Amino Acids in Skeletal Muscle
  • 9.1 Overview of the Metabolic Role of Skeletal Muscle and as an Amino Acid Repository
  • 9.2 Impact of Splanchnic Extraction and Source of Dietary Amino Acid on Bioavailability and Muscle Protein Synthesis
  • 9.3 Influence of Amino Acid, Macronutrient Composition, and Caloric Load on Muscle Protein Synthesis
  • 9.4 Effects of Dose and Delivery Profile of Amino Acid on the Feeding-Induced Stimulation of Muscle Protein Synthesis
  • 9.5 Influence of Microvascular Responses to Feeding in Relation to Muscle Protein Synthesis
  • 9.6 The Role of Insulin in Regulating Muscle Protein Turnover
  • 9.7 The Molecular Regulation of Skeletal Muscle Protein Synthesis and Muscle Protein Breakdown by Amino Acid and Insulin
  • 9.8 Conclusions
  • References
  • 10 Protein Metabolism and Requirement in Intensive Care Units and Septic Patients
  • 10.1 Introduction
  • 10.2 Protein Metabolism in the Critically Ill Patient
  • 10.3 Protein Requirement of Critically Ill Patients: Mechanistic Studies
  • 10.4 Protein Requirements of Critically Ill Patients: Outcome-Based Studies
  • 10.4.1 Energy
  • 10.4.2 Energy and Protein
  • 10.4.3 Parenteral Nutrition
  • 10.4.4 Protein
  • 10.4.5 Muscle
  • 10.5 Application in Clinical Practice
  • 10.6 Protein-Energy Ratio
  • 10.7 Conclusion
  • References
  • 11 Muscle Protein Kinetics in Cancer Cachexia
  • 11.1 Introduction: Muscle Wasting as the Main Feature of Cancer Cachexia
  • 11.2 Control of Skeletal Mass in Healthy Conditions
  • 11.3 Anabolic Signals
  • 11.4 Inflammation and Muscle Protein Degradation
  • 11.4.1 Ub-Proteasome-Dependent Proteolysis
  • 11.4.2 Lysosomal Proteolysis
  • 11.4.3 Calpain-Dependent Proteolysis
  • 11.4.4 Inflammation
  • 11.5 Cross-Talk Between Anabolic and Catabolic Mediators
  • 11.6 Therapeutic Approaches to Influence Protein Kinetics
  • 11.6.1 Approaches to Overcome Anabolic Resistance
  • 11.6.2 Approaches to Target Muscle Protein Turnover
  • 11.7 Conclusions and Future Directions
  • References
  • 12 Amino Acid and Protein Metabolism in Pulmonary Diseases and Nutritional Abnormalities: A Special Focus on Chronic Obstru...
  • 12.1 Introduction
  • 12.2 Epidemiology and Definition of Nutritional Abnormalities in Chronic Respiratory Patients
  • 12.3 Diagnosis of Nutritional Abnormalities in Patients
  • 12.4 Etiologic Factors and Biological Mechanisms Involved in the Nutritional Abnormalities of Patients With Chronic Respira...
