4G, LTE-Advanced Pro and The Road to 5G

 
 
Academic Press
  • 3. Auflage
  • |
  • erschienen am 19. Juli 2016
  • |
  • 616 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-804611-1 (ISBN)
 

The upcoming 5G specifications from 3GPP, to be available in 2018, will include LTE-Advanced Pro as well as a new 5G radio-access technology. This practical and very successful book, written by engineers working closely with 3GPP, gives insight into the newest technologies and standards adopted by 3GPP, with detailed explanations of the specific solutions chosen and their implementation in LTE, LTE-Advanced, and LTE-Advanced Pro, as well as providing a detailed description of the path to 5G and the associated underlying technologies.

This edition has been thoroughly revised and updated to reflect the large extensions to LTE as introduced in 3GPP Releases 12 and 13 and the role of LTE in the upcoming 5G era. New to this edition includes updated content on:

    • 4G and 5G Radio Access
    • Spectrum for 4G and 5G
    • Machine-Type Communication
    • Device-to-Device Communication
    • License-assisted Access
    • Full-dimension MIMO
    • Small-cell enhancements, eIMTA, FDD+TDD aggregation, dual connectivity
    • Requirements on and general structure of 5G wireless access, addressing the existing and new usage scenarios for 5G
    • Technical solutions for the new 5G radio-access technology

    The authors of this book all work at Ericsson Research and have been deeply involved in 3G and 4G development and standardization. They are leading experts in the field and are today actively contributing to the standardization of 4G and 5G within 3GPP.

    • The leading book on 3GPP specifications for LTE, LTE-Advanced, and LTE-Advanced Pro covering up to and including Release 13, written by Ericsson engineers who are heavily involved in the development of 3GPP specifications
    • Ten new chapters and coverage of all major features introduced with Release 12 and 13
    • Two completely new chapters on 5G wireless access including a detailed description of the key technology components under development by 3GPP
    • Englisch
    • San Diego
    Elsevier Science
    • 19,03 MB
    978-0-12-804611-1 (9780128046111)
    0128046112 (0128046112)
    weitere Ausgaben werden ermittelt
    • Front Cover
    • 4G, LTE-Advanced Pro and The Road to 5G
    • 4G, LTE-Advanced Pro and The Road to 5G
    • Copyright
    • Contents
    • Preface
    • Acknowledgments
    • Abbreviations and Acronyms
    • 1 - INTRODUCTION
    • 1.1 1G AND 2G-VOICE-CENTRIC TECHNOLOGIES
    • 1.2 3G AND 4G-MOBILE BROADBAND
    • 1.3 5G-BEYOND MOBILE BROADBAND-NETWORKED SOCIETY
    • 1.4 OUTLINE
    • 2 - SPECTRUM REGULATION AND STANDARDIZATION FROM 3G TO 5G
    • 2.1 OVERVIEW OF STANDARDIZATION AND REGULATION
    • 2.2 ITU-R ACTIVITIES FROM 3G TO 5G
    • 2.2.1 THE ROLE OF ITU-R
    • 2.2.2 IMT-2000 AND IMT-ADVANCED
    • 2.2.3 IMT-2020
    • 2.3 SPECTRUM FOR MOBILE SYSTEMS
    • 2.3.1 SPECTRUM DEFINED FOR IMT SYSTEMS BY THE ITU-R
    • 2.3.2 FREQUENCY BANDS FOR LTE
    • 2.3.3 NEW FREQUENCY BANDS
    • 2.4 SPECTRUM FOR 5G
    • 2.4.1 NEW FREQUENCY BANDS TO BE STUDIED BY WRC
    • 2.4.2 RF EXPOSURE ABOVE 6GHZ
    • 2.5 3GPP STANDARDIZATION
    • 2.5.1 THE 3GPP PROCESS
    • 2.5.2 SPECIFYING 5G IN 3GPP
    • 3 - LTE RADIO ACCESS: AN OVERVIEW
    • 3.1 LTE BASIC TECHNOLOGIES
    • 3.1.1 TRANSMISSION SCHEME
    • 3.1.2 CHANNEL-DEPENDENT SCHEDULING AND RATE ADAPTATION
    • 3.1.3 INTER-CELL INTERFERENCE COORDINATION
    • 3.1.4 MULTI-ANTENNA TRANSMISSION
    • 3.1.5 SPECTRUM FLEXIBILITY
    • 3.1.5.1 Flexibility in duplex arrangements
    • 3.1.5.2 Bandwidth flexibility
    • 3.1.6 MULTICAST AND BROADCAST SUPPORT
    • 3.1.7 POSITIONING
    • 3.2 LTE EVOLUTION
    • 3.3 SPECTRUM FLEXIBILITY
    • 3.3.1 CARRIER AGGREGATION
    • 3.3.2 LICENSE-ASSISTED ACCESS
    • 3.4 MULTI-ANTENNA ENHANCEMENTS
    • 3.4.1 EXTENDED MULTI-ANTENNA TRANSMISSION
    • 3.4.2 MULTI-POINT COORDINATION AND TRANSMISSION
    • 3.4.3 ENHANCED CONTROL-CHANNEL STRUCTURE
    • 3.5 DENSIFICATION, SMALL CELLS, AND HETEROGENEOUS DEPLOYMENTS
    • 3.5.1 RELAYING
    • 3.5.2 HETEROGENEOUS DEPLOYMENTS
    • 3.5.3 SMALL-CELL ON-OFF
    • 3.5.4 DUAL CONNECTIVITY
    • 3.5.5 DYNAMIC TDD
    • 3.5.6 WLAN INTERWORKING
    • 3.6 DEVICE ENHANCEMENTS
    • 3.7 NEW SCENARIOS
    • 3.7.1 DEVICE-TO-DEVICE COMMUNICATION
    • 3.7.2 MACHINE-TYPE COMMUNICATION
    • 3.8 DEVICE CAPABILITIES
    • 4 - RADIO-INTERFACE ARCHITECTURE
    • 4.1 OVERALL SYSTEM ARCHITECTURE
    • 4.1.1 CORE NETWORK
    • 4.1.2 RADIO-ACCESS NETWORK
    • 4.2 RADIO PROTOCOL ARCHITECTURE
    • 4.2.1 PACKET-DATA CONVERGENCE PROTOCOL
    • 4.2.2 RADIO-LINK CONTROL
    • 4.2.3 MEDIUM-ACCESS CONTROL
    • 4.2.3.1 Logical Channels and Transport Channels
    • 4.2.3.2 Scheduling
    • 4.2.3.3 Hybrid ARQ with Soft Combining
    • 4.2.4 PHYSICAL LAYER
    • 4.3 CONTROL-PLANE PROTOCOLS
    • 4.3.1 STATE MACHINE
    • 5 - PHYSICAL TRANSMISSION RESOURCES
    • 5.1 OVERALL TIME-FREQUENCY STRUCTURE
    • 5.2 NORMAL SUBFRAMES AND MBSFN SUBFRAMES
    • 5.3 ANTENNA PORTS
    • 5.3.1 QUASI-CO-LOCATED ANTENNA PORTS
    • 5.4 DUPLEX SCHEMES
    • 5.4.1 FREQUENCY-DIVISION DUPLEX
    • 5.4.2 TIME-DIVISION DUPLEX
    • 5.4.3 LTE AND TD-SCDMA COEXISTENCE
    • 5.4.4 LICENSE-ASSISTED ACCESS
    • 5.5 CARRIER AGGREGATION
    • 5.6 FREQUENCY-DOMAIN LOCATION OF LTE CARRIERS
    • 6 - DOWNLINK PHYSICAL-LAYER PROCESSING
    • 6.1 TRANSPORT-CHANNEL PROCESSING
    • 6.1.1 PROCESSING STEPS
    • 6.1.1.1 CRC Insertion per Transport Block
    • 6.1.1.2 Code-Block Segmentation and per-Code-Block CRC Insertion
    • 6.1.1.3 Channel Coding
    • 6.1.1.4 Rate Matching and Physical-Layer Hybrid-ARQ Functionality
    • 6.1.1.5 Bit-Level Scrambling
    • 6.1.1.6 Data Modulation
    • 6.1.1.7 Antenna Mapping
    • 6.1.1.8 Resource-Block Mapping
    • 6.1.2 LOCALIZED AND DISTRIBUTED RESOURCE MAPPING
    • 6.2 DOWNLINK REFERENCE SIGNALS
    • 6.2.1 CELL-SPECIFIC REFERENCE SIGNALS
    • 6.2.1.1 Structure of a Single Reference Signal
    • 6.2.1.2 Multiple Reference Signals
    • 6.2.2 DEMODULATION REFERENCE SIGNALS
    • 6.2.2.1 DM-RS for PDSCH
    • 6.2.2.2 DM-RS for EPDCCH
    • 6.2.3 CSI REFERENCE SIGNALS
    • 6.2.3.1 CSI-RS Structure
    • 6.2.3.2 CSI-RS and PDSCH Mapping
    • 6.2.3.3 Zero-Power CSI-RS
    • 6.2.4 QUASI-COLOCATION RELATIONS
    • 6.3 MULTI-ANTENNA TRANSMISSION
    • 6.3.1 TRANSMISSION MODES
    • 6.3.2 TRANSMIT DIVERSITY
    • 6.3.2.1 Transmit Diversity for Two Antenna Ports
    • 6.3.2.2 Transmit Diversity for Four Antenna Ports
    • 6.3.3 CODEBOOK-BASED PRECODING
    • 6.3.3.1 Closed-Loop Precoding
    • 6.3.3.2 Open-Loop Precoding
    • 6.3.4 NON-CODEBOOK-BASED PRECODING
    • 6.3.5 DOWNLINK MU-MIMO
    • 6.3.5.1 MU-MIMO within Transmission Modes 8/9
    • 6.3.5.2 MU-MIMO Based on CRS
    • 6.4 DOWNLINK L1/L2 CONTROL SIGNALING
    • 6.4.1 PHYSICAL CONTROL FORMAT INDICATOR CHANNEL
    • 6.4.2 PHYSICAL HYBRID-ARQ INDICATOR CHANNEL
    • 6.4.3 PHYSICAL DOWNLINK CONTROL CHANNEL
    • 6.4.4 ENHANCED PHYSICAL DOWNLINK CONTROL CHANNEL
    • 6.4.5 BLIND DECODING OF PDCCHS AND EPDCCHS
    • 6.4.6 DOWNLINK SCHEDULING ASSIGNMENTS
    • 6.4.6.1 Signaling of Downlink Resource-Block Allocations
    • 6.4.6.2 Signaling of Transport-Block Sizes
    • 6.4.7 UPLINK SCHEDULING GRANTS
    • 6.4.7.1 Signaling of Uplink Resource-Block Allocations
    • 6.4.8 POWER-CONTROL COMMANDS
    • 7 - UPLINK PHYSICAL-LAYER PROCESSING
    • 7.1 TRANSPORT-CHANNEL PROCESSING
    • 7.1.1 PROCESSING STEPS
    • 7.1.2 MAPPING TO THE PHYSICAL RESOURCE
    • 7.1.3 PUSCH FREQUENCY HOPPING
    • 7.1.3.1 Hopping Based on Cell-Specific Hopping/Mirroring Patterns
    • 7.1.3.2 Hopping Based on Explicit Hopping Information
    • 7.2 UPLINK REFERENCE SIGNALS
    • 7.2.1 DEMODULATION REFERENCE SIGNALS
    • 7.2.1.1 Time-Frequency Structure
    • 7.2.1.2 Base Sequences
    • 7.2.1.3 Phase-Rotation and Orthogonal Cover Codes
    • 7.2.1.4 Base-Sequence Assignment
    • 7.2.1.5 Assignment of Phase Rotation and OCC
    • 7.2.2 SOUNDING REFERENCE SIGNALS
    • 7.2.2.1 Periodic SRS Transmission
    • 7.2.2.2 Aperiodic SRS Transmission
    • 7.3 UPLINK MULTI-ANTENNA TRANSMISSION
    • 7.3.1 PRECODER-BASED MULTI-ANTENNA TRANSMISSION FOR PUSCH
    • 7.3.2 UPLINK MULTI-USER MIMO
    • 7.3.3 PUCCH TRANSMIT DIVERSITY
    • 7.4 UPLINK L1/L2 CONTROL SIGNALING
    • 7.4.1 BASIC PUCCH STRUCTURE
    • 7.4.1.1 PUCCH Format 1
    • 7.4.1.2 PUCCH Format 2
    • 7.4.1.3 PUCCH Format 3
    • 7.4.1.4 PUCCH Format 4
    • 7.4.1.5 PUCCH Format 5
    • 7.4.1.6 Resource-Block Mapping for PUCCH
    • 7.4.2 UPLINK CONTROL SIGNALING ON PUCCH
    • 7.4.2.1 Hybrid-ARQ Acknowledgments
    • 7.4.2.2 Scheduling Request
    • 7.4.2.3 Hybrid-ARQ Acknowledgments and Scheduling Request
    • 7.4.2.4 Channel-State Information
    • 7.4.2.5 Hybrid-ARQ Acknowledgments and CSI
    • 7.4.2.6 Scheduling Request and CSI
    • 7.4.2.7 Hybrid-ARQ Acknowledgments, CSI and Scheduling Request
    • 7.4.3 UPLINK L1/L2 CONTROL SIGNALING ON PUSCH
    • 7.5 UPLINK POWER CONTROL
    • 7.5.1 UPLINK POWER CONTROL: SOME BASIC RULES
    • 7.5.2 POWER CONTROL FOR PUCCH
    • 7.5.3 POWER CONTROL FOR PUSCH
    • 7.5.4 POWER CONTROL FOR SRS
    • 7.6 UPLINK TIMING ALIGNMENT
    • 8 - RETRANSMISSION PROTOCOLS
    • 8.1 HYBRID ARQ WITH SOFT COMBINING
    • 8.1.1 DOWNLINK HYBRID ARQ
    • 8.1.2 UPLINK HYBRID ARQ
    • 8.1.3 HYBRID-ARQ TIMING
    • 8.1.3.1 Hybrid-ARQ Timing for FDD
    • 8.1.3.2 Hybrid-ARQ Timing for TDD
    • 8.2 RADIO-LINK CONTROL
    • 8.2.1 SEGMENTATION, CONCATENATION, AND REASSEMBLY OF RLC SDUS
    • 8.2.2 RLC RETRANSMISSION
    • 8.2.3 IN-SEQUENCE DELIVERY
    • 8.2.4 RLC OPERATION
    • 9 - SCHEDULING AND RATE ADAPTATION
    • 9.1 SCHEDULING STRATEGIES
    • 9.2 DOWNLINK SCHEDULING
    • 9.3 UPLINK SCHEDULING
    • 9.3.1 UPLINK PRIORITY HANDLING
    • 9.3.2 SCHEDULING REQUESTS
    • 9.3.3 BUFFER STATUS REPORTS
    • 9.3.4 POWER HEADROOM REPORTS
    • 9.4 TIMING OF SCHEDULING ASSIGNMENTS/GRANTS
    • 9.4.1 DOWNLINK SCHEDULING TIMING
    • 9.4.2 UPLINK SCHEDULING TIMING
    • 9.5 SEMI-PERSISTENT SCHEDULING
    • 9.6 SCHEDULING FOR HALF-DUPLEX FDD
    • 9.7 DISCONTINUOUS RECEPTION
    • 10 - CHANNEL-STATE INFORMATION AND FULL-DIMENSION MIMO
    • 10.1 CSI REPORTS
    • 10.2 PERIODIC AND APERIODIC CSI REPORTS
    • 10.2.1 APERIODIC CSI REPORTS
    • 10.2.2 PERIODIC CSI REPORTS
    • 10.3 INTERFERENCE ESTIMATION
    • 10.4 CHANNEL-QUALITY INDICATOR
    • 10.5 RANK INDICATOR AND PRECODER MATRIX INDICATOR
    • 10.6 FULL-DIMENSION MIMO
    • 10.6.1 CSI FEEDBACK FOR MASSIVE ANTENNA ARRANGEMENTS
    • 10.6.2 CSI REPORTING CLASS A
    • 10.6.3 CSI REPORTING CLASS B
    • 11 - ACCESS PROCEDURES
    • 11.1 ACQUISITION AND CELL SEARCH
    • 11.1.1 OVERVIEW OF LTE CELL SEARCH
    • 11.1.2 PSS STRUCTURE
    • 11.1.3 SSS STRUCTURE
    • 11.2 SYSTEM INFORMATION
    • 11.2.1 MIB AND BCH TRANSMISSION
    • 11.2.2 SYSTEM-INFORMATION BLOCKS
    • 11.3 RANDOM ACCESS
    • 11.3.1 STEP 1: RANDOM-ACCESS PREAMBLE TRANSMISSION
    • 11.3.1.1 PRACH Time-Frequency Resources
    • 11.3.1.2 Preamble Structure and Sequence Selection
    • 11.3.1.3 PRACH Power Setting
    • 11.3.1.4 Preamble Sequence Generation
    • 11.3.1.5 Preamble Detection
    • 11.3.2 STEP 2: RANDOM-ACCESS RESPONSE
    • 11.3.3 STEP 3: DEVICE IDENTIFICATION
    • 11.3.4 STEP 4: CONTENTION RESOLUTION
    • 11.4 PAGING
    • 12 - CARRIER AGGREGATION
    • 12.1 OVERALL PROTOCOL STRUCTURE
    • 12.2 PRIMARY AND SECONDARY COMPONENT CARRIERS
    • 12.3 SELF-SCHEDULING AND CROSS-CARRIER SCHEDULING
    • 12.3.1 SCHEDULING TIMING FOR AGGREGATION OF FDD CARRIERS
    • 12.3.2 SCHEDULING TIMING FOR AGGREGATION OF TDD CARRIERS
    • 12.3.3 SCHEDULING TIMING FOR AGGREGATION OF FDD AND TDD CARRIERS
    • 12.4 DRX AND COMPONENT-CARRIER DEACTIVATION
    • 12.5 DOWNLINK CONTROL SIGNALING
    • 12.5.1 PCFICH
    • 12.5.2 PHICH
    • 12.5.3 PDCCH AND EPDCCH
    • 12.6 UPLINK CONTROL SIGNALING
    • 12.6.1 HYBRID-ARQ ACKNOWLEDGMENTS ON PUCCH
    • 12.6.2 CSI REPORTING ON PUCCH
    • 12.6.3 CONTROL SIGNALING ON PUSCH
    • 12.7 TIMING ADVANCE AND CARRIER AGGREGATION
    • 13 - MULTI-POINT COORDINATION AND TRANSMISSION
    • 13.1 INTER-CELL INTERFERENCE COORDINATION
    • 13.2 MULTI-POINT COORDINATION/TRANSMISSION
    • 13.2.1 MULTI-POINT COORDINATION
    • 13.2.1.1 Coordinated Link Adaptation
    • 13.2.1.2 Coordinated Scheduling
    • 13.2.2 MULTI-POINT TRANSMISSION
    • 13.2.2.1 Dynamic Point Selection
    • 13.2.2.2 Joint Transmission
    • 13.2.3 UPLINK MULTI-POINT COORDINATION/RECEPTION
    • 14 - HETEROGENEOUS DEPLOYMENTS
    • 14.1 INTERFERENCE SCENARIOS IN HETEROGENEOUS DEPLOYMENTS
    • 14.2 HETEROGENEOUS DEPLOYMENTS USING REL-8 FUNCTIONALITY
    • 14.3 FREQUENCY-DOMAIN PARTITIONING
    • 14.4 TIME-DOMAIN PARTITIONING
    • 14.5 SHARED CELL
    • 14.6 CLOSED SUBSCRIBER GROUPS
    • 15 - SMALL-CELL ENHANCEMENTS AND DYNAMIC TDD
    • 15.1 SMALL-CELL ON/OFF
    • 15.1.1 DISCOVERY SIGNAL AND ASSOCIATED MEASUREMENTS
    • 15.2 DYNAMIC TDD AND EIMTA
    • 15.2.1 BASIC PRINCIPLES OF EIMTA
    • 15.2.2 SCHEDULING AND HYBRID-ARQ RETRANSMISSIONS
    • 15.2.3 RRM MEASUREMENTS AND CSI REPORTING
    • 15.2.4 UPLINK POWER CONTROL
    • 15.2.5 INTER-CELL INTERFERENCE COORDINATION
    • 16 - DUAL CONNECTIVITY
    • 16.1 ARCHITECTURE
    • 16.2 PHYSICAL-LAYER IMPACT
    • 16.2.1 TIMING
    • 16.2.2 POWER CONTROL
    • 16.3 SCHEDULING IN DUAL CONNECTIVITY
    • 17 - UNLICENSED SPECTRUM AND LICENSE-ASSISTED ACCESS
    • 17.1 SPECTRUM FOR LAA
    • 17.2 WI-FI BASICS
    • 17.3 TECHNOLOGY COMPONENTS FOR LAA
    • 17.3.1 DYNAMIC FREQUENCY SELECTION
    • 17.3.2 LISTEN BEFORE TALK
    • 17.3.3 FRAME STRUCTURE AND BURST TRANSMISSION
    • 17.3.4 REFERENCE SIGNALS AND DISCONTINUOUS TRANSMISSION
    • 17.3.5 SCHEDULING, HYBRID-ARQ, AND RETRANSMISSIONS
    • 17.3.6 RADIO BEARER MAPPING AND QOS CONTROL
    • 17.4 ENHANCEMENTS BEYOND RELEASE 13
    • 18 - RELAYING
    • 18.1 RELAYS IN LTE
    • 18.2 OVERALL ARCHITECTURE
    • 18.3 BACKHAUL DESIGN FOR INBAND RELAYING
    • 18.3.1 ACCESS-LINK HYBRID-ARQ OPERATION
    • 18.3.2 BACKHAUL-LINK HYBRID-ARQ OPERATION
    • 18.3.3 BACKHAUL DOWNLINK CONTROL SIGNALING
    • 18.3.4 REFERENCE SIGNALS FOR THE BACKHAUL LINK
    • 18.3.5 BACKHAUL-ACCESS LINK TIMING
    • 19 - MULTIMEDIA BROADCAST/MULTICAST SERVICES
    • 19.1 ARCHITECTURE
    • 19.2 MBSFN CHANNEL STRUCTURE AND PHYSICAL-LAYER PROCESSING
    • 19.3 SCHEDULING OF MBSFN SERVICES
    • 19.4 SINGLE-CELL POINT TO MULTIPOINT TRANSMISSION
    • 20 - LTE FOR MASSIVE MTC APPLICATIONS
    • 20.1 INTRODUCTION
    • 20.2 MTC ENHANCEMENTS FOR LTE RELEASE 12
    • 20.2.1 DATA-RATE CAPABILITY AND UE CATEGORY 0
    • 20.2.2 TYPE-B HALF-DUPLEX OPERATION
    • 20.2.3 POSSIBILITY FOR DEVICES WITH A SINGLE RECEIVE ANTENNA
    • 20.2.4 POWER-SAVING MODE
    • 20.3 MTC ENHANCEMENTS FOR LTE RELEASE 13: EMTC
    • 20.3.1 NARROW-BAND OPERATION
    • 20.3.2 COVERAGE ENHANCEMENTS BY MEANS OF REPETITION
    • 20.3.3 DOWNLINK TRANSMISSION: PDSCH AND MPDCCH
    • 20.3.3.1 Downlink Transmission Modes
    • 20.3.3.2 PDSCH/MPDCCH Repetition
    • 20.3.3.3 PDSCH Scheduling
    • 20.3.3.4 Downlink Hybrid ARQ
    • 20.3.4 UPLINK TRANSMISSION: PUSCH AND PUCCH
    • 20.3.4.1 PUSCH Scheduling
    • 20.3.4.2 Uplink Hybrid ARQ
    • 20.3.4.3 PUCCH
    • 20.3.4.4 Uplink Power Control
    • 20.3.5 SYNCHRONIZATION SIGNALS AND BCH
    • 20.3.6 SYSTEM-INFORMATION BLOCKS
    • 20.3.7 RANDOM ACCESS
    • 20.3.8 EXTENDED DRX
    • 20.4 NARROW-BAND INTERNET OF THINGS
    • 20.4.1 BACKGROUND
    • 20.4.2 NB-IOT DEPLOYMENT MODES
    • 20.4.3 DOWNLINK DATA TRANSMISSION
    • 20.4.4 UPLINK TRANSMISSION
    • 20.4.5 NB-IOT SYSTEM INFORMATION
    • 21 - DEVICE-TO-DEVICE CONNECTIVITY
    • 21.1 OVERVIEW
    • 21.1.1 SIDELINK TRANSMISSION
    • 21.1.2 IN-COVERAGE VS. OUT-OF-COVERAGE SIDELINK CONNECTIVITY
    • 21.1.3 SIDELINK SYNCHRONIZATION
    • 21.1.4 CONFIGURATION FOR SIDELINK CONNECTIVITY
    • 21.1.5 ARCHITECTURE FOR SIDELINK
    • 21.1.6 SIDELINK CHANNEL STRUCTURE
    • 21.2 SIDELINK COMMUNICATION
    • 21.2.1 RESOURCE POOLS AND ASSIGNMENT/SELECTION OF TRANSMISSION RESOURCES
    • 21.2.2 PHYSICAL SIDELINK CONTROL CHANNEL PERIODS
    • 21.2.3 SIDELINK CONTROL INFORMATION/PHYSICAL SIDELINK CONTROL CHANNEL TRANSMISSION
    • 21.2.4 SIDELINK SHARED CHANNEL/PHYSICAL SIDELINK SHARED CHANNEL TRANSMISSION
    • 21.2.5 SIDELINK CONTROL INFORMATION CONTENT
    • 21.2.6 SCHEDULING GRANTS AND DCI FORMAT 5
    • 21.2.7 RECEPTION RESOURCE POOLS
    • 21.3 SIDELINK DISCOVERY
    • 21.3.1 RESOURCE POOLS AND SELECTION/ASSIGNMENT OF TRANSMISSION RESOURCES
    • 21.3.2 DISCOVERY TRANSMISSION
    • 21.3.3 RECEPTION RESOURCE POOLS
    • 21.4 SIDELINK SYNCHRONIZATION
    • 21.4.1 SIDELINK IDENTITY AND STRUCTURE OF THE SIDELINK SYNCHRONIZATION SIGNAL
    • 21.4.2 THE SIDELINK BROADCAST CHANNEL AND SIDELINK MASTER INFORMATION BLOCK
    • 21.4.3 SYNCREF UE SELECTION
    • 21.4.4 TRANSMISSION OF SIDELINK SYNCHRONIZATION SIGNALS
    • 21.4.4.1 In-coverage Devices
    • 21.4.4.2 Out-of-coverage Devices
    • 21.5 DEVICE-TO-DEVICE EXTENSIONS IN LTE RELEASE 13
    • 21.5.1 OUT-OF-COVERAGE DISCOVERY
    • 21.5.2 LAYER-3 RELAYING
    • 22 - SPECTRUM AND RF CHARACTERISTICS
    • 22.1 FLEXIBLE SPECTRUM USE
    • 22.2 FLEXIBLE CHANNEL BANDWIDTH OPERATION
    • 22.3 CARRIER AGGREGATION FOR LTE
    • 22.4 OPERATION IN NONCONTIGUOUS SPECTRUM
    • 22.5 MULTI-STANDARD RADIO BASE STATIONS
    • 22.6 OVERVIEW OF RF REQUIREMENTS FOR LTE
    • 22.6.1 TRANSMITTER CHARACTERISTICS
    • 22.6.2 RECEIVER CHARACTERISTICS
    • 22.6.3 REGIONAL REQUIREMENTS
    • 22.6.4 BAND-SPECIFIC TERMINAL REQUIREMENTS THROUGH NETWORK SIGNALING
    • 22.6.5 BASE-STATION CLASSES
    • 22.7 OUTPUT POWER LEVEL REQUIREMENTS
    • 22.7.1 BASE-STATION OUTPUT POWER AND DYNAMIC RANGE
    • 22.7.2 TERMINAL OUTPUT POWER AND DYNAMIC RANGE
    • 22.8 TRANSMITTED SIGNAL QUALITY
    • 22.8.1 EVM AND FREQUENCY ERROR
    • 22.8.2 TERMINAL IN-BAND EMISSIONS
    • 22.8.3 BASE-STATION TIME ALIGNMENT
    • 22.9 UNWANTED EMISSIONS REQUIREMENTS
    • 22.9.1 IMPLEMENTATION ASPECTS
    • 22.9.2 SPECTRUM EMISSION MASK
    • 22.9.2.1 Base-Station Operating Band Unwanted Emission Limits
    • 22.9.2.2 Terminal Spectrum Emission Mask
    • 22.9.3 ADJACENT CHANNEL LEAKAGE RATIO
    • 22.9.4 SPURIOUS EMISSIONS
    • 22.9.5 OCCUPIED BANDWIDTH
    • 22.9.6 TRANSMITTER INTERMODULATION
    • 22.10 SENSITIVITY AND DYNAMIC RANGE
    • 22.11 RECEIVER SUSCEPTIBILITY TO INTERFERING SIGNALS
    • 22.12 MULTIBAND-CAPABLE BASE STATIONS
    • 22.13 RF REQUIREMENTS FOR RELAYS
    • 22.14 RF REQUIREMENTS FOR LICENSE-ASSISTED ACCESS
    • 22.14.1 REGULATORY REQUIREMENTS FOR THE UNLICENSED 5GHZ BAND
    • 22.14.2 SPECIFIC BS RF REQUIREMENTS FOR LAA OPERATION
    • 22.14.3 SPECIFIC TERMINAL RF REQUIREMENTS FOR LAA OPERATION
    • 22.15 RF REQUIREMENTS FOR BS WITH ACTIVE ANTENNA SYSTEMS
    • 23 - 5G WIRELESS ACCESS
    • 23.1 WHAT IS 5G?
    • 23.1.1 DATA RATES
    • 23.1.2 LATENCY
    • 23.1.3 EXTREME RELIABILITY
    • 23.1.4 LOW-COST DEVICES WITH VERY LONG BATTERY LIFE
    • 23.1.5 NETWORK ENERGY EFFICIENCY
    • 23.2 5G AND IMT-2020
    • 23.2.1 USAGE SCENARIOS FOR IMT-2020
    • 23.2.2 CAPABILITIES OF IMT-2020
    • 23.2.3 STUDIES OF 5G IN REGIONAL AND OPERATOR GROUPS
    • 23.3 ONE VERSUS MULTIPLE TECHNOLOGIES: "NETWORK SLICING"
    • 23.4 5G SPECTRUM
    • 23.4.1 EXPANSION INTO HIGHER-FREQUENCY BANDS
    • 23.4.2 LICENSED VERSUS UNLICENSED SPECTRUM
    • 23.5 LTE EVOLUTION VERSUS NEW 5G TECHNOLOGY
    • 23.6 FREQUENCY BANDS FOR 5G INITIAL DEPLOYMENTS
    • 23.7 5G TECHNICAL SPECIFICATION
    • 24 - NEW 5G RADIO-ACCESS TECHNOLOGY
    • 24.1 5G: SOME GENERAL DESIGN PRINCIPLES
    • 24.1.1 RADIO-ACCESS EVOLUTION AND FORWARD COMPATIBILITY
    • 24.1.2 ULTRA-LEAN DESIGN: MINIMIZE "ALWAYS-ON" TRANSMISSIONS
    • 24.1.3 STAY IN THE BOX
    • 24.1.4 AVOID STRICT TIMING RELATIONS
    • 24.2 5G: KEY TECHNOLOGY COMPONENTS
    • 24.2.1 WAVEFORM
    • 24.2.1.1 Scalable OFDM
    • 24.2.1.2 Spectral Shaping
    • 24.2.1.3 Low-PAPR Transmission
    • 24.2.2 FLEXIBLE DUPLEX
    • 24.2.2.1 Dynamic TDD
    • 24.2.2.2 What About Full Duplex?
    • 24.2.3 FRAME STRUCTURE
    • 24.2.4 CHANNEL CODING
    • 24.2.5 MULTI-ANTENNA TRANSMISSION AND BEAM-FORMING
    • 24.2.6 MULTI-SITE CONNECTIVITY AND TIGHT INTERWORKING
    • 24.2.7 SYSTEM-ACCESS FUNCTIONALITY
    • 24.2.8 SCHEDULED AND CONTENTION-BASED TRANSMISSIONS
    • 24.2.9 NEW TYPES OF WIRELESS LINKS
    • 24.2.9.1 Access/Backhaul Convergence
    • 24.2.9.2 Integrated Device-to-Device Connectivity
    • 25 - CONCLUDING REMARKS
    • References
    • Index
    • A
    • B
    • C
    • D
    • E
    • F
    • G
    • H
    • I
    • J
    • L
    • M
    • N
    • O
    • P
    • Q
    • R
    • S
    • T
    • U
    • V
    • W
    • X
    • Z
    • Back Cover

    Dateiformat: EPUB
    Kopierschutz: Adobe-DRM (Digital Rights Management)

    Systemvoraussetzungen:

    Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

    Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

    E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

    Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

    Weitere Informationen finden Sie in unserer E-Book Hilfe.


    Dateiformat: PDF
    Kopierschutz: Adobe-DRM (Digital Rights Management)

    Systemvoraussetzungen:

    Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

    Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

    E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

    Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

    Weitere Informationen finden Sie in unserer E-Book Hilfe.


    Download (sofort verfügbar)

    85,62 €
    inkl. 19% MwSt.
    Download / Einzel-Lizenz
    ePUB mit Adobe DRM
    siehe Systemvoraussetzungen
    PDF mit Adobe DRM
    siehe Systemvoraussetzungen
    Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
    E-Book bestellen

    Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok