Chemical Ligation

Tools for Biomolecule Synthesis and Modification
 
 
Standards Information Network (Verlag)
  • erschienen am 16. März 2017
  • |
  • 576 Seiten
 
E-Book | PDF mit Adobe-DRM | Systemvoraussetzungen
978-1-119-04409-3 (ISBN)
 
Presenting a wide array of information on chemical ligation - one of the more powerful tools for protein and peptide synthesis - this book helps readers understand key methodologies and applications that protein therapeutic synthesis, drug discovery, and molecular imaging.
* Moves from fundamental to applied aspects, so that novice readers can follow the entire book and apply these reactions in the lab
* Presents a wide array of information on chemical ligation reactions, otherwise scattered across the literature, into one source
* Features comprehensive and multidisciplinary coverage that goes from basics to advanced topics
* Helps researchers choose the right chemical ligation technique for their needs
1. Auflage
  • Englisch
  • New York
  • |
  • USA
John Wiley & Sons Inc
  • Für Beruf und Forschung
  • |
  • Für höhere Schule und Studium
  • 14,43 MB
978-1-119-04409-3 (9781119044093)
weitere Ausgaben werden ermittelt
Luca D. D'Andrea, PhD, is Research Scientist at the Institute of Biostructures and Bioimaging, CNR Naples, Italy. His scientific interests are in the field of peptide and protein chemistry. His research activity focuses on design, synthesis, and structural characterization of peptide/proteins as therapeutic/diagnostic agents.
Alessandra Romanelli, PhD, is assistant professor of General Chemistry at Department of Pharmacy, University of Naples "Federico II", Italy. She actively works in the field of peptides and peptide-based molecules (such as peptide nucleic acids) as tools for chemical biology.
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright [Seite 6]
4 - Contents [Seite 7]
5 - List of Figures [Seite 15]
6 - List of Plates [Seite 25]
7 - List of Contributors [Seite 31]
8 - Preface [Seite 35]
9 - Chapter 1 Introduction to Chemical Ligation Reactions [Seite 37]
9.1 - 1.1 Introduction [Seite 37]
9.1.1 - 1.1.1 Chemical Synthesis of Proteins: From the Stepwise Synthesis to the Chemical Ligation Approach [Seite 38]
9.1.2 - 1.1.2 Chemical Modification of Proteins: From Conventional Methods to Chemoselective Labeling by Chemical Ligation [Seite 41]
9.2 - 1.2 Chemical Ligation Chemistries [Seite 42]
9.3 - 1.3 Imine Ligations [Seite 43]
9.3.1 - 1.3.1 Oxime Ligation [Seite 43]
9.3.2 - 1.3.2 Hydrazone Ligation [Seite 49]
9.3.3 - 1.3.3 Pictet-Spengler Ligation [Seite 51]
9.3.4 - 1.3.4 Thiazolidine Ligation [Seite 55]
9.4 - 1.4 Serine/Threonine Ligation (STL) [Seite 57]
9.5 - 1.5 Thioether Ligation [Seite 60]
9.6 - 1.6 Thioester Ligation [Seite 61]
9.6.1 - 1.6.1 Native Chemical Ligation (NCL) [Seite 62]
9.6.2 - 1.6.2 Expressed Protein Ligation (EPL) [Seite 76]
9.6.3 - 1.6.3 Thioacid-Mediated Ligation Strategies [Seite 80]
9.7 - 1.7 ?-Ketoacid-Hydroxylamine (KAHA) Ligation [Seite 85]
9.7.1 - 1.7.1 Acyltrifluoroborates and Hydroxylamines Ligation [Seite 87]
9.8 - 1.8 Staudinger Ligation [Seite 88]
9.9 - 1.9 Azide-Alkyne Cycloaddition [Seite 93]
9.10 - 1.10 Diels-Alder Ligation [Seite 97]
9.11 - References [Seite 100]
10 - Chapter 2 Protein Chemical Synthesis by SEA Ligation [Seite 125]
10.1 - 2.1 Introduction [Seite 125]
10.2 - 2.2 Essential Chemical Properties of SEA Group [Seite 129]
10.3 - 2.3 Protein Total Synthesis Using SEA Chemistry - SEAon/off Concept [Seite 133]