  • 12.4.1 Cigarette Smoke
  • 12.4.2 Physical Inactivity
  • 12.4.3 Imbalance Between Calorie Intake and Energy Expenditure
  • 12.4.4 Imbalance Between Anabolic and Catabolic Hormones
  • 12.4.5 Comorbidities and Aging
  • 12.4.6 Medications
  • 12.4.7 Blood Gases
  • 12.4.8 Inflammation and Oxidative Stress
  • 12.4.9 Enhanced Muscle Proteolysis, Apoptosis, and Autophagy
  • 12.5 Protein Metabolism, Muscles, and Exercise in Humans
  • 12.5.1 Protein Absorption and Synthesis
  • 12.5.2 Protein Synthesis in Muscles and Exercise
  • 12.6 Potential Therapeutic Targets of Nutritional Abnormalities in Chronic Respiratory Patients
  • 12.6.1 Energy Balance, Amino Acid, and Protein Supplements
  • 12.6.2 Other Nutritional Supplements
  • 12.6.3 Anabolic Hormones
  • 12.7 Other Chronic Respiratory Conditions
  • 12.7.1 Cystic Fibrosis
  • 12.7.2 Other Respiratory-Related Disorders
  • 12.8 Conclusions and Future Perspectives
  • References
  • 13 Amino Acids, Protein, and the Gastrointestinal Tract
  • 13.1 Introduction
  • 13.2 Gastrointestinal Amino Acid and Protein Metabolism in Health
  • 13.3 The First-Pass Effect of a Bolus Meal
  • 13.3.1 The Art of the Meal and the Quality of Protein
  • 13.3.2 The Labile Protein Pool Hypothesis
  • 13.4 Gastrointestinal Amino Acid and Protein Metabolism in Stress Conditions
  • 13.5 The Production of a Substrate Mix to Support Host Response in Stress
  • 13.6 Protein Metabolism in Stress Starvation
  • 13.7 Substrate Metabolism in Stress Starvation to Spare Protein
  • 13.8 The Role of Individual Amino Acids in the Gastrointestinal Tract
  • 13.8.1 Citrulline
  • 13.8.2 Glutamine Supplementation
  • 13.9 The Role of the Intestine in Bile Salt and Amino Acid Metabolism
  • 13.10 Role of the Intestine in Amino Acid Metabolism in Liver Failure
  • 13.10.1 Metabolic (in Contradistinction With Bacterial) Ammonia Generation in Different Parts of the Intestine
  • 13.10.2 Effect of Portal-Systemic Shunting on Systemic Ammonia Levels in Liver Failure
  • 13.10.3 Effect of the Amount and Quality of Protein on Ammonia Production in Liver Failure
  • References
  • 14 Regulation of Macroautophagy by Nutrients and Metabolites
  • 14.1 Introduction
  • 14.2 Overview of the Autophagic Pathway
  • 14.3 The Nutrient Code of Autophagy
  • 14.3.1 Amino Acids
  • 14.3.1.1 Regulation of MTORC1 by Amino Acids
  • 14.3.1.2 Regulation of MTOR by Intracellular Amino Acids
  • 14.3.1.3 Regulation of MTOR by Nonlysosomal Amino Acids
  • 14.3.1.4 Regulation of MTOR by Other Pathways
  • 14.3.1.5 Regulation of ULK1 by Amino Acids
  • 14.3.1.6 Regulation of PIK3C3 by Amino Acids
  • 14.3.1.7 Regulation of Autophagy by Transcription Factors
  • 14.3.2 Glucose
  • 14.3.3 Fatty Acids
  • 14.4 Metabolites and Autophagy
  • 14.4.1 NAD+/NADH
  • 14.4.2 AcetylCoA
  • 14.4.2.1 Levels of AcetylCoA and Regulation of Autophagy
  • 14.4.2.2 Acetylation of ATG Proteins and Regulation of Autophagy
  • 14.4.2.3 Acetylation and Epigenetic Regulation of Autophagy
  • 14.4.3 Ammonia
  • 14.4.4 Nucleotides
  • 14.5 Conclusion
  • Acknowledgments
  • References
