Advances in Marine Biology

 
 
Academic Press
  • 1. Auflage
  • |
  • erschienen am 25. August 2016
  • |
  • 382 Seiten
 
E-Book | ePUB mit Adobe DRM | Systemvoraussetzungen
E-Book | PDF mit Adobe DRM | Systemvoraussetzungen
978-0-12-803645-7 (ISBN)
 

Advances in Marine Biology has been providing in-depth and up-to-date reviews on all aspects of marine biology since 1963 - more than 50 years of outstanding coverage from a comprehensive serial that is well known for its contents and editing. This latest addition to the series includes updates on many topics that will appeal to postgraduates and researchers in marine biology, fisheries science, ecology, zoology, and biological oceanography.

Specialty areas for the series include marine science, both applied and basic, a wide range of topical areas from all areas of marine ecology, oceanography, fisheries management, and molecular biology, and the full range of geographic areas from polar seas to tropical coral reefs.


  • Reviews articles on the latest advances in marine biology
  • Authored by leading figures in their respective fields of study
  • Presents materials that are widely used by managers, students, and academic professionals in the marine sciences
  • Provides value to anyone studying bottlenose dolphins, deep-sea macrofauna, marine invertebrates, pinna nobilis, and ecology, amongst other study areas
0065-2881
  • Englisch
  • San Diego
Elsevier Science
  • 21,35 MB
978-0-12-803645-7 (9780128036457)
0128036451 (0128036451)
weitere Ausgaben werden ermittelt
  • Front Cover
  • Advances in Marine Biology
  • Copyright
  • Contributors To Volume 74
  • Contents
  • Series Contents for Last Fifteen Years*
  • Preface
  • Chapter One: Decadal-Scale Forecasting of Climate Drivers for Marine Applications
  • 1. Introduction
  • 1.1. Climate Drivers and Their Marine Impacts
  • 1.2. Extreme Events: Biological Tolerances and Impacts
  • 1.3. Outline of Review
  • 2. Climate Drivers
  • 2.1. Southern Annular Mode
  • 2.2. Indian Ocean Dipole
  • 2.3. El Niño/Southern Oscillation
  • 2.4. Interdecadal Pacific Oscillation
  • 3. Case Studies: Climate Drivers and Marine Extremes
  • 3.1. Western Australian Marine Heatwave 2011
  • 3.2. GBR Bleaching Events: 1998 and 2002
  • 3.3. Queensland Coastal Floods: 2010/11
  • 4. Forecasting Climate Drivers
  • 4.1. The Critical Decade
  • 4.2. Seasonal to Decadal Predictability of Climate Drivers
  • 4.3. Persistence Forecasting
  • 4.3.1. Southern Annular Mode
  • 4.3.2. Indian Ocean Dipole
  • 4.3.3. El Niño/Southern Oscillation
  • 4.3.4. Interdecadal Pacific Oscillation
  • 4.4. Dynamical Forecasts
  • 4.5. Statistical Translation
  • 5. Future Directions for Climate Forecasting
  • 5.1. Primary Research Needs to Support Climate Forecasts
  • 5.1.1. Climate Models
  • 5.1.2. Model Initialization
  • 5.1.3. Ensemble Forecasting
  • 5.1.4. Evaluation of the Forecasting System
  • 5.2. Data Needs to Support Climate Model Development
  • 5.2.1. Physical Data
  • 5.2.2. Biological Time Series
  • 5.2.3. Impact Studies: Attribution and Evaluation
  • 5.3. Integration of Forecast Results into Decision Support Tools
  • 5.4. End-User Needs for Marine Forecasts
  • 5.4.1. Application of Marine Forecasts
  • 5.4.2. Helping End Users Manage Risk
  • 5.4.3. Developing a Successful Forecasting System
  • 6. Conclusion
  • Acknowledgements
  • References
  • Chapter Two: Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean
  • 1. The Impact of Climate Change on the Oceans
  • 1.1. Early Developmental Stages of Marine Invertebrates and Ocean Climate Change Stressors
  • 2. The Potential to Persist in the Face of Ocean Climate Change-Acclimatization and Adaptation
  • 2.1. Acclimatization
  • 2.1.1. Acclimatization and Thermal Tolerance Limits
  • 2.1.2. Phenotypic Plasticity and Genetic Assimilation
  • 2.2. Adaptation
  • 2.2.1. Evidence of Standing Genetic Variation
  • 2.2.2. Assisted Evolution
  • 2.2.2.1. Evolutionary Rescue
  • 3. Experimental Approaches to Assess Evolutionary Potential
  • 3.1. Reaction Norms and Visualization of Genotype by Environment Interactions
  • 3.2. Use of Quantitative Genetic Designs with Free Spawning Marine Invertebrates
  • 3.3. Clonal studies
  • 3.4. Laboratory Selection Experiments with Short Generation Species
  • 3.5. Genetic Correlations
  • Interactions Across Multiple Environments
  • 3.6. Heritability
  • 4. Transgenerational and Multigenerational Effects from Exposure to Environmental Stressors
  • 4.1. Transgenerational Effects
  • 4.2. Multigenerational Effects
  • 4.3. Epigenetics
  • 5. Conclusions
  • Acknowledgements
  • References
  • Chapter Three: Fish Ecology and Evolution in the World´s Oxygen Minimum Zones and Implications of Ocean Deoxygenation
  • 1. Introduction
  • 2. Global Fish Exposure to Oxygen Minimum Zones
  • 2.1. Depth of Upper and Lower OMZ Boundary
  • 2.2. OMZ Thickness
  • 2.3. Minimum O2 Levels in the OMZ Core
  • 2.4. Local Temperature
  • 2.5. Seasonality, Variability, and Biological Responses
  • 3. Influence of Oxygen Minimum Zones on Demersal Fish Community Characteristics
  • 3.1. Fish Oxygen Requirements Within OMZs
  • 3.2. Composition of Demersal Fish Species in OMZs and OLZs
  • 3.3. Regional Patterns in Space and Time
  • 3.3.1. California Current Ecosystem
  • 3.3.2. Eastern Tropical Pacific-Gulf of California
  • 3.3.3. Eastern Tropical Pacific-Volcano 7
  • 3.3.4. Eastern Tropical Pacific-Mexico and Central America
  • 3.3.5. Humboldt Current Ecosystem-Peru and Chile
  • 3.3.6. Benguela Current Ecosystem-Namibia
  • 3.3.7. Northern Indian Ocean-Arabian Sea
  • 3.3.8. Northern Indian Ocean-Bay of Bengal
  • 3.4. Effects of Oxygen on Fish CPUE, Biomass, and Density
  • 3.5. Effects of Oxygen on Fish Diversity
  • 3.6. Comparison of Trends Between Invertebrate and Demersal Fish Communities in OMZs
  • 4. Behavioural and Physiological Adaptations Conferring Tolerance to Low O2 Environments
  • 4.1. Responses of OMZ Fish Species to Severely Hypoxic Conditions
  • 4.2. Critical Oxygen Level
  • 4.3. Blood Adaptations to Hypoxic Conditions
  • 4.4. Molecular Responses of Fish to Hypoxia
  • 4.5. Metabolic Depression Under Hypoxic Conditions
  • 4.6. Behavioural Adaptations
  • 4.7. Life-History Trends
  • 4.8. Feeding Strategies of Species Living in OMZs
  • 5. Implications for a Warming Ocean and Expanding Oxygen Minimum Zones
  • 5.1. Influences of Ocean Oxygen on Marine Communities Through Time
  • 5.2. Ocean Deoxygenation
  • 5.3. Implications for Fisheries Management
  • 6. Conclusions
  • 7. Advancing Understanding/Future Issues
  • Acknowledgements
  • References
  • Chapter Four: Bioenergetics, Trophic Ecology, and Niche Separation of Tunas
  • 1. Introduction
  • 2. Bioenergetics
  • 2.1. Metabolism
  • 2.2. Specific Dynamic Action
  • 2.3. Egestion and Excretion
  • 2.4. Consumption Rates
  • 2.5. Cost of Growth
  • 2.6. Cost of Reproduction
  • 2.7. Bioenergetics Modelling
  • 3. Trophic Ecology of Tunas
  • 3.1. Eastern Pacific Ocean
  • 3.1.1. Introduction
  • 3.1.1.1. Physical Environment
  • 3.1.1.2. Species Composition and Distribution
  • 3.1.1.3. The Fisheries
  • 3.1.2. Diet Composition
  • 3.1.2.1. Yellowfin Tuna
  • 3.1.2.2. Skipjack Tuna
  • 3.1.2.3. Bigeye Tuna
  • 3.1.2.4. Albacore Tuna
  • 3.1.2.5. Pacific Bluefin Tuna
  • 3.1.3. Niche Separation
  • 3.1.4. Daily Ration
  • 3.1.5. Chemical Indicators
  • 3.1.6. Interannual Variability and Climate Change
  • 3.1.7. Discussion and Research Needs
  • 3.2. Western and Central Pacific Ocean
  • 3.2.1. Introduction
  • 3.2.1.1. Physical/Biological Environment
  • 3.2.1.2. Species Composition and Distribution
  • 3.2.1.3. The Fisheries
  • 3.2.2. Diet Composition
  • 3.2.2.1. Impact of FADs on Diets
  • 3.2.2.2. Spatial Variation
  • 3.2.3. Niche Separation
  • 3.2.4. Daily Ration
  • 3.2.5. Chemical Indicators
  • 3.2.6. Interannual Variability and Climate Change
  • 3.2.7. Discussion and Research Needs
  • 3.3. Western Temperate Pacific Ocean
  • 3.3.1. Introduction
  • 3.3.1.1. Physical Environment
  • 3.3.1.2. Species Composition and Distribution
  • 3.3.1.3. The Fisheries
  • 3.3.2. Diet Composition
  • 3.3.3. Niche Separation
  • 3.3.4. Daily Ration
  • 3.3.5. Chemical Indicators
  • 3.3.6. Interannual Variability and Climate Change
  • 3.3.7. Discussion and Research Needs
  • 3.4. Western Indian Ocean
  • 3.4.1. Introduction
  • 3.4.1.1. Physical Environment
  • 3.4.1.2. Species Composition and Distribution
  • 3.4.1.3. The Fisheries
  • 3.4.2. Diet Composition
  • 3.4.2.1. Yellowfin Tuna
  • 3.4.2.2. Skipjack Tuna
  • 3.4.2.3. Bigeye Tuna
  • 3.4.2.4. Albacore Tuna
  • 3.4.2.5. Southern Bluefin Tuna
  • 3.4.2.6. Kawakawa
  • 3.4.3. Niche Separation
  • 3.4.4. Daily Ration
  • 3.4.5. Chemical Indicators
  • 3.4.6. Interannual Variability and Climate Change
  • 3.4.7. Discussion and Research Needs
  • 3.5. Eastern Tropical Atlantic Ocean
  • 3.5.1. Introduction
  • 3.5.1.1. Physical Environment
  • 3.5.1.2. Species Composition and Distribution
  • 3.5.1.3. The Fisheries
  • 3.5.2. Diet Composition
  • 3.5.2.1. Yellowfin Tuna
  • 3.5.2.2. Skipjack Tuna
  • 3.5.2.3. Bigeye Tuna
  • 3.5.3. Niche Separation
  • 3.5.4. Daily Ration
  • 3.5.5. Chemical Indicators
  • 3.5.6. Interannual Variability and Climate Change
  • 3.5.7. Discussion and Research Needs
  • 3.6. Eastern Temperate Atlantic Ocean and Mediterranean Sea
  • 3.6.1. Introduction
  • 3.6.1.1. Physical Environment
  • 3.6.1.2. Species Composition and Distribution
  • 3.6.1.3. The Fisheries
  • 3.6.2. Diet Composition
  • 3.6.2.1. Atlantic Bluefin Tuna
  • 3.6.2.2. Albacore Tuna
  • 3.6.3. Niche Separation
  • 3.6.4. Daily Ration
  • 3.6.5. Chemical Indicators
  • 3.6.6. InterAnnual Variability and Climate Change
  • 3.6.7. Discussion and Research Needs
  • 3.7. Western Atlantic Ocean
  • 3.7.1. Introduction
  • 3.7.1.1. Physical Environment
  • 3.7.1.2. Species Composition and Distribution
  • 3.7.1.3. The Fisheries
  • 3.7.2. Diet Composition
  • 3.7.2.1. Skipjack Tuna
  • 3.7.2.2. Yellowfin Tuna
  • 3.7.2.3. Atlantic Bluefin Tuna
  • 3.7.2.4. Bigeye Tuna
  • 3.7.2.5. Albacore Tuna
  • 3.7.3. Niche Separation
  • 3.7.4. Daily Ration
  • 3.7.5. Chemical Indicators
  • 3.7.6. Interannual Variability and Climate Change
  • 3.7.7. Discussion and Research Needs
  • Acknowledgements
  • References
  • Subject Index
  • Taxonomic Index
  • Back Cover

Dateiformat: EPUB
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat EPUB ist sehr gut für Romane und Sachbücher geeignet - also für "fließenden" Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Dateiformat: PDF
Kopierschutz: Adobe-DRM (Digital Rights Management)

Systemvoraussetzungen:

Computer (Windows; MacOS X; Linux): Installieren Sie bereits vor dem Download die kostenlose Software Adobe Digital Editions (siehe E-Book Hilfe).

Tablet/Smartphone (Android; iOS): Installieren Sie bereits vor dem Download die kostenlose App Adobe Digital Editions (siehe E-Book Hilfe).

E-Book-Reader: Bookeen, Kobo, Pocketbook, Sony, Tolino u.v.a.m. (nicht Kindle)

Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein "harter" Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.

Weitere Informationen finden Sie in unserer E-Book Hilfe.


Download (sofort verfügbar)

171,36 €
inkl. 19% MwSt.
Download / Einzel-Lizenz
ePUB mit Adobe DRM
siehe Systemvoraussetzungen
PDF mit Adobe DRM
siehe Systemvoraussetzungen
Hinweis: Die Auswahl des von Ihnen gewünschten Dateiformats und des Kopierschutzes erfolgt erst im System des E-Book Anbieters
E-Book bestellen

Unsere Web-Seiten verwenden Cookies. Mit der Nutzung des WebShops erklären Sie sich damit einverstanden. Mehr Informationen finden Sie in unserem Datenschutzhinweis. Ok