10.3.1 - 2.3.1 Synthesis of SEAoff Peptide Segments [Seite 133]
10.3.2 - 2.3.2 SEAon/off Concept and the Design of a One-Pot Three Peptide Segment Assembly Process [Seite 135]
10.3.3 - 2.3.3 SEA on/off Concept and the Solid-Phase Synthesis of Proteins in the N-to-C Direction [Seite 139]
10.4 - 2.4 Chemical Synthesis of HGF/SF Subdomains for Deciphering the Functioning of HGF/SF-MET System [Seite 142]
10.5 - 2.5 Conclusion [Seite 150]
10.6 - References [Seite 150]
11 - Chapter 3 Development of Serine/Threonine Ligation and Its Applications [Seite 161]
11.1 - 3.1 Introduction [Seite 161]
11.1.1 - 3.1.1 Protein Synthesis by SPPS [Seite 161]
11.1.2 - 3.1.2 Native Chemical Ligation (and Extended Desulfurization) [Seite 161]
11.1.3 - 3.1.3 KAHA Ligation [Seite 164]
11.2 - 3.2 Serine/Threonine Ligation (STL) [Seite 166]
11.2.1 - 3.2.1 SAL Ester Preparation [Seite 166]
11.2.2 - 3.2.2 N-Terminal-Protecting Group for Successive C-to-N Ser/Thr Ligations [Seite 172]
11.2.3 - 3.2.3 Scope and Limitations [Seite 173]
11.3 - 3.3 Application of STL in Protein Synthesis [Seite 176]
11.3.1 - 3.3.1 Consecutive STL of Peptides/Proteins [Seite 176]
11.3.2 - 3.3.2 STL-Mediated Peptide Cyclization [Seite 179]
11.3.3 - 3.3.3 Thiol SAL Ester-Mediated Aminolysis in Peptide Cyclization [Seite 183]
11.3.4 - 3.3.4 A Fluorogenic Probe for Recognizing 5-OH-Lys Inspired by STL [Seite 185]
11.3.5 - 3.3.5 Expressed Protein Semisynthesis via Ser/Thr Ligation [Seite 187]
11.4 - 3.4 Conclusion and Outlook [Seite 190]
11.5 - References [Seite 190]
12 - Chapter 4 Synthesis of Proteins by Native Chemical Ligation-Desulfurization Strategies [Seite 197]
12.1 - 4.1 Introduction [Seite 197]
12.2 - 4.2 Ligation-Desulfurization and Early Applications [Seite 198]
12.2.1 - 4.2.1 Metal?Free Desulfurization [Seite 200]
12.2.2 - 4.2.2 Ligation-Desulfurization toward the Synthesis of Proteins [Seite 202]
12.3 - 4.3 Beyond Native Chemical Ligation at Cysteine - The Development of Thiolated Amino Acids and Their Application in Protein Synthesis [Seite 210]
12.3.1 - 4.3.1 Phenylalanine [Seite 210]
12.3.2 - 4.3.2 Valine [Seite 214]
12.3.3 - 4.3.3 Lysine [Seite 215]
12.3.4 - 4.3.4 Threonine [Seite 224]
12.3.5 - 4.3.5 Leucine [Seite 224]
12.3.6 - 4.3.6 Proline [Seite 229]
12.3.7 - 4.3.7 Glutamine [Seite 234]
12.3.8 - 4.3.8 Arginine [Seite 234]
12.3.9 - 4.3.9 Aspartic Acid [Seite 234]
12.3.10 - 4.3.10 Glutamic Acid [Seite 238]
12.3.11 - 4.3.11 Tryptophan [Seite 242]
12.3.12 - 4.3.12 GlcNAc-Asparagine [Seite 242]
12.3.13 - 4.3.13 Asparagine [Seite 242]
12.4 - 4.4 Ligation-Deselenization in the Chemical Synthesis of Proteins [Seite 247]
12.4.1 - 4.4.1 Selenol Amino Acids [Seite 250]
12.5 - 4.5 Conclusions and Future Directions [Seite 252]
12.6 - References [Seite 254]
13 - Chapter 5 Synthesis of Chemokines by Chemical Ligation [Seite 259]
13.1 - 5.1 Introduction - The Chemokine-Chemokine Receptor Multifunctional System [Seite 259]
13.2 - 5.2 Synthesis of Chemokines by Native Chemical Ligation [Seite 260]
13.3 - 5.3 Synthesis of Chemokines by Alternative Chemical Ligation [Seite 267]
13.4 - 5.4 Semisynthesis of Chemokines by Expressed Protein Ligation [Seite 269]
13.5 - 5.5 Prospects [Seite 277]
13.6 - References [Seite 279]
14 - Chapter 6 Chemical Synthesis of Glycoproteins by the Thioester Method [Seite 287]
14.1 - 6.1 Introduction [Seite 287]
14.2 - 6.2 Ligation Methods and Strategy of Glycoprotein Synthesis [Seite 288]
14.3 - 6.3 The Synthesis of the Extracellular Ig Domain of Emmprin [Seite 290]
14.4 - 6.4 Synthesis of Basal Structure of MUC2 [Seite 292]
14.5 - 6.5 N-Alkylcysteine-Assisted Thioesterification Method and Dendrimer Synthesis [Seite 293]
14.6 - 6.6 Synthesis of TIM-3 [Seite 296]
14.7 - 6.7 Resynthesis of Emmprin Ig Domain [Seite 298]
14.8 - 6.8 Conclusion [Seite 300]
14.9 - References [Seite 300]
15 - Chapter 7 Membrane Proteins: Chemical Synthesis and Ligation [Seite 305]
15.1 - 7.1 Introduction [Seite 305]
15.2 - 7.2 Methods for the Synthesis and Purification of Membrane Proteins [Seite 306]
15.2.1 - 7.2.1 Synthesis of Hydrophobic Peptides [Seite 306]
15.2.2 - 7.2.2 Purification of Hydrophobic Peptides [Seite 308]
15.3 - 7.3 Ligation and Refolding [Seite 309]
15.3.1 - 7.3.1 Ligation Strategies [Seite 309]
15.3.2 - 7.3.2 Refolding of Chemically Synthesized Hydrophobic Peptides and Membrane Proteins [Seite 311]
15.4 - 7.4 Illustrative Examples [Seite 312]
15.4.1 - 7.4.1 Diacylglycerol Kinase (DAGK) [Seite 312]
15.4.2 - 7.4.2 Semisynthesis of the Sensory Rhodopsin/Transducer Complex [Seite 314]
15.4.3 - 7.4.3 Semisynthesis of the Functional K+ Channel KcsA [Seite 315]
15.5 - References [Seite 316]
16 - Chapter 8 Chemoselective Modification of Proteins [Seite 321]
16.1 - 8.1 Chemical Protein Synthesis [Seite 321]
16.1.1 - 8.1.1 Native Chemical Ligation (NCL) and Expressed Protein Ligation (EPL) [Seite 321]
16.1.2 - 8.1.2 Traceless Staudinger Ligation [Seite 322]
16.2 - 8.2 Chemoselective and Bioorthogonal Reactions [Seite 323]
16.2.1 - 8.2.1 Oxime/Hydrazone Ligation [Seite 323]
16.2.2 - 8.2.2 Staudinger Ligations [Seite 330]
16.2.3 - 8.2.3 Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) [Seite 330]
16.2.4 - 8.2.4 Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) [Seite 333]
16.2.5 - 8.2.5 Inverse Electron-Demand Diels-Alder Cycloaddition (DAINV) [Seite 336]
16.2.6 - 8.2.6 Light-Induced Click Reactions [Seite 339]
16.2.7 - 8.2.7 1,2-Aminothiol Condensation [Seite 340]
16.2.8 - 8.2.8 Transition-Metal-Catalyzed Couplings [Seite 341]
16.2.9 - 8.2.9 Miscellaneous Protein-Labeling Reactions [Seite 342]
16.3 - 8.3 Site-Selective Protein Modification Approaches [Seite 343]
16.4 - 8.3.1 Site-Selective Modification of Native Proteins [Seite 343]
16.5 - 8.3.2 Chemical Tags for Labeling Proteins in Live Cells [Seite 347]
16.6 - 8.3.3 Unnatural Amino Acid Mutagenesis [Seite 355]
16.7 - References [Seite 358]
17 - Chapter 9 Stable, Versatile Conjugation Chemistries for Modifying Aldehyde-Containing Biomolecules [Seite 375]
17.1 - 9.1 Introduction [Seite 375]
17.2 - 9.2 Aldehyde as a Bioorthogonal Chemical Handle for Conjugation [Seite 375]
17.3 - 9.3 Aldehyde Conjugation Chemistries [Seite 376]
17.4 - 9.4 The Pictet-Spengler Ligation [Seite 377]
17.5 - 9.5 The Hydrazinyl-Iso-Pictet-Spengler (HIPS) Ligation [Seite 377]
17.6 - 9.6 The Trapped-Knoevenagel (thioPz) Ligation [Seite 379]
17.7 - 9.7 Applications - Antibody-Drug Conjugates [Seite 382]
17.8 - 9.8 Next-Generation HIPS Chemistry - AzaHIPS [Seite 384]
17.9 - 9.9 Applications - Protein Engineering [Seite 385]
17.10 - 9.10 Applications - Protein Labeling [Seite 385]
17.11 - 9.11 Conclusions [Seite 387]
17.12 - References [Seite 387]
18 - Chapter 10 Thioamide Labeling of Proteins through a Combination of Semisynthetic Methods [Seite 391]
18.1 - 10.1 Introduction [Seite 391]
18.2 - 10.2 Thioamide Synthesis [Seite 392]
18.3 - 10.3 Thioamide Incorporation into Peptides [Seite 393]
18.4 - 10.4 Synthesis of Full-Sized Proteins Containing Thioamides [Seite 396]
18.5 - 10.5 Applications [Seite 404]
18.5.1 - 10.5.1 Structural Studies [Seite 404]
18.5.2 - 10.5.2 Use as Photoswitches [Seite 407]
18.5.3 - 10.5.3 Site-Specific Circular Dichroism Labels [Seite 409]
18.5.4 - 10.5.4 Fluorescence Quenching [Seite 410]
18.5.5 - 10.5.5 Protein Folding in Model Systems [Seite 411]
18.5.6 - 10.5.6 Monitoring Proteolysis [Seite 413]
18.5.7 - 10.5.7 ?-Synuclein Misfolding Studies [Seite 415]
18.6 - 10.6 Conclusions [Seite 417]
18.7 - Acknowledgments [Seite 417]
18.8 - References [Seite 418]
19 - Chapter 11 Macrocyclic Organo-Peptide Hybrids by Intein-Mediated Ligation: Synthesis and Applications [Seite 427]
19.1 - 11.1 Introduction [Seite 427]
19.1.1 - 11.1.1 Naturally Occurring Macrocyclic Peptides [Seite 428]
19.1.2 - 11.1.2 Natural Product Analogs via Reengineering of NRPS and PRPS Biosynthetic Pathways [Seite 431]
19.2 - 11.2 Macrocyclic Organo-Peptide Hybrids as Natural-Product-Inspired Macrocycles [Seite 432]
19.2.1 - 11.2.1 MOrPHs via CuAAC/Hydrazide-Mediated Ligation [Seite 434]
19.2.2 - 11.2.2 Catalyst-Free MOrPH Synthesis via Oxime/AMA-Mediated Ligation [Seite 437]
19.2.3 - 11.2.3 Structure-Reactivity Relationships in MOrPH Synthesis [Seite 437]
19.2.4 - 11.2.4 Synthesis of MOrPH Libraries [Seite 440]
19.2.5 - 11.2.5 Macrocyclization Mech [Seite 441]
19.2.6 - 11.2.6 Bicyclic Organo-Peptide Hybrids [Seite 442]
19.3 - 11.3 Application of MOrPHs for Targeting ?-Helix-Mediated Protein-Protein Interactions [Seite 442]
19.4 - 11.4 Conclusions [Seite 446]
19.5 - References [Seite 446]
20 - Chapter 12 Protein Ligation by HINT Domains [Seite 457]
20.1 - 12.1 Introduction [Seite 457]
20.2 - 12.2 Protein Ligation by Protein Splicing [Seite 459]
20.3 - 12.3 Naturally Occurring and Artificially Split Inteins for Protein Ligation [Seite 460]
20.4 - 12.4 Conditional Protein Splicing [Seite 463]
20.5 - 12.5 Inter- and Intramolecular Protein Splicing [Seite 465]
20.6 - 12.6 Protein Ligation by Other HINT Domains [Seite 466]
20.7 - 12.7 Bottleneck of Protein Ligation by PTS [Seite 468]
20.8 - 12.8 Comparison with Other Enzymatic Ligation Methods [Seite 468]
20.9 - 12.9 Perspective of Protein Ligation by HINT Domains [Seite 473]
20.10 - 12.10 Conclusions and Future Perspectives [Seite 474]
20.11 - Acknowledgment [Seite 474]
20.12 - References [Seite 474]
21 - Chapter 13 Chemical Ligation for Molecular Imaging [Seite 483]
21.1 - 13.1 Introduction [Seite 483]
21.2 - 13.2 Chemical Ligation [Seite 484]
21.2.1 - 13.2.1 Classical Chemical Ligation [Seite 484]
21.2.2 - 13.2.2 Bioorthogonal Chemistry [Seite 486]
21.3 - 13.3 Conclusion [Seite 506]
21.4 - References [Seite 509]
22 - Chapter 14 Native Chemical Ligation in Structural Biology [Seite 521]
22.1 - 14.1 Introduction [Seite 521]
22.2 - 14.2 Protein (Semi)synthesis for Molecular Structure Determination [Seite 522]
22.3 - 14.3 Protein (Semi)Synthesis for Understanding Protein Folding, Stability, and Interactions [Seite 530]
22.4 - 14.4 Protein (Semi)Synthesis in Enzyme Chemistry [Seite 537]
22.5 - References [Seite 542]
23 - Index [Seite 553]
24 - Supplemental Images [Seite 567]
25 - EULA [Seite 583]

Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Bitte beachten Sie bei der Verwendung der Lese-Software Adobe Digital Editions: wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

155,99 €
inkl. 7% MwSt.
Download / Einzel-Lizenz
PDF mit Adobe-DRM
siehe Systemvoraussetzungen
E-Book bestellen