  • III. Cellular and Molecular Actions of Amino Acids in Non Protein Metabolism
  • 15 Dietary Protein and Colonic Microbiota: Molecular Aspects
  • 15.1 Introduction
  • 15.1.1 Protein Available for the Gut Microbiota
  • 15.1.1.1 Digestibility of Dietary Proteins
  • 15.1.1.2 Variable Amount of Endogenous Proteins
  • 15.1.2 Protein Fermentation by Intestinal Microbiota
  • 15.1.2.1 Site of Protein and AA Metabolism by the Gut Microbiota
  • 15.1.2.2 Metabolic Pathways Involved in Protein and AA Fermentation
  • 15.1.2.2.1 General Overview of Protein and AA Fermentation
  • 15.1.2.2.2 End-Products
  • 15.1.2.3 Bacteria Involved in Protein and AA Fermentation
  • 15.1.2.3.1 Bacterial Densities
  • 15.1.2.3.2 Bacterial Genera
  • 15.1.3 Physiological and Pathophysiological Effects of Protein-Derived Bacterial Metabolites
  • 15.1.3.1 Effect Upon the Microbiota
  • 15.1.3.2 Effect Upon the Gut
  • 15.1.3.2.1 Transport and Metabolism of Protein-Derived Bacterial Metabolites Into Colonocytes
  • 15.1.3.2.2 Genotoxicity of Protein-Derived Bacterial Metabolites
  • 15.1.3.2.3 Impact of Protein-Derived Bacterial Metabolites on Colonocyte Metabolism
  • 15.1.3.2.4 Impact of Protein-Derived Bacterial Metabolites on Epithelial Cell Proliferation, Differentiation, and Apoptosis
  • 15.1.3.2.5 Impact of Protein-Derived Bacterial Metabolites on Electrolyte and Water Absorption or Secretion
  • 15.1.3.2.6 Impact of Protein-Derived Metabolites on Colonocyte Barrier Function
  • 15.1.3.2.7 Impact of Protein-Derived Bacterial Metabolites on Nutrient Sensing and Gastrointestinal Hormone Release
  • 15.1.3.2.8 Impact of Protein-Derived Bacterial Metabolites Upon Goblet Cells and Mucin Secretion
  • 15.1.3.2.9 Impact of Protein-Derived Bacterial Metabolites on Enteric Nerves
  • 15.1.3.2.10 Impact of Protein-Derived Bacterial Metabolites on Intestinal Immune Cells
  • 15.1.3.3 Effect Beyond the Gut
  • 15.2 Conclusion
  • References
  • 16 Control of Food Intake by Dietary Amino Acids and Proteins: Molecular and Cellular Aspects
  • 16.1 Introduction
  • 16.2 The Effect of Protein Intake and Overall Energy Intake on Body Weight and Body Composition
  • 16.2.1 Protein Snacks/Meals and Food Intake
  • 16.2.2 High Protein Diet and Food Intake
  • 16.2.3 Low Protein Diet and Food Intake
  • 16.3 Detection of Protein and Amino Acids During Digestion and Control of Food Intake by Feedback Signaling
  • 16.3.1 Oral Sensing
  • 16.3.2 Gastric and Gut Signals
  • 16.3.3 Post Absorptive Signals
  • 16.4 Protein-Induced Reduction in Eating and Central Neuronal Pathways
  • 16.5 Conclusion
  • Acknowledgments
  • References
  • 17 Dietary Protein and Hepatic Glucose Production
  • 17.1 Introduction
  • 17.2 Amino Acids as Glucose Precursors and Effect of Protein Intake
  • 17.3 Insulin and Glucagon Mediated Effects of Amino Acids and Proteins on Glucose Production
  • 17.4 Protein Meal and Hepatic Glucose Production
  • 17.5 High Protein Diet and Hepatic Glucose Production
  • 17.6 Conclusion
  • References
  • 18 Impact of Dietary Proteins on Energy Balance, Insulin Sensitivity and Glucose Homeostasis: From Proteins to Peptides to ...
  • 18.1 Introduction
  • 18.1.1 Effects of Dietary Proteins on Energy Balance and Body Weight
  • 18.1.1.1 Protein-Induced Incretin Release and Satiety
  • 18.1.1.2 Protein-Induced Thermogenesis
  • 18.1.1.3 Long-Term Health Effects of HP Diets
  • 18.1.2 Impact of Dietary Protein Sources and Derived Peptides on the Metabolic Syndrome
  • 18.1.2.1 Impact of Marine-Derived Proteins and Peptides
  • 18.1.2.2 Vegetable-Derived Proteins and Peptides: The Case of Legumes, Pulses and Soy
  • 18.1.2.3 Dairy Proteins and Peptides
  • 18.1.3 The Role of Bioactive Peptides in the Metabolic Effects of Dietary Proteins
  • 18.1.4 A New Role for the Gut Microbiota in AA Metabolism and the Modulation of Immunometabolism
  • 18.1.5 Effects of AA on Metabolic Control and Cellular Signaling Pathways
  • 18.1.5.1 The Effects of AA on Insulin and Glucagon Secretion
  • 18.1.5.2 Altered BCAA Levels and Metabolism in Obesity and T2D
  • 18.1.5.3 Role of AA in the Activation of Nutrient Sensing Pathways and Obesity-Linked Insulin Resistance and T2D
  • 18.2 Conclusion
  • References
  • 19 Sulfur Amino Acids Metabolism From Protein Synthesis to Glutathione
  • 19.1 Introduction
  • 19.2 Functions of the SAAs
  • 19.2.1 Methionine
  • 19.2.2 Cysteine
  • 19.3 Physiological Aspects of SAA Metabolism
  • 19.3.1 Methionine
  • 19.3.2 Cysteine
  • 19.4 Nutritional Aspects of SAA Metabolism
  • 19.5 SAA Requirement
  • 19.5.1 Definitions of Dietary Requirements With Respect to the SAA
  • 19.5.2 Total SAA Requirement
  • 19.5.3 Minimum Obligatory Requirement for Methionine
  • 19.5.4 Cysteine Sparing of Methionine
  • 19.5.5 SAA Requirement Using Nitrogen Balance
  • 19.5.6 SAA Requirement Using Stable Isotope Tracer Kinetics
  • 19.5.6.1 Indicator Amino Acid Oxidation Technique
  • 19.5.6.2 Twenty-Four Hour IAAO and Balance Technique
  • 19.5.7 SAA Metabolism: Effect of Route of Feeding
  • 19.5.8 Is Cysteine a Conditionally Essential AA in Human Neonates?
  • 19.6 Glutathione
  • 19.6.1 Introduction to GSH Metabolism
  • 19.6.2 Functions of GSH
  • 19.6.3 Physiological Aspects of GSH
  • 19.6.3.1 Concentration Measurement
  • 19.6.3.2 Kinetic Measurement
  • 19.6.3.3 The Precursor Product Model
  • 19.6.3.4 Infusion Protocol
  • 19.6.3.5 Calculations
  • 19.6.4 GSH Metabolism and Synthesis Rates
  • 19.6.4.1 In Healthy States
  • 19.6.4.2 In Stress/Disease/Aging
  • 19.7 Conclusions
  • References
  • IV. Dietary Amino Acid and Protein on Gene Expression
  • 20 Adaptation to Amino Acid Availability: Role of GCN2 in the Regulation of Physiological Functions and in Pathological Dis...
  • 20.1 Introduction
  • 20.1.1 Consequences of a Dietary Amino Acid Deficiency
  • 20.2 The GCN2-EIF2a Pathway
  • 20.2.1 Induction of the GCN2-eIF2a Pathway
  • 20.2.2 Role of the GCN2-eIF2a-ATF4 Pathway in the Transcriptional Regulation of Mammalian Genes by Amino Acid Starvation
  • 20.2.2.1 Amino Acid Response Elements (AARE) Are CARE Sequences
  • 20.2.2.2 ATF4, a Master Regulator of Transcription
  • 20.2.2.3 CHOP, a Major Partner of ATF4 to Modulate Transcription of AARE-Containing Genes
  • 20.2.2.4 Other Factors Involved in the Transcription of ATF4-Regulated Genes
  • 20.2.2.5 Binding Kinetics of ATF4 and Other Factors to AARE-Containing Genes During Amino Acid Deprivation
  • 20.3 Control of Physiological Functions by GCN2
  • 20.3.1 GCN2 and Food Intake
  • 20.3.2 GCN2 and Autophagy
  • 20.3.3 Role of GCN2 in Neural Plasticity
  • 20.3.3.1 eIF2a Phosphorylation Control L-LTP and LTM
  • 20.3.3.2 Developmental Role of the Activation of the Pathway and Role of Impact
  • 20.3.4 Role of GCN2 in Lipid and Glucose Metabolism During Leucine Deprivation
  • 20.3.5 Role of GCN2 in the Immune System
  • 20.4 Involvement of GCN2 in Pathology
  • 20.4.1 GCN2 and Cancer
  • 20.4.2 Role in Lung Vascular Function
  • 20.5 Conclusion
  • References
  • 21 Amino Acid-Related Diseases
  • 21.1 Introduction
  • 21.2 Disorder of Phenylalanine and Tyrosine Metabolism (Phenylketonuria, Hyperphenylalaninemia, Tyrosinemia Type 1)
  • 21.2.1 Phenylketonuria (PKU) and Hyperphenylalaninemia (HPA)
  • 21.2.1.1 Metabolic Derangement
  • 21.2.1.2 Diagnostic Principles
  • 21.2.1.3 Therapeutic Principles
  • 21.2.2 Tyrosinemia Type 1
  • 21.2.2.1 Metabolic Derangement
  • 21.2.2.2 Diagnostic Principles
  • 21.2.2.3 Therapeutic Principles
  • 21.3 Urea Cycle Disorders/Hyperammonemias
  • 21.3.1 Metabolic Derangement
  • 21.3.2 Diagnostic Principles
  • 21.3.3 Therapeutic Principles
  • 21.4 Disorders of Branched-Chain Amino Acid Metabolism (Maple Syrup Urine Disease, Isovaleric Acidemia, Propionic Acidemia,...
  • 21.4.1 Metabolic Derangement
  • 21.4.2 Diagnostic Principles
  • 21.4.3 Therapeutic Principles
  • 21.5 Classical Homocystinuria (HCU)
  • 21.5.1 Metabolic Derangement
  • 21.5.2 Diagnostic Principles
  • 21.5.3 Therapeutic Principles
  • 21.6 Miscellaneous
  • 21.6.1 Glutaric Aciduria Type 1 (GA1)
  • 21.6.2 Nonketotic Hyperglycinemia (NKH)
  • 21.6.3 Disorders of Amino Acid Transport
  • References
  • 22 Genes in Skeletal Muscle Remodeling and Impact of Feeding: Molecular and Cellular Aspects
  • 22.1 Cellular Events Involved in Skeletal Muscle Remodeling
  • 22.1.1 Fatigability
  • 22.1.2 Hypertrophy
  • 22.1.3 Atrophy
  • 22.2 Molecular Pathways Involved in Skeletal Muscle Remodeling
  • 22.2.1 Fatigability
  • 22.2.2 Hypertrophy
  • 22.2.3 Atrophy
  • 22.3 Effects of Feeding on Skeletal Muscle Remodeling
  • 22.3.1 Fatigability
  • 22.3.2 Hypertrophy
  • 22.3.3 Atrophy
  • 22.3.4 Summary
  • References
  • 23 Brain Amino Acid Sensing: The Use of a Rodent Model of Protein-Malnutrition, Lysine Deficiency
  • 23.1 Introduction
  • 23.2 Brain Essential AA Sensing: The Case of the Rodent Model of Lysine Deficiency
  • 23.3 Brain Functional Changes Elicited by Intragastric Stimulation by Nutrients, Glucose, Glutamate, and Sodium Chloride
  • 23.4 Glutamate Signaling in the Gut Triggers Diet-Induced Thermogenesis and Aids in the Prevention of Obesity
  • 23.5 Conclusion
  • Acknowledgments
  • References
  • Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

110,61 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung dieser Web-Seiten erